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Abstract—Information-theoretic image quality assessment
(IQA) models such as Visual Information Fidelity (VIF) and
Spatio-temporal Reduced Reference Entropic Differences (ST-
RRED) have enjoyed great success by seamlessly integrating nat-
ural scene statistics (NSS) with information theory. The Gaussian
Scale Mixture (GSM) model that governs the wavelet subband
coefficients of natural images forms the foundation for these
algorithms. However, the explosion of user-generated content on
social media, which is typically distorted by one or more of many
possible unknown impairments, has revealed the limitations of
NSS-based IQA models that rely on the simple GSM model. Here,
we seek to elaborate the VIF index by deriving useful properties
of the Multivariate Generalized Gaussian Distribution (MGGD),
and using them to study the behavior of VIF under a Generalized
GSM (GGSM) model.

Index Terms—Visual Information Fidelity, Generalized Gaus-
sian Scale Mixture, Differential Entropy, Kurtosis.

I. INTRODUCTION

The field of Natural Scene Statistics (NSS) modeling of

images originates from the seminal work of Ruderman [1],

later formalized in the form of the Gaussian Scale Mixture

(GSM) model that governs the subband coefficients of nat-

ural images [2]. The GSM model forms the backbone of

successful Full-Reference (FR) Image Quality Assessment

(IQA) models such as Information Fidelity Criterion (IFC)

[3], Visual Information Fidelity (VIF) [4], and VMAF [5], as

well as Reduced Reference (RR) Video Quality Assessment

(VQA) models such as ST-RRED [6] and SpEED-QA [7]. The

GSM model also underlies the perceptually significant divisive

normalization processess used in popular No-Reference (NR)

IQA models like DIIVINE [8], BRISQUE [9], and NIQE [10].

However, images may undergo distortions in multiple stages

(e.g. acquisition and compression) or may coincidentally oc-

cur, commingling to form aggregate distortions that are hard

to model or even characterize. Distortions such as these often

arise in User Generated Content (UGC) [11] [12], where

combined degradations are hard to capture using the GSM

model. A comprehensive evaluation of NR IQA models on

UGC can be found in [13].

Here, we provide a theoretical analysis of VIF under a

Generalized GSM (GGSM) model of NSS [14]. We achieve

this by deriving novel results on the Multivariate Generalized

Gaussian Distribution (MGGD). Further, we also derive results

on the multivariate kurtosis, which we use to approximate the

true value of VIF, assuming the images being analyzed follow

a GGSM model.

II. VISUAL INFORMATION FIDELITY

We begin by reviewing VIF, which is an information-

theoretic FR IQA model. Let the coefficients obtained after a

bandpass transform on the reference image, such as a steerable

pyramid decomposition [15], be Ci ∈ R
M , i = 1 . . .N .

Assuming a signal attenuation and additive noise distortion

model, where Di = giCi +Vi

are distorted bandpass coefficients, gi are deterministic

scalars, and Vi ∼ N (0, σ2
vI).

VIF assumes that the Ci are distributed as a Gaussian

Scale Mixture (GSM). That is, each Ci can be expressed

as Ci = ZiUi, where Zi are non-negative scalar random

variables (RVs) and Ui ∼ N (0,CU), CU ∈ R
M×M ,

independent of Zi.

In VIF, uncertainty of perception, such as neural noise is

modelled as additive white Gaussian noise (AWGN), leading

to observed reference and distorted bandpass coefficients Ei

and Fi, given by

Ei = ZiUi +Ni, (1)

Fi = giZiUi +N′
i
, (2)

where Ni,N
′
i
∼ N (0, σ2

nI) are independent and identically

distributed (iid). Then, assuming a K-subband decomposition,

the VIF index is defined as

V IF =

K
∑

k=1

N
∑

i=1

I(Ck

i
;Fk

i
|Zk

i = zki )

K
∑

k=1

N
∑

i=1

I(Ck

i
;Ek

i
|Zk

i = zki )

. (3)

III. MULTIVARIATE GENERALIZED GAUSSIAN

DISTRIBUTION

The probability density function (pdf) fU of an M -

dimensional MGGD RV U ∼ MGGD(0, α,CU) is given by

fU (u) =
αΓ(M2 ) det(CU)−

1

2

π
M

2 Γ(M2α )2
M

2α

exp

Å

−
1

2

(

uTCU
−1u

)α
ã

.

(4)
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If Ui ∼ MGGD(0, α,CU) in (1) - (2), where α > 0, the

resulting model is called a Generalized GSM (GGSM). When

α = 1, the GGSM and GSM models are identical.

The first result we derive in this section is an expression for

the differential entropy of an MGGD, which is hitherto known

only for the scalar case (M = 1).

Lemma 1. The differential entropy h(U) of a RV U ∼
MGGD(0, α,CU) is given by

h(U) =
M

2α
− log

αΓ(M2 )

π
M

2 Γ(M2α )2
M

2α

+
1

2
log det(CU). (5)

We will omit the proof of Lemma 1, since the proof of

Lemma 2 contains all the techniques used here.

The second result we derive is the expression for the Fisher

information Matrix (FIM), under translation, of an MGGD RV.

Definition 1. If X has a probability density function fX , its

Fisher information matrix is defined as

J(X) = E

ñ

Å

∇fX(X)

fX(X)

ãÅ

∇fX(X)

fX(X)

ãT
ô

,

where ∇ denotes the gradient operator.

Lemma 2. The FIM J(U) of an MGGD is finite iff α >
1
2 − M

4 , and is given by

J(U) =
22−

1

αα2

MΓ(M2α )
Γ

Å

2 +
M − 2

2α

ã

CU
−1. (6)

This quantity is easy to derive for an MGGD when M = 1,

but no such an expression for the multivariate case is available

in the literature. This result will be used to apply Lemma 3 in

Section IV.

Proof. Recall that under an invertible linear transformation

Y = AX, we know that Y has the pdf

fY (y) =
1

detA
fX(A−1y). (7)

Differentiating with respect to y, and applying the chain rule

for gradients, it follows that the FIM of Y is given by

J(Y) = (A−1)TJ(X)A−1. (8)

Now, consider transformation Y = CU
− 1

2U. Then, using (7),

the (p, q) th term of J(Y) may be expressed

[J(Y)]pq = α2

∫

Rd

ypyq ‖y‖
4(α−1)
2 fY (y)dy. (9)

But, when p 6= q, (9) is the integral of an odd function, hence,

[J(Y)]pq = 0, if p 6= q. (10)

When p = q, the integral may be evaluated using M -spherical

coordinates, which we omit the details of for brevity. Then,

using (8) yields the result in (6).

Note that the condition on α is necessary and sufficient for

the Gamma function in the numerator of (6) to be defined.

IV. BOUNDS ON VIF UNDER THE GGSM MODEL

A. Bounds on Differential Entropy

Next, we derive bounds on VIF under the GGSM model.

For simplicity, consider one subband of the bandpass decom-

position, yielding random fields C, D, E, and F defined as

in Section II.

To derive bounds on VIF, we will use bounds on the

differential entropies of sums of RVs. Let X and Y be

two independent RVs. Then, using Shannon’s Entropy Power

Inequality (EPI) [16], we obtain.

h(X+Y) ≥
M

2
log

Å

exp

Å

2

M
h(X)

ã

+ exp

Å

2

M
h(Y)

ãã

.

(11)

To obtain an upper bound, we use the following result [17].

Lemma 3. Let F = {X ∈ R
M |E[log(1+ ‖X‖2)] < ∞}, i.e.,

the set of RVs having finite logarithmic moments. If X ∈ F
has finite h(X) and J(X), and Z ∼ N (µ, σ2I) is independent

of X, then

h(X+ Z) ≤ h(X) +
M

2
log

Å

1 +
σ2

M
trJ(X)

ã

.

Since MGGD is a bounded pdf with a finite covariance,

its logarithmic moment exists. Hence, U ∈ F . From Section

III, we know that h(U) is always finite and J(U) has finite

entries iff α > 1
2 − M

4 . Under this mild constraint, we can

apply Lemma 3 to the entropy terms in VIF.

B. Bounds on VIF

In (3), the mutual information term corresponding to the

reference image is

I(Ci;Ei|zi) = h(Ci +Ni|zi)− h(Ni|zi). (12)

Since Ci = ZiU , then Ci|Zi=zi ∼ MGGD(0, z2iCU, α).
Using this relationship and the expression for the differential

entropy of a Gaussian RV, we find the following lower and

upper bounds on (12), respectively:

Il(Ci;Ei|zi) ≤ I(Ci;Ei|zi) ≤ Iu(Ci;Ei|zi) (13)

where

Il(Ci;Ei|zi) =
M

2
log

Å

1 +
z2i

2πeσ2
n

exp

Å

2h(U)

M

ãã

, (14)

and

Iu(Ci;Ei|zi) = h(U) +
M

2
log

Å

z2i
2πeσ2

n

+
trJ(U)

2πeM

ã

. (15)

Similarly, the mutual information term in 3 corresponding

to the distorted image is

I(Ci;Fi|zi) =
N
∑

i=1

h(giCi +Vi +N′
i
|zi)− h(Vi +N′

i
|zi).

(16)

As above, giCi|Zi=zi ∼ MGGD(0, g2i z
2
iCU, α). Using this

relationship and the expression for the differential entropy of a



Gaussian RV, we derive the following lower and upper bounds

on (16), respectively:

Il(Ci;Fi|zi) ≤ I(Ci;Fi|zi) ≤ Iu(Ci;Fi|zi) (17)

where

Il(Ci;Fi|zi) =
M

2
log

Å

1 +
(gizi)

2

2πe (σ2
n + σ2

v)
exp

Å

2h(U)

M

ãã

,

(18)

and

Iu(Ci;Fi|zi) = h(U)+
M

2
log

Å

(gizi)
2

2πe(σ2
v + σ2

n)
+

trJ(U)

2πeM

ã

.

(19)

Repeating this analysis for all K subbands, we obtain the

following bound on VIF under the GGSM model.

K
∑

k=1

N
∑

i=1

Il(C
k

i
;Fk

i
|zki )

K
∑

k=1

N
∑

i=1

Iu(Ck

i
;Ek

i
|zki )

≤ VIF ≤

K
∑

k=1

N
∑

i=1

Iu(C
k

i
;Fk

i
|zki )

K
∑

k=1

N
∑

i=1

Il(Ck

i
;Ek

i
|zki )

.

(20)

V. APPROXIMATING VIF IN PRACTICAL APPLICATIONS

When applying this model to practical applications, like

quality assessment of UGC pictures, finding bounds on the

values of VIF supplies insufficient accuracy. However, obtain-

ing an expression for VIF assuming a more general framework

is difficult, since the distribution of the sum of MGGD and

Gaussian RVs is not easily characterized, even in the scalar

case [18] [19].

To overcome this limitation, [18] and [19] approximated the

distribution of the sum of independent scalar GGD RVs by a

GGD RV, using a moment-matching method. Specifically, if

U, V are independent scalar GGD RVs, and W = U + V ,

then W is approximated as a GGD RV W̃ , such that W
and W̃ share the same means, variances and kurtoses. In

the multivariate case, MGGDs are modelled using the mean,

covariance matrix and Mardia’s multivariate kurtosis [20] [21].

Definition 2 (Mardia’s Kurtosis). Given an M -dimensional

RV X having mean µ and covariance Σ, Mardia’s Kurtosis

of X is given by

γ2(X) = E[
(

(X− µ)TΣ−1(X− µ)
)2
]−M(M + 2).

The work in [18] and [19] is restricted to the scalar case

because an expression for Mardia’s kurtosis of sums of RVs

is hitherto unknown. We bridge this gap by deriving the

following results. In the following lemma, let SM++ denote the

set of M ×M symmetric positive definite matrices.

Lemma 4. Let X and Y be independent M -dimensional RVs

having zero means, without loss of generality, and covariance

matrices ΣX,ΣY respectively. Let Z = X + Y, having co-

variance ΣZ = ΣX +ΣY . Further, for any RVs A,B having

covariances ΣA,ΣB ∈ S
M
++, let ∆AB = ΣA

1

2ΣB
−1ΣA

1

2 ,

and ρAB = 2 ‖∆AB‖2F + tr (∆AB)
2
. Then, Mardia’s Kur-

tosis of Z sastisfies the relationship

γ2(Z) =E
î

(

XTΣZ
−1X

)2ó

− ρX,Z+

E
î

(

YTΣZ
−1Y

)2ó

− ρY,Z.
(21)

The proof of Lemma 4 follows from the definitions and

properties of multivariate moments and cumulants defined in

[22], and evaluating expectations of Gaussian RVs. We omit

the details of this proof for brevity.

Definition 3. A RV X is said to Elliptically Distributed with

mean µ, covariance Σ and a “generating function” g, i.e.,

X ∼ ED(µ,Σ, g) if the pdf of X is of the form

fX(x) = C det(Σ)
1

2 g((x− µ)TΣ−1(x− µ)).

Theorem 1. Let X ∼ ED (0,ΣX , gX), Y ∼ ED (0,ΣY , gY)
be independent M -dimensional RVs, and Z = X+Y. For a

generating function g, let λ
(M)
g = E[V 4

1 ]/E[V 2
1 V

2
2 ]−3, where

Vi are components of the M -dimensional RV V ∼ ED(0, I, g),
and let ◦2 denote elementwise squaring. Then,

γ2(Z) =

Ä

ρXZ + λ
(M)
gX tr

(

∆◦2
XZ

)

ä

(γ2 (X) +M (M + 2))

M
Ä

M + 2 + λ
(M)
gX

ä +

Ä

ρYZ + λ
(M)
gY tr

(

∆◦2
YZ

)

ä

(γ2 (Y) +M (M + 2))

M
Ä

M + 2 + λ
(M)
gY

ä −

ρXZ − ρYZ. (22)

Proof. Let V ∼ ED(0, I, g) be an M -dimensional RV. Ob-

serving that the distribution of V is invariant to permutations

of its components, it follows that E[Y 4
i ] = E[Y 4

1 ], and

E[Y 2
i Y

2
j ] = E[Y 2

1 Y
2
2 ] for all i 6= j. Using this symmetry

and the definition of λ
(M)
gX , it follows that

γ2(V) = E[‖V‖4]−M(M + 2)

= ME[V 4
1 ] +M(M − 1)E[V 2

1 V
2
2 ]−M(M + 2)

= ME[V 2
1 V

2
2 ](λ

(M)
g +M + 2)−M(M + 2) (23)

Consider the term E
î

(

XTΣ−1
Z

X
)2ó

. Using the transfor-

mation X̃ = ΣX
− 1

2X and the definition of ∆AB, it follows

that

E
î

(

XTΣ−1
Z

X
)2ó

= E
[

Ä

X̃T∆XZX̃
T
ä2]

. (24)

Note that X̃ ∼ ED(0, I, gX), and since kurtosis is invariant

to linear transformations, γ2(X̃) = γ2(X). Expanding the

polynomial in (24), we observe that the expectation of terms

having odd powers is 0. Further, by the same symmetry

argument used in (23), it follows that

E
î

(

XTΣ−1
Z

X
)2ó

=E[X̃2
1 X̃

2
2 ]
∑

i6=j

(

2
Ä

∆ij
XZ

ä2
+∆ii

XZ∆
jj
XZ

)

+ E[X̃4
1 ]
∑

i

(

∆ii
XZ

)2
. (25)

Using (23), it follows that (25) evaluates to the first term in

(22). Repeating the analysis for Y completes the proof.



For an MGGD, which is an elliptical distribution, it can

be shown that λ
(M)
g = 0. In addition, it can be shown

that Mardia’s Kurtosis of Gaussian RVs is zero. Using these

properties, we obtain the following corollary of Theorem 1.

Corollary 1.1. Let X be an MGGD RV having zero mean,

shape parameter α and covariance matrix Σ, Y ∼ N (0, σ2I)
independent of X and Z = X+Y. Then,

γ2(Z) = γ2(X)
ρXZ

M(M + 2)
.

Using Corollary 1.1, we can utilize moment-matching to

approximate the distributions of Ei and Fi by MGGD RVs.

As a result, we are able to approximate the mutual information

terms in (12) and (16), using the expression for differential

entropy of MGGD from Lemma 1.

To illustrate this, consider I(Ci;Ei|zi) in (12). Note that

h(Ni) is known, since Ni is a Gaussian RV. Let ΣU be the

covariance matrix of U. Then, given Zi = zi, the covariance

of Ci is z2iΣU . Using Corollary 1.1, the distribution of Ei =
Ci + Ni is approximated as Ẽi ∼ MGGD(0,C

Ẽi
, βi) by

moment-matching, such that

Cov(Ẽi) = Cov(Ei) = z2iΣU + σ2
nI, (26)

γ2(Ẽi) = γ2(Ei) = γ2(U)
ρCiEi

M(M + 2)
. (27)

Knowing the covariance and kurtosis, the parameters C
Ẽi

and βi may be estimated, following the standard procedure for

MGGDs [21]. Using these estimates in (5), we approximate

h(Ci +Ni) ≈ h(Ẽi),
using which I(Ci;Ei|zi) may be approximated. A similar

method may be used to approximate I(Ci;Fi|zi) in (16).

Approximate values of mutual information obtained in this

manner may be used in (3) to approximate VIF.

VI. CONCLUSION AND DISCUSSION

In this work, we derived novel expressions for properties

of MGGD RVs, using which we analyzed the VIF model

under a GGSM natural image model. In addition, we pro-

posed a method to approximate VIF using a novel result

regarding Mardia’s kurtosis of the sum of independent RVs.

This framework extends easily to other information-theoretic

quality assessment models, such as ST-RRED and SpEED-QA.

To the best of our knowledge, this work is the first theoretical

extension of an IQA model to a relaxed model of NSS.

The only obstacle in the way of testing this work is

the lack of a multivariate GGSM modeling algorithm. The

authors of [23] proposed iterative maximum likelihood and

MCMC-based Bayesian methods to estimate the parameters

of a scalar GGSM, under some additional assumptions on the

mixing distribution Zi. An iterative modeling algorithm was

proposed in [14], but after one iteration of that method, the

divisively normalized vectors lie on the surface of an ellipsoid.

As a result, no proper continuous distribution can model

these vectors, making this method unstable and inaccurate in

practice. Developing a sound GGSM modeling algorithm will

pave the way for quality assessment models that are resilient

to deviations from ideal NSS.
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