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ABSTRACT 

 

We model the motion statistics of video sequences, towards 

the development of no-reference video quality indices that 

take into account spatial as well as temporal characteristics 

of video signals. Here we explore the temporal 

characteristics of undistorted as well as distorted IP video 

sequences; (distorted by varying levels of packet loss rate) 

as extracted from optical flow vectors. We present an 

algorithm for extracting motion statistics by computing 

independent components (ICs) from the optical flow field. 

We then model the extracted ICs, and show that they are 

more closely Laplacian distributed than the entire non-

decomposed features. We also observe that the lower the 

video quality, the higher the root-mean-square (RMS) error 

difference between the maximum-likelihood Laplacian fits 

of the two extracted ICs of the flow vectors.     

 

Index Terms— Motion vectors, optical flow, no-

reference video quality assessment, independent component 

analysis (ICA), motion statistics. 

 

1. INTRODUCTION 
 

There has recently been a great deal of interest in research 

on objective image and video quality assessment (IQA and 

VQA). IQA and VQA algorithms can generally be classified 

into three categories: 1) full-reference (FR), when the 

original 'pristine' signal is available for comparison against a 

'distorted' signal, 2) reduced reference (RR), when some 

prior information about the signal to be assessed is present 

and is used in determining the quality of the 'distorted' 

signal, and 3) no-reference (NR), when only the signal to be 

assessed is present. Naturally, the problems of IQA or VQA 

become increasingly challenging as we move from full-

reference to no-reference. Much research has been done 

within the realm of full-reference, and some very good 

measures of quality, which correlate well with subjective 

assessment of quality, have been developed. These include 

the structural similarity index (SSIM) [1], multi-scale SSIM 

(MS-SSIM) [2], percentile-SSIM (P-SSIM) [3], and visual 

information fidelity (VIF) [4] for the assessment of still 

image quality.  

For video quality assessment, several algorithms simply 

extend the developed IQA algorithms (such as ones listed 

above), and apply it to video on a frame-by-frame basis. 

This approach lacks the temporal aspect that plays a major 

role in the visual quality of a video signal. The VQM 

standardized algorithm, explained in [5], operates by 

examining small spatio-temporal blocks. However, it does 

not assess motion quality explicitly (i.e. it does not assess 

video quality along motion trajectories). Towards 

addressing this issue, Video-SSIM (V-SSIM) and the 

motion-based video integrity index (MOVIE) were 

developed in [6] and [7] respectively. In VSSIM, reference 

and test video signals are decomposed by a family of Gabor 

filters, forming band-pass spatio-temporal frequency 

channels. The sub-band outputs on the reference are then 

used to compute motion estimates. The MOVIE algorithm is 

a recent FR VQA algorithm. It seeks to integrate explicit 

motion information into the VQA process by tracking 

perceptually relevant distortions along motion trajectories. 

The MOVIE index delivers VQA scores that correlate quite 

closely with human subjective judgment.  

In this paper, we address the NR VQA. Humans can 

look at an image or video sequence and easily judge the 

quality of the signal they are viewing without having seen 

the undistorted counterpart. The human visual system 

performs the NR quality assessment task flawlessly. This 

motivates the work on no-reference quality assessment. 

Quite a few NR IQA (and few VQA) algorithms have been 

proposed that address specific distortions such as blocking 

(from block-based compression standards) and blur.  

However, there is a very broad set of distortions [8], 

and these are not comprehensively accounted for by these 

algorithms. An interesting approach that overcomes the 

above limitation makes use of natural scene statistics (NSS) 

models. This approach assumes that images of the natural 

world fall in a small subspace of the space of all possible 

images. IQA assessment algorithms that rely on NSS seek to 

measure a 'distance' from the distorted image to the 

subspace of 'natural' images, and use this distance to come 

up with a quality metric. One such algorithm for JPEG 200 

images is described in [9]. In [10] a general purpose RR 

algorithm is proposed which relies on NSS and divisive 

normalization. 

We take an analogous approach to the NSS approach 

for IQA, by modeling temporal statistics of video signals in 

what we name natural motion statistics (NMS). We make 

use of the motion statistics of video sequences. Motion 

statistics can be derived either from optical flow vectors that 

represent the motion of pixel intensities from one frame to 

another in a sequence of frames, or from motion vectors that 

represent the motion of macro-blocks across frames. In [11] 



the statistics of natural image sequences are studied by 

investigating the temporal variations of local phase 

structures in the complex wavelet transform domain. We 

instead extract independent components from the carriers of 

motion information (motion vectors or optical flow vectors), 

then model the statistics of the extracted components. We fit 

a Laplacian distribution to the extracted coefficients of the 

independent components and measure the Kullback-Leibler 

divergence between the fitted models. Our experiments 

consistently show a larger divergence between the 

independent components for distorted video signals.  

 

The rest of the paper is organized as follows. In Section 

2, we review the theory of independent component analysis 

(ICA). In Section 3 we briefly explain the carriers of 

temporal and motion information in video, namely motion 

vectors and optical flow vectors. In Section 4, we present an 

algorithm for modeling the statistics of motion in a video 

sequence. We present results in Section 5, and conclude in 

Section 6.         

  

 

2. INDEPENDENT COMPONENT ANALYSIS (ICA) 
 

The ICA problem seeks to find a suitable representation of 

multivariate data. For conceptual and computational 

simplicity this representation is often sought as a linear 

transformation of the original data. ICA is a method which 

models (non-Gaussian) data as a linear combination of 

combination of components that are statistically independent 

or as independent from each other as possible. Here we 

summarize elements of ICA relevant to our modeling effort. 

We base our summary on [12]. 

Assume that we observe a linear mixture of n signals s1, 

s2,…sn. This can be represented in matrix notation as  

x = As,      (1) 

where A is the mixing matrix and x is the observed mixture. 

Equivalently,  

s = Wx      (2) 

If we denote the columns of A as aj, then we have 

∑
=
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Equation (1) is the ICA model. The starting point for ICA is 

the assumption that the components si are independent. We 

do not assume any known distribution for the components.     

 

2.1. Finding Independent Components by Maximizing 

Non-Gaussianity  
 

ICA determines the independent components by maximizing 

the non-Gaussianity between them. It is based on the Central 

Limit Theorem (CLT), viz., the distribution of a sum of 

independent random variables tends towards a Gaussian 

distribution under certain conditions. To estimate one 

independent component sj, consider 

sj = w
T
x,      (4) 

wherew is a vector to be determined and should be one of 

the rows of A
-1

. To estimate w and hence the independent 

component sj, the CLT is used. If we define 

z = A
T
w,     (5) 

then 

sj = w
T
x = w

T
As = z

T
s.    (6) 

Hence sj is a linear combination of the independent 

components. Using the CLT, we have that the sum of two 

independent random variables is more Gaussian than the 

individual random variables. According to this idea, the 

theory of ICA seeks to maximize the non-Gaussianity of the 

vectors w
T
x. ICA maximizes the non-Gaussianity for each 

of the independent components sj. Next we explain the 

measures of non-Gaussianity typically employed in ICA. 

 

2.1.1. Kurtosis 

Kurtosis is a classical measure of non-Gaussianity. It is also 

termed as the fourth order cumulant. It is defined as 

Kurt(y) = E{y
4
} – 3E{y

2
}

2   
(7) 

If the variable y is standardized then 

Kurt(y) = E{y
4
} – 3 

   
(8) 

Notice that if y were Gaussian, thenE{y
4
}=3, and 

Kurt(y)=0.  

 
2.1.2. Negentropy 

Another measure of non-Gaussianity is negentropy. It is 

defined as 

J(y) = H(yGauss) – H(y),    (9) 

where yGauss is a Gaussian random variable with the same 

covariance matrix as y, and H(y) is the entropy of y. Also 

notice that negentropy is zero if y is Gaussian. 

 

2.1.3. Negentropy Approximation 

An approximation of negentropy is given by  

J(y) = (1/12)E{y
3
}

2
 + (1/48)Kurt(y)

2
,
  

(10) 

Andy is assumed to be a standardized random variable.  

 

3. MOTION INFORMATION IN VIDEO 
 

The perception of visual motion depends on changes in 

intensity over time throughout the visual field. A basic 

derivation of the optical flow horizontal and vertical 

velocity components of pixel intensities is detailed in [13]. 

Our method for extracting motion statistics is intended to be 

applied on extracted optical flow vectors, or on motion 

vectors, which may be regarded as a coarser representation 

of image intensity motion. 

In compression standards, frames are partitioned into 

macroblocks. Each block is encoded along with a motion 

vector that represents the motion (or spatial shift) of the 

block from one frame to another. Motion vectors are readily 

available at the decoder end of a channel, and hence do not 

require heavy computation for extraction as compared to 

optical flow computation. The trade-off is obviously a 



coarser representation of the temporal information 

embedding motion. 

 

4. MODELING THE STATISTICS OF NATURAL 

MOTION 
 

Our algorithm for modeling the statistics of motion in 

natural (or pristine) video sequences as well as in distorted 

ones is described in what follows. The models are mainly 

intended for use in an NR video quality assessment 

algorithm. What is appealing about such a study is that it 

can be quite easily extended and incorporated with a spatial 

quality metric. This is possible due to the apparent 

separability of the human neural mechanisms associated 

with spatial and temporal processing [14]. In other words, a 

quality metric relying only on temporal-related distortions 

can simply be multiplied by a spatial-metric, to yield a 

spatio-temporal one. 

Here we address only temporal/motion statistics. Our 

algorithm for modeling motion statistics is descried next. 

We seek to model the statistics of motion as derived from 

optical flow vectors. (In the future, this work will be 

extended to block motion vectors, to overcome the 

computational timing issues). We proceed by extracting 

optical flow vectors on a frame-by-frame basis from a video 

sequence. Optical flow is extracted according to Horn and 

Schunk’s algorithm detailed in [13]. The obtained flow 

vector features are then linearly decomposed into two 

components according to the ICA theory explained above. 

The components represent our main bulk of motion data as 

well as some independent interference or noise signal. To 

model the statistics of the two components, we observed the 

histograms of the extracted statistics. For each component, 

the optical flow data consists of horizontal and vertical 

components of intensity velocity. Separate histograms for 

these as well as a joint histogram for the vertical and 

horizontal components are obtained. To model the data, we 

fit it to a Laplacian distribution, as shown in (11). The 

Laplacian is chosen to account for observed heavy tails in 

the components, and the fitting is done according to the 

maximum likelihood criterion.  
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Figure 1: Laplacian distribution for different choice of parameters. 

We measure the RMS error obtained when fitting each of 

the independent components to a Laplacian distribution, and 

then we measure the difference in the obtained RMS values. 

This difference is shown to increase on average with the 

increase in packet loss rate as shown by our results (in 

section 5).  

 

The motivation behind extracting ICs comes partially 

from a certain observation that we made in this study. We 

measured the divergence from a fitted Laplacian distribution 

and the data features (optical flow components) we were 

modeling, and we found that the ICs are more closely 

Laplacian distributed than the raw optical flow vector 

components (in both the undistorted and the distorted 

videos). The Kullback-Leibler divergence in (12) is used to 

measure the distance between a discretized version of the 

fitted Laplacian distribution and the empirical distribution of 

the data. 
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where p1(x) is the fitted Laplacian distribution and p2(x) the 

empirical distribution of the data. Results show that the 

extracted components are more Laplacian than the raw 

features.  

 

5. RESULTS 
 

The procedure detailed in the preceding section was applied 

to a video database of 10 different video themes. Each video 

sequence (corresponding to one of the 10 different scenes) 

was present at three levels of signal quality; 1) an 

undistorted version, 2) a version passed though an IP 

network with 3% packet loss rate, and 3) a version passed 

through an IP network with 10% packet loss rate. The 

statistics were extracted for each of the 30 video sequences, 

and the simulations were run in MATLAB. Our results show 

that for the 10 video sequences, the extracted independent 

components (especially IC #1) are more Laplacian than the 

raw optical flow data. 

We show a plot demonstrating this trend in Figs. 2, 3 

and 4. The plot is for horizontal flow, but the results 

obtained throughout are similar for the vertical flow 

components. Figure 2 is a plot of the histogram of the raw 

horizontal flow components of one of the video sequences. 

Figs. 3 and 4 are plots of the histograms of the first and 

second independent components extracted from the 

horizontal flow data plotted in Fig. 2. A graphical 

distinction in the histogram shapes is observed. Figure 3 

appears more Laplacian-shaped than Figs. 2 and 4. This 

observation is backed up by the results shown in Table 1 

and in Fig. 5.  Table 1 shows the KL-divergence between 

the fitted Laplacian distribution and the empirical 

distribution (obtained from the histogram) of the data. The 

KL-divergence is lower for the independent components and 

lowest for independent component #1, confirming that it is 

the closest to a Laplacian distribution. 



 

 

Figure 2: Histogram of the horizontal flow components. 

 

 

Figure 3: Histogram of IC #1 of horizontal flow. Notice it looks 

Laplacian distributed. 

 
Next we examined the relationship between the root-mean-

square (RMS) error differences obtained by fitting the two 

extracted ICs to Laplacian distributions and the video 

quality levels (3 levels in our case; undistorted, distorted by 

3% packet loss rate over an IP network, and distorted by a 

10% packet loss rate over an IP network). When fitting each 

of the extracted ICs to a Laplacian distribution (according to 

the maximum likelihood criterion) an RMS value is 

obtained. We observed the relationship between the 

differences in the RMS value for each of the ICs. Our results 

in Table 2 show a larger divergence between the two 

extracted components with decreasing video quality. 

 

7. CONCLUSION AND FUTURE WORK 
 

In this work we study motion statistics of video sequences, 

both undistorted as well as distorted by packet loss in an IP 

network. We apply the theory of ICA in our transformation 

of the data to come up with what we name natural motion 

statistics (NMS). We show two main ideas: 1) ICs extracted 

from the flow vectors are more Laplacian distributed than 

 

 

 

Figure 4: Histogram of IC #2. Notice it is less Laplacian shaped 

than IC #1. 

 

Video 

Sequence 

KL-Div 

Undistorted Un-

decomposed 

KL-Div 

Undistorted  

IC #1 

KL-Div 

Undistorted 

IC#2 

1 (tr) 1.6979 1.1357 1.1872 

2 (pa) 3.0052 0.9269 1.0175 

3 (rh) 0.7987 0.4777 0.4201 

4 (st) 0.6149 0.4711 0.5074 

5 (bs) 0.7346 0.8287 0.8415 

6 (sf) 1.4085 0.5467 0.5115 

7 (rb) 2.2557 1.1203 1.2295 

8 (mc) 0.4546 0.4092 0.4389 

9 (sh) 0.7745 0.6111 0.6749 

10 (pr) 0.5172 0.3865 0.4091 

Table 1: KL-divergence between fitted Laplacian distribution and 

the empirical distribution of the data. Notice that the extracted 

components are more Laplacian distributed than the raw flow data.   

Figure 5: A plot of the KL-divergence versus 3 levels of video 

quality 

 
the raw data, and 2) the difference in the obtained RMS 

value by fitting a Laplacian distribution to the two extracted 

IC is may be used as an indication of video quality. The 

higher the divergence between the RMS values for the two 

ICs, the lower the video quality. 



This work is aimed towards the development of an NR 

video quality assessment index that takes into account 

temporal or motion information. Here we only focus on 

modeling motion statistics. The apparent separability of the 

neural mechanisms that process spatial and temporal 

information makes the work on temporal distortion 

detection/ temporal quality evaluation easily combinable 

with a metric that only evaluates quality spatially (for 

instance an IQA metric).  

 

Our future work includes extending the study to larger 

database of videos, as well as developing an NR quality 

assessment metric relying on the natural motion statistics 

obtained. 

 
Video 

Sequence 
Undistorted 

3% Packet 

loss 
10% Packet loss 

1 (tr) 16.4294 17.8149 24.0714 

2 (pa) 47.2915 44.8038 48.1306 

3 (rh) 35.2502 71.1179 50.7756 

4 (st) 24.0113 30.8065 31.5869 

5 (bs) 9.2666 12.8327 20.8095 

6 (sf) 114.0260 102.3265 175.5554 

7 (rb) 19.6113 29.3825 197.5904 

8 (mc) 17.2060 62.8465 65.9709 

9 (sh) 18.6745 30.2177 36.2312 

10 (pr) 11.8822 14.6258 14.8086 

Table 2: Root-mean-square error difference between RMS values 

obtained for fitting a Laplacian distribution to IC#1 and a 

Laplacian to IC#2. Notice the RMS difference increases with 

packet loss rate. 
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