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ABSTRACT

Although the term ‘visually lossless’ (VL) has been used lib-
erally in the video compression literature, there does not seem
to be a systematic evaluation of what it means for a video
to be compressed visually lossless-ly. Here, we undertake
a psychovisual study to infer the visually lossless threshold
for H.264 compression of videos spanning a wide range of
contents. Based on results from this study, we then propose
a compressibility index which provides a measure of the ap-
propriate bit-rate for VL H.264 compression of a video given
texture (i.e., spatial activity) and motion (i.e., temporal activ-
ity) information. This compressibility index has been made
available online at [1] in order to facilitate practical applica-
tion of the research presented here and to further research in
the area of VL compression.

1. INTRODUCTION

Lossy compression of visual stimuli such that the loss in-
duced by the compression algorithm is not perceived by a hu-
man is referred to as visually lossless (VL) compression [2].
Visually lossless compression has received substantial atten-
tion from the medical imaging community [3, 4, 5, 6, 7], and
to some extent in a general setting where perceptual thresh-
olds or quantization matrices are developed for compression
of visual signals in DCT/wavelet domain at the visually loss-
less threshold [8, 9]. Further, although research in medical
imaging has focused on lossless compression of images using
JPEG or JPEG2000 [5, 6], visually lossless compression of
videos has not been explored as much [7]. Hence, our goal
is to understand VL compression of videos and to develop a
measure of compressibility that will aid in the VL compres-
sion of videos. Since the H.264 AVC currently enjoys indus-
try acceptance and is the latest standard proposed by the video
coding experts group (VCEG), we evaluate VL H.264 video
compression.

Previous work in the area of VL compression of images
has focused on medical images such as radiograms [4, 5].
The general approach followed is to compress medical images

over a range of bit-rates and to present these images to experts
in the field, who rate the similarity of the compressed image
with respect to the uncompressed original. Such ratings are
then used to decide a particular bit-rate for VL compression.
In [7], a similar study was conducted for H.264 compressed
bronchoscopy videos and a bit-rate for VL H.264 compres-
sion was inferred. The authors state that for videos with high
motion, the VL bit-rate is 172 kBps, while for those with low
motion, this rate is 108 kBps. Although the work in [7] is
one of the few for H.264 compressed videos, wide-scale uti-
lization of the results presented there are hindered by many
factors. First, the study was specifically for medical videos
and hence the bit-rates proposed do not correspond to a gen-
eral setting. Second, it is not clear if two bronchoscopy videos
can be referred to as different ‘contents’ - thereby limiting its
applicability. Third, the resolution of these videos were 256 ×
256 with a duration between 7-8 seconds, which again negates
the possibility of it being used in a more general higher res-
olution setting for. Finally, even though the authors mention
that the VL thresholds listed above were for ‘high motion’ and
‘low motion’ videos, no analysis is undertaken to algorithmi-
cally substantiate this claim. Here, we propose a method for
VL H.264 compression of videos at resolutions larger than
those considered in [7], where the application is not limited
to medical videos, and the videos span a wide range of con-
tents. As we shall see, such a general setting produces not
only VL thresholds, but also allows for the development of a
compressibility index for VL H.264 compression.

Our approach to understanding VL compression and the
development of a compressibility index for VL compression
is as follows. First, we conduct a single-stimulus 2-alternate
forced choice (2-AFC) psychovisual study [10] in which hu-
man observers are shown a compressed video and its original
uncompressed reference and are asked to choose that video
which has better perceived quality. Subject responses are then
analyzed using statistical techniques to produce a hypothesis
on the lossless-ness of the video. These responses are then uti-
lized in conjunction with algorithmically extracted measures
of temporal activity and texture information (spatial activity)
along with the corresponding bit-rates in order to produce a
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Fig. 1. (a)-(h) Frames of videos used in the study. Videos
were sourced from the LIVE video quality assessment
database [13].

compressibility index. One could view this approach as a
dual to that followed by those who seek to assess the just-
noticeable-distortion in videos [11, 12]. The H.264 visually
lossless compressibility index (HVLCI) that we have created
is now made available online at [1], in order to allow for prac-
tical application of the research presented here.

2. ASSESSING THE VISUALLY LOSSLESS
THRESHOLD

2.1. The Videos

We used eight reference videos from the LIVE video quality
assessment (VQA) database [13], a frame of each of them is
seen in Fig. 1. The videos were chosen in order to encompass
as wide a range of contents spanning different motion intensi-
ties and textural properties. The reader is referred to [13] for
a detailed description of these videos. Videos (a)-(e) in Fig. 1
have a frame-rate of 25 fps, while (f)-(h) are at 50 fps - which
were temporally down-sampled to 25fps, so as to allow for a
generic definition of bit-rate levels for VL compression. All
videos have a resolution of 768 × 432 and a duration of 10
seconds.

In order to create a set of compressed videos, each of the

above reference videos was compressed using the JM refer-
ence software for H.264 encoding [14] with the following bit-
rates - 0.5, 0.6198, 0.7684, 0.9526, 1.1810, 1.4640, 1.8150
and 2.2500 Mbps - to produce 40 (5 reference (a)-(e) × 8
bit-rates) + 24 (3 reference (f)-(h) × 8 bit-rates) = 64 com-
pressed videos. The bit-rates were chosen based on a previ-
ous study (unpublished) conducted over a smaller set of (dif-
ferent) videos spanning a larger range of bit-rates in order to
select the appropriate range for compression. Notice that the
bit-rates are uniformly sampled on a log-scale between 0.5
Mbps and 2.25 Mbps. The baseline profile was used for en-
coding with an I-frame period of 16 and with R-D optimiza-
tion enabled. A fixed number of macroblocks (36) were used
per slice, with 3 slice-groups per frame and a dispersed flex-
ible macroblock ordering (FMO) mode. The only parameter
that was varied across videos was the bit-rate.

2.2. The Study

A single-stimulus two-alternate forced choice (2-AFC) task
was conducted in order to measure the visually lossless (VL)
threshold. In one interval, the reference video and one of
the corresponding compressed videos were displayed one
after the other on the center of a screen with a black back-
ground on a calibrated monitor in a room lit by artificial lights
as per recommendations [15]. The viewing distance was 3
times the height of the video. At the end of each interval,
the subject was asked to select which one of the two videos
he/she thought had higher quality - the first video or the sec-
ond. Apart from intervals consisting of compressed-reference
presentations; for each content, the subject also viewed a
reference-reference pair. The presence of such a pair was
unknown to the subject and this reference-reference pair al-
lowed for a statistical analysis based on hypothesis testing for
detecting the visually lossless thresholds. Fig. 2 provides an
illustration of the study.

Forty-five such presentation intervals corresponding to the
40 compressed videos + 5 reference videos formed one ses-
sion of viewing, while the 24 compressed + 3 reference videos
formed a second session; each of which lasted less than 30
minutes to reduce subject fatigue. The order of reference and
compressed video in each interval was randomized for each
presentation, and the sequence of compressed videos seen by
the subject was randomized across subjects in order to reduce
potential bias.

Fifteen subjects participated in the first session, while
eight subjects participated in the second. Most of them were
researchers in the area of image and video processing, how-
ever, they were unaware of the intent of the study. The
subjects were not tested for acuity of vision but a verbal con-
firmation of (corrected) vision was obtained. The subjects
were briefed before the study as follows : You will be shown
two videos on your screen one after the other. At the end of
this presentation, you will be asked which video you thought
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Fig. 2. Study setup for determining VL thresholds. One inter-
val consisted of two videos shown one after the other (here,
compressed first (a), followed by reference (b) ), after which
the subject was asked to rate which video he/she thought had
better quality (c).

had better quality - the first one or the second . You have to
choose one of these two options. Once you make a choice the
next set of videos will be played out and so on. Each subject
underwent a short training session consisting of 3 pairs of
presentations (the training videos were different from those
in the actual study) in order to ensure that the subject was
comfortable with the task. Once the actual study began, the
subject was alone in the room and was not permitted to leave
the room until he/she completed the study.

2.3. Assessing the visually lossless threshold

Once a set of (binary) preferences from each subject was col-
lected, a statistical analysis followed. For each compressed
video from each session a Wilcoxon rank sum test for equal
medians was carried out to judge if the distribution of the
scores assigned to the compressed video across subjects (in
the compressed-reference case) had a median value equal to
the distribution of scores assigned to the reference video in
the reference-reference case [16]. The principle here being
that, for VL compressed videos the distribution of the binary
preference should match that of the reference-reference case,
since the VL video would be perceived equivalent to the ref-
erence video.

The null hypothesis was that the two distributions (com-
pressed video scores and reference video scores) come from
distributions with equal medians. The results of such an anal-
ysis carried out at the 95% confidence level are seen in Table
1 for each of the videos from Fig. 1. A ‘0’ in the table in-
dicates that the null hypothesis cannot be rejected at the 95%
confidence level, and hence implies that the compressed video
is perceptually identical to the reference video, and the corre-
sponding bit-rate is the compression level for visually lossless
compression of that video.

From Table 1, it is clear that for videos (b), (e) and (g),
no consensus on the VL bit-rate could be achieved from this
study, and hence we do not consider them for further analysis.
Video (h) is already at the VL level at a bit-rate of 0.5 Mbps,
and hence we consider 0.5 Mbps as the VL threshold for this
video. In all videos, the highest bit-rate corresponding to a
‘0’ in Table 1 is used as the VL bit-rate.

3. ALGORITHMIC ANALYSIS &
COMPRESSIBILITY

One could simply use the results of the above study and set
a bit-rate for VL compression of videos as in [7] for videos
with ‘low motion’ or ‘high motion’. However, a simple hu-
man classification into videos with high and low motion will
not suffice if the final goal were to create a compressibility
index which analyzes the video and produces a measure of
visual lossless-ness. Hence, we analyze each of the videos
from Fig. 1 for two parameters which are related to the com-
plexity of the content and hence influence the bit-rates needed
for VL compression - (1) the amount of texture (i.e., a mea-
sure of spatial activity) and (2) the amount of motion (i.e., a
measure of temporal activity). We realize that there may be
other important parameters that relate to the compressibility
of a video, however, owing to the preliminary nature of the
study and the limited size of the dataset under consideration,
we confine ourselves to these two important factors. Future
work will involve further analysis of possible factors which



Video 0.50 0.62 0.77 0.95 1.18 1.46 1.81 2.25
Video a 1 1 1 1 0 0 0 0
Video b 1 1 1 1 1 1 1 1
Video c 1 1 1 1 0 1 0 0
Video d 1 1 0 1 1 0 0 0
Video e 1 1 1 1 1 1 1 1
Video f 1 0 1 0 1 0 0 0
Video g 1 1 1 1 1 1 1 1
Video h 0 0 0 0 0 0 0 0

Table 1. Results of 2-AFC task. The first column lists videos corresponding to those in fig. 1. The rest of the columns are the
result of a Wilcoxon rank sum test across bit-rates. A ‘0’ in the table indicates that the null hypothesis (the two distributions
have the same median) cannot be rejected at the 95% confidence level, and the corresponding bit-rate is the compression level
for visually lossless compression of that video.

Fig. 3. (Left-to-right) Images with increasing amount of tex-
ture information - mean kurtosis of 17.20, 8.53 and 3.83 re-
spectively. Images with greater texture have lower kurtosis.

influence compressibility1.
Texture analysis has been a widely researched field and

many models have been proposed to analyze and create tex-
tures [20, 21]. Our goal is not to classify or identify textures,
but to simply provide a measure of the ‘spatial activity’ in a
video using textural information. For this purpose, we uti-
lize steerable filters to perform a wavelet decomposition [22].
Steerable filters have been previous used for texture analy-
sis [20] and are attractive for our purpose owing to their in-
creased orientation selectivity. In order to form a measure
of textural information in a frame, the frame is decomposed
using steerable filters over 3 scales and 8 orientations. Our
research has lead us to believe that the kurtosis of coefficient
distributions in each of the subbands is a good measure of the
activity in a frame [18, 19]. In order to demonstrate that the
simple kurtosis of subband coefficients captures spatial activ-
ity, in Fig. 3, we plot three images with increasing amounts
of texture/activity and the mean kurtosis value across the 24
subbands for each of these images. It should be clear that
kurtosis is negatively correlated with image activity and that
the mean kurtosis across subbands is a good measure of the
activity in an image.

Thus, in order to measure spatial activity in an frame of

1We note that we have experimented with some other measures, includ-
ing optical flow information, spatial activity as defined in [17], and subband
features as defined in [18, 19]. While some of these measures are useful as
indicators of visual lossless-ness, the measures chosen here were better suited
to the task at hand.

the video, the kurtosis of subband coefficients is averaged
across subbands. The total spatial activity measure for a video
is the median activity across frames. We have experimented
with other statistical measures such as the mean and the co-
efficient of variation, however, we choose to use the median.
The study of the optimal pooling strategy across frames is an-
other interesting direction of research.

Temporal activity is measured using a modification of the
technique described in [17]2. Briefly, an absolute difference
of adjacent frames is first performed, and the resulting se-
quence is decomposed into 4 pixel × 4 line × 0.2 second
spatio-temporal (S-T) regions, whose standard deviation is
computed. Perceptibility thresholds are then applied [17], and
the mean value of the thresholded standard deviation is an in-
dicator of the temporal activity across the frame. The tem-
poral activity of the video is measured by the simple mean
across frames. Both temporal and spatial activities are com-
puted only on the luminance channel and we do not use any
color information in our model.

In Fig. 4, we plot the videos in Fig. 1, as a function of
their spatial and temporal activities, in order to demonstrate
that the videos span a decent area of this space.

Finally, in order to produce a compressibility index, we
perform a regression between the 2-tuple - X = (motion, tex-
ture) and the visually lossless bit-rate (y) associated with each
video obtained from the above rank-sum test. Support-vector
regression using a ν-support vector machine (SVM) [23, 24]
and a radial-basis function (RBF) kernel is utilized for this
purpose. An SVM is utilized in order to abstain from spec-
ifying a particular functional form for relationships between
X and y. Since we have limited data, we used leave-out-
one validation to test the performance of this approach. We
trained the SVM on four out of the five videos with valid VL
bit-rates and used this trained SVM to predict the VL thresh-
old of the remaining video. This was repeated five-times, in
order to predict the VL thresholds for each of the five videos.
The results of such testing are listed in Table 2, where the

2The parameter corresponding to temporal activity in [17] is ct ati gain.
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Fig. 4. Plot of spatial (x-axis) activity vs. temporal (y-axis) activity for videos used in this study. Points a-h correspond to
videos (a) - (h) from Fig. 1.

Video a c d f h
Actual 0.9500 1.4600 1.1800 1.1800 0.5000

Predicted 1.0923 1.2651 1.1981 1.0189 0.9365

Table 2. Ground truth and predicted visually lossless bit-rates
for videos (a), (c), (d), (f) and (h) from fig. 1.

ground-truth VL bit-rates and the predicted VL bit-rates are
tabulated.

As Table 2 demonstrates, the simple measures of spatial
and temporal activity predict the VL threshold with good ac-
curacy – the mean squared error between the actual VL bit-
rates and the predicted bit-rates across videos is 0.0153. Since
we are unaware of any other such measure for VL H.264
compression, a performance comparison with other objective
measures is impossible.

Thus, our final implementation of the compressibility in-
dex for visually lossless H.264 compression (HVLCI) - avail-
able online at [1] - consists of a support vector machine that
regresses measures of motion and texture onto a bit-rate cor-
responding to the visually lossless threshold for that video.

Although extremely useful as a tool, HVLCI estimates
of visually lossless thresholds must be utilized with caution.
Owing to the limited amount of data that was used to pro-
duce the index and the small number of factors used to an-
alyze the video, it is possible that HVLCI estimates may not
always correlate well with human perception across videos al-
though we have not observed this. This, however, will easily
be remedied in future work where a study involving a larger
set of videos will be undertaken and other factors which con-

tribute to the VL threshold will also be analyzed. In spite of
these drawbacks, this work is important as one of the first to
systematically study visually lossless compression via H.264
and to produce a practical tool - HVLCI - that estimates the
visually lossless threshold using a small set of parameters.

4. CONCLUSION

We conducted one of the first systematic psychovisual studies
to estimate the visually lossless threshold for H.264 compres-
sion. The videos were then analyzed and quantified based on
the activity measures of texture (i.e, spatial activity) and mo-
tion (i.e., temporal activity) in order to produce an index for
visually lossless H.264 compression - HVLCI. The proposed
index has been made available online [1] in order to allow
for practical application and research in the area of visually
lossless compression. Future work will involve increasing
the number of videos in the psychovisual study and analyzing
various other parameters that may influence lossless compres-
sion in order to produce a more robust version of HVLCI.
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