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A B S T R A C T

We describe a search-free resizing framework that can further improve the rate–distortion tradeoff of recent
learned image compression models. Our approach is simple: compose a pair of differentiable downsam-
pling/upsampling layers that sandwich a neural compression model. To determine resize factors for different
inputs, we utilize another neural network jointly trained with the compression model, with the end goal
of minimizing the rate–distortion objective. Our results suggest that ‘‘compression friendly’’ downsampled
representations can be quickly determined during encoding by using an auxiliary network and differentiable
image warping. By conducting extensive experimental tests on existing deep image compression models, we
show results that our new resizing parameter estimation framework can provide Bjøntegaard-Delta rate (BD-
rate) improvement of about 10% against leading perceptual quality engines. We also carried out a subjective
quality study, the results of which show that our new approach yields favorable compressed images. To
facilitate reproducible research in this direction, the implementation used in this paper is being made freely
available online at: https://github.com/treammm/ResizeCompression.
1. Introduction

When properly applied, spatial resolution reduction is a simple
and natural way to compress visual information. It plays a significant
role in many multimedia compression standards and applications. For
example, it is common to decimate the chroma components of an
image or video to reduce bitrate consumption before encoding a video,
then upsize them before display. Many studies [1,2] have concluded
that this fixed kind of sub-sampling operation results in little impact
on perceived quality, because of the smaller bandwidth of chromatic
information, and human perception of it [3]. In recent streaming video
workflows, non-normative adaptive spatial resolution changes of both
luma and chroma are now widely used by service providers like Netflix
and Youtube to improve bandwidth consumption while maintaining
the quality of experience of viewers [4–6]. Moreover, recent advanced
video coding standards, such as AOMedia Video 1 (AV1) [7] and
Versatile Video Coding (VVC) [8], have adopted the concept of spatial
resizing as an in-loop coding tool [9,10]. Despite its usefulness, an
important barrier to optimizing video resizing in compression work-
flows is the lack of an automatic protocol for finding the best reduced
resolution in the perceptual rate–distortion sense. Current methods rely
on exhaustive search over a set of resolutions.

In parallel with the recent successes of deep learning on many video
processing problems [11–14], a number of promising learning-based
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image and video compression models have been realized over the past
few years. Unlike traditional hybrid codecs like H.264/AVC, which
heavily rely on pipelines of hand-designed modules, most learned
compression models deployed deep autoencoders that are optimized
end-to-end on large datasets. A significant amount of research has been
directed towards growing compression model capability and capacity,
by modifying network architecture or by adopting detailed entropy
models. The idea of incorporating directed spatial resolution changes
into learned compression models has not received much attention,
despite successes attained on conventional video coding.

Our aim here is to explore the potential of leveraging spatial re-
sizing in learned lossy codecs. To overcome the aforementioned cost
of computationally inefficient searches over the space of resize factors,
we propose a framework that simultaneously learns the compression
model and an estimate of the resize factor. As depicted in Fig. 1, the
main idea is to regress on the resize factor 𝑀 using an auxiliary neural
network, which we will refer to as ResizeParamNet. Since the source
image is the input to the auxiliary network, the resize factor 𝑀 is
estimated in a content-adaptive fashion, without the need for time-
consuming search procedures. The input source image is downscaled
before compression, then upscaled during reconstruction. Both resizing
modules are controlled by the factor 𝑀 . Our approach enables better
rate–distortion performance without modifying the compression kernel.
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Fig. 1. Proposed framework for enhancing learned image compression using adaptive
rescaling: additional downsampling (↓M) and upsampling (↑M) blocks are added before
and after the compression network, respectively. The parameter 𝑀 ∈ (0, 1] is the scale
factor, which is estimated by an auxiliary network trained in an end-to-end manner.
Note that 𝑀 is also signaled in the encoded bitstream.

We summarize the key characteristics and contribution of this work as
follows:

• Generalizability: We show a way to inject optimized capability as
a ‘‘booster’’ for learned image compression. This model, which
we call Resize-Compress, can be used to jointly optimize dif-
ferentiable resizing layers and a content-dependent resize factor
estimator, and can be used with any compression models.

• Efficiency: Instead of using brute-force search, an auxiliary
lightweight CNN (ResizeParamNet) is employed at the encoder
side to quickly determine an optimal resize factor for a given
input image. The estimated resize parameter is then signaled to
the bitstream, with minimal bit overhead.

• (Perceptual) Efficacy: We comprehensively validate our proposed
approach on a variety of representative deep image compression
models, demonstrating that it leads to significant improvements
in RD performance as measured by a variety of quality metrics.
We also conducted a subjective picture quality study to further
justify the perceptual relevance of our results.

The rest of this paper is organized as follows. Section 2 reviews related
work. Section 3 unfold the details of our proposed resizing framework
for learning-based compression models. Experiments and analysis are
given in Section 4. Finally, Section 5 concludes the paper and draws
future possible directions of this research.

2. Background

2.1. Learning-based lossy image and video compression

Recent years have witnessed a great surge of invention in the
design of lossy image compression models realized by deep autoen-
coder architectures. They have been shown to achieve performances
competitive with classical image coding standards, including JPEG2000
and HEVC Intra. Early efforts [15,16] focused on tackling fundamen-
tal challenges like non-differential quantization in order to construct
end-to-end trainable infrastructures. Unlike other image-to-image trans-
formation models, which mainly focus on reducing distortion, the
bitrate is also approximated and taken into account during training.
Later, more sophisticated designs were explored to extract increas-
ingly compact features, or to reconstruct images with higher quality
from compressed latent representations. For example, some recent
approaches have adopted recurrent neural networks (RNNs) [17–19] to
recursively compress residual information. Generative adversarial net-
work (GANs) based compression models [20–22] produce reconstructed
images whose statistics resemble the ground truth distributions. Al-
though they often do not perform well with respect to pointwise quality
measures, they can produce perceptually pleasing outcomes, especially
at very low bitrates. Other methods like multi-scale networks [23] and
invertible wavelet structures [24] have also been explored.

Another popular research direction has focussed on improving en-
tropy estimation, which directly affects the bits that are required in
2 
Fig. 2. Comparison of (a) the spatial transformer network (STN) [39] and (b) our
framework of a pair of resizing layers for the compression task. The solid blue boxes
indicate the warp of the input.

rate–distortion optimization. In [25], a scale hyperprior is introduced
into the compression model. The authors use an additional network to
estimate the standard deviation, to better model the conditional proba-
bility of the latent representation. Minnen et al. [26] and Lee et al. [27]
further incorporate context-adaptive models to reduce local redundan-
cies. These context models are often realized by PixelCNN-like modules.
Other solutions have used 3D-CNNs to facilitate conditional probability
modeling [28,29], or have adopted Gaussian mixture models [30] to
improve likelihood estimation.

Beyond still pictures, considerable progress has also been made ex-
tending these ideas to video compression. Early attempts on end-to-end
video compression, such as [31,32], have employed frame interpolation
schemes which temporally interpolate frames in a video using neural
networks. Residuals between source and interpolated frames are then
encoded. Motivated by the motion estimation and motion compen-
sation (MEMC) scheme in hybrid video codecs, a series of optical
flow-based methods have also been proposed. For example, the DVC
model [33] uses a pretrained optical flow model to provide tempo-
ral predictions. Rippel et al. [34] generalized the motion estimation
process to achieve more efficient latent representations, and to com-
press motion and residuals simultaneously with a single autoencoder.
In [35], a pretrained optical flow estimation model was combined with
a learned encoder–decoder pair to perform bidirectional inter frame
interpolation. Other variants of the optical flow setting, such as model-
ing motion using scale-space flow [36] or multi-scale flow [37], have
been proposed to obtain promising improvements in coding efficiency.
Interestingly, instead of estimating and signaling motion explicitly, the
MOVI-Codec [38] captures motion regularities from displaced frame
differences, without conducting any motion search.

Unlike the approaches mentioned above, our framework is a straight-
forward resizing-based compression framework that can be applied on
any kind of neural compression kernels. In fact, the idea behind our
resize parameter estimator is conceptually inspired by Spatial Trans-
former Networks (STN) [39], which is a type of neural network that
is able to learn spatial affine transform parameters between images.
Despite sharing some similarities, we point out important differences
between our approach and STNs in Fig. 2. The STN predicts a 2 × 3
affine transform matrix 𝜃2×3 that is used in a bilinear warping layer.
Since STNs are commonly used in high-level computer vision tasks like
image recognition, it often results in cropping out a trapezoidal region
of interest from the input image. However, when applying this concept
to the compression task, a scalar 𝑀 is instead learned: the resize
parameter. To ensure that the reconstruction has the same resolution
as the input, another warping layer is constructed, and constrained as
an inverse transform back to the original geometry.
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Fig. 3. Overview of our proposed Resize-Compress. First (a) estimate the resize factor 𝑀 given an input source image. Using 𝑀 , the image is downscaled and upscaled by
module (b) and (d), respectively. Blocks shadowed in green are new components. Bold arrows indicate the flow of data in the framework, while thin dashed arrows represent the
control signals being delivered to the resizing modules.
2.2. Resizing and its application in image and video coding

Unsurprisingly, the idea of applying spatial resizing in the context
of conventional codecs has been deeply investigated and implemented
in widespread practice. Typical use cases can be roughly categorized
into the two classes. The first class includes codec-agnostic resizers
operating in an out-of-loop manner, whereby a high-resolution source
frame is spatially downscaled before encoding. An upscaling algorithm
is implemented on the decoder side to scale the reconstructed frame
back to its original resolution. Studies on image codecs like JPEG and
JPEG2000 [40–42], and on video compression [43–45] have shown
that encoding at lower resolutions generally results in better quality,
when compressing to low bitrates. These schemes balance distortions
produced by scaling against those by compression. Also in this class is
a method often employed by streaming companies [4–6], where each
source video is encoded at a finite set of combinations of resolution
and compression levels, yielding multiple rate–distortion (RD) curves.
Then, optimal encoding recipes are selected on the convex hull of the
RD curves. This concept is simple, yet it operates at the extreme expense
of exhaustive search, which is energy intensive and is also hard to
apply in real-time applications. In efforts to avoid the need for search,
more sophisticated resolution adaptation approaches have also been
investigated [46–51].

The second class includes resizing incorporated as a normative in-
loop coding tool. Shen et al. [52] proposed to encode inter frames at
reduced resolutions. An example-based super resolution algorithm was
designed to reconstruct high quality frames. The AV1 codec standard
describes an option to horizontally scale a source frame to a lower
resolution. Before updating reference frame buffers, linear upsampling
is employed as part of an in-loop restoration filter [9,53]. In the
standardization of VVC, an adaptive resolution change (ARC) scheme
is defined [10] that enables inter prediction between frames having
different resolutions. Improvements have been made on corresponding
coding tools [54,55] to further improve coding efficiency.

3. Proposed method

Next we provide an overview of the Resize-Compress framework.
We introduce the design methodology for each component, and analyze
the learned resize factor both quantitatively and qualitatively. Finally,
we present details on training and implementation.

3.1. Overview

Our proposed end-to-end trainable framework for resizing and
learned compression is depicted in Fig. 3. Given an uncompressed
3 
source image 𝐱, the ResizeParamNet network first maps 𝐱 into a
parameter 𝑀 , the resize factor for the downsample module in Fig. 3(b).
Accordingly, the estimated parameter 𝑀 is used to generate a sampling
grid 𝑀 , which is a set of fractional coordinates where the input
should be sampled to produce the resampled output. To mitigate the
information loss introduced by subsampling, a learnable convolutional
layer (Pre-filter) is placed beforehand, allowing the retention of infor-
mation. This is quite analogous to the precoding technique [56] used
in communication systems, where channel information is coded on the
input signal.

The image that has been downscaled by the warping layer, denoted
by 𝐱d, is then encoded by a deep compression model. A general com-
pression system (Fig. 3(c)) comprises an analysis transform 𝑔𝑎 at the
encoder side, and a synthesis transform 𝑔𝑠 at the decoder side. The
latent representation 𝐲 is first generated by applying the transformation
𝑔𝑎 on the input

𝐲 = 𝑔𝑎
(

𝐱d
)

. (1)

Then, 𝐲 is quantized by the module Q and synthesized back by 𝑔𝑠,
yielding the reconstructed image

�̂�d = 𝑔𝑠 (�̂�) = 𝑔𝑠 (Q (𝐲)) . (2)

Other modules such as a hyperprior (ℎ𝑎, ℎ𝑠) [25] or context model
(𝐶𝑚) [26,27] could also be utilized to obtain better estimates of the
parameterized probability distribution. It is worth mentioning that
the quantized representations (e.g., �̂� and �̂�) are encoded as discrete-
valued data into the bitstream using an arithmetic coder. Finally, �̂�
is output by upsampling �̂�d using a similar warping layer (Fig. 3(d)),
but with a reciprocal scaling parameter 𝑀−1. Unlike the downsampling
module in Fig. 3(b), the post-filtering network is placed after the
warping layer to extract features that can repair the spatially degraded
image. Similar methods have worked well in image super-resolution
architectures [57].

3.2. Differentiable resize layer

It has been shown [39] that operations involving backward image
warping with interpolation kernel 𝑘(⋅) are (sub-)differentiable with
respect to all the arguments, allowing for the gradients to be back-
propagated through the forward model. Inspired by this, we implement
our resizing layers as a constrained form of image warping. We follow
the convention in [39] to define a parameterized sampling grid 𝑀 for
the 𝑖th pixel, which is a spatial affine coordinate transformation on the
target coordinates of the warping output (𝑥𝑡𝑖, 𝑦𝑡𝑖)⊺

𝑀 =

(

𝑥𝑠𝑖
𝑠

)

=

[ 1
𝑀 0

1

] (
𝑥𝑡𝑖
𝑡

)

∀𝑖 ∈ [1,… , 𝐻 𝑊 ], (3)

𝑦𝑖 0 𝑀

𝑦𝑖
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where (𝑥𝑠𝑖 , 𝑦𝑠𝑖 )⊺ denote the corresponding input coordinates that define
the sample points for interpolation. Under this scaling-constrained
transformation, resolution is reduced when 0 ≤ 𝑀 < 1, while 𝑀 > 1
means an upscaling operation is performed. The output value of a
particular pixel 𝑉𝑖 located at (𝑥𝑡𝑖, 𝑦𝑡𝑖)⊺ can be written as

𝑉𝑖 =
∑

𝑛

∑

𝑚
𝑈𝑚𝑛𝑘(𝑥𝑠𝑖 − 𝑚)𝑘(𝑦𝑠𝑖 − 𝑛), (4)

where 𝑈𝑚𝑛 is the input pixel value at location (𝑛, 𝑚)⊺. Therefore, warp-
ing an image 𝐼 = [𝑈𝑖] can be expressed by

Warp𝑀 ,𝑘 (𝐼) = Warp𝑀 ,𝑘
(

[𝑈𝑖]
)

=
[

𝑉𝑖
]

. (5)

Note that an unwanted boundary could be created during downsam-
pling, when the resampling grid (𝑥𝑠𝑖 , 𝑦𝑠𝑖 )⊺ exceeds the dimensions of the
input source. In our implementation, we simply remove the unwanted
boundary by cropping the warped image to 𝑆

⌈

width
𝑆

⌉

×𝑆
⌈

height
𝑆

⌉

, which
is divisible by the equivalent stride of the compression model 𝑆.

In order to properly select the interpolation kernel 𝑘 for our prob-
lem, we empirically conducted the following simplified tasks:

1. Scale down: An input 𝑥 = 𝐼 is warped by a factor of 𝑀 to fit
the target image 𝑦 = Warp𝑁 ,𝑘 (𝐼), 𝑁 = 0.5
𝑓1(𝑥) = Warp𝑀 ,𝑘 (𝑥) . (6)

2. Scale up: A downscaled input 𝑥 = Warp𝑁 ,𝑘 (𝐼), 𝑁 = 0.5 is
warped by a factor of 𝑀−1 to fit the target image 𝑦 = 𝐼

𝑓2(𝑥) = Warp𝑀−1 ,𝑘 (𝑥) . (7)

3. A resize pair: An input 𝑥 warped (downscaled) by a factor of
𝑀 followed by an inverse warping (𝑥 = 𝑦 = 𝐼)

𝑓3(𝑥) = Warp𝑀−1 ,𝑘

(

Warp𝑀 ,𝑘 (𝑥)
)

. (8)

Note that 𝑁 is a constant while 𝑀 is a trainable variable, rather
than the output of ResizeParamNet. For (6)–(8), we optimize 𝑀 such
that the MSE between 𝑓𝑖(𝑥) and 𝑦 is minimized. Ideally, the value of 𝑀
should converge to

arg min
𝑀

‖𝑓 (𝑥) − 𝑦‖2 =

⎧

⎪

⎨

⎪

⎩

2−1, if 𝑓 (𝑥) = 𝑓1(𝑥)

2−1, if 𝑓 (𝑥) = 𝑓2(𝑥)

1, if 𝑓 (𝑥) = 𝑓3(𝑥)

. (9)

These optimal parameters are intuitively determined for each task. For
example, 𝑀 = 1 minimizes the error for the third task defined in
(8), since it is equivalent to an identity transformation, preserving the
fidelity of the input. Fig. 4 compares the parameter 𝑀 recorded during
training with respect to the use of bilinear and bicubic interpolation. It
may be observed that 𝑀 quickly approached the optimal values in (9)
when bicubic interpolation was used, whereas bilinear interpolation did
not yield good convergence. This is likely due to the larger receptive
field of the bicubic kernel, which results in stronger gradient signals for
back propagation. Motivated by these observations, we implemented
bicubic warping in our framework.

3.3. Network architecture

The details of the networks are outlined in Table 1, including the
auxiliary module that is used to estimate resize factors, as well as
the shallow filter networks placed at the two ends of the compression
system.

The ResizeParamNet: The goal is to learn an R𝐻×𝑊 ×3 ↦ R1

transformation that maps an input 𝐱 to a resize factor 𝑀 via a CNN. We
constructed a network with similar design as the standard ResNet [58],
consisting of three stages of residual blocks. The spatial size is re-
duced by a factor of 2 after each stage via 2 × 2 max pooling layers.
Finally, 64 feature maps are fed to a global average pooling (GAP)
layer, and the output is obtained by averaging the 64 values. The
4 
Fig. 4. Training plot of the predicted resize factor 𝑀 using bilinear and bicubic
interpolation kernels in different tasks. The black dashed lines denote the optimal values
of 𝑀 in each task as in (9).

Table 1
Architectural details of the additional networks in our framework.

Name Input Operation Activation Output dim.

Pr
e/
Po
st
-fi
lte
r input – – – 𝑊 ×𝐻 × 3

C1 input Conv: 3 × 3|c32|s1 ReLU 𝑊 ×𝐻 × 32
C2 C1 Conv: 3 × 3|c32|s1 ReLU 𝑊 ×𝐻 × 32
C3 C2 Conv: 3 × 3|c3|s1 tanh 𝑊 ×𝐻 × 3
output input, C3 Addition – 𝑊 ×𝐻 × 3

Re
si
ze
Pa
ra
m
N
et input – – – 𝑊 ×𝐻 × 3

R1 input Res: 𝐶 = 16 ReLU 𝑊
2
× 𝐻

2
× 16

R2 R1 Res: 𝐶 = 32 ReLU 𝑊
4
× 𝐻

4
× 32

R3 R2 Res: 𝐶 = 64 ReLU 𝑊
8
× 𝐻

8
× 64

P4 R3 Global Avg. Pooling – 1 × 1 × 64
output P4 Mean ReLU 1

Re
si
du
al
 Bl

oc
k

(R
es

) input – parameters: 𝐶 – 𝑊 ×𝐻 × 𝐶𝑖𝑛
C1 input Conv: 3 × 3|c𝐶 |s1 – 𝑊 ×𝐻 × 𝐶
BN1 C1 Batch Norm. ReLU 𝑊 ×𝐻 × 𝐶
C2 BN1 Conv: 3 × 3|c𝐶 |s1 – 𝑊 ×𝐻 × 𝐶
BN2 C2 Batch Norm. ReLU 𝑊 ×𝐻 × 𝐶
C3 input Conv: 3 × 3|c𝐶 |s1 – 𝑊 ×𝐻 × 𝐶
A4 BN2, C3 Addition – 𝑊 ×𝐻 × 𝐶
output A4 MaxPool: 2 × 2|s2 ReLU 𝑊

2
× 𝐻

2
× 𝐶

Conv: convolutional layers denoted as kernel size|# of channels|stride.
MaxPool: max pooling layers denoted as pooling size| stride.
𝐶𝑖𝑛: Number of input channels.

parameterization of each layer is detailed in the table. We experimented
with different ways, such as using a fully connected (FC) layer, to
aggregate the feature maps. However, we did not obtain improvements
in performance.

The pre/post-filter networks: Both the pre-filter and the post-filter
share the same network architecture of three stages of convolutional
layers, accepting a 3-channel signal as input. The sizes of the convolu-
tional layers are all fixed at 3 × 3, while the number of filters is 32.
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Fig. 5. Visualization of uncompressed validation patches associated with different resize factors 𝑀 predicted by ResizeParamNet. ResizeParamNet was trained with the Ballé17
model [15] with 𝜆 = 0.001. These example patches were extracted from ImageNet.
Fig. 6. Box plot of predicted resize factor 𝑀 against the weighting parameter 𝜆,
evaluated on the validation patches extracted from ImageNet. The ‘◦’ symbol denotes
outliers. ResizeParamNet was trained with the Ballé17 model [15].

We zero pad the boundaries of the feature maps before applying each
convolution, so that the output size is not reduced. Except for the last
layer, all of the convolutional layers are activated by a ReLU nonlin-
earity. Finally, a 3-channel output is produced, yielding a residual that
is added element-wise to the input image. It should be noted that the
resolution changes produced by our model are handled by individual
resize layers as described in Section 3.2, hence the stride parameter is
always set to 𝑠 = 1. We note that the two filters do not share parameters.

3.4. Loss function

Let 𝜃𝑔𝑎 , 𝜃𝑔𝑠 , 𝜙pre, 𝜙post, and 𝜙resize be the parameters of the analysis
transform 𝑔𝑎, the synthesis transform 𝑔𝑠, the pre-filter, the post-filter,
and ResizeParamNet, respectively. Our goal is to end-to-end optimize
these parameters, such that the pipeline can generate a reconstructed
batch �̂� that has high fidelity relative to the source batch 𝐱. Meanwhile,
the cost of encoding quantized representations to bits should be as
small as possible. Therefore, we train the model against the following
losses. First, the distortion term measures the fidelity between the
reconstructed image and its pristine source, which is defined as the
residual between 𝐱 and �̂� mapped by a distortion function 𝑑:
Ldist = 𝑑 (𝐱 − �̂�) . (10)

5 
Here, the squared Euclidean distance 𝑑(𝑥) = ‖𝑥‖22 is adopted to mini-
mize the mean squared error (MSE).

To representing the bit consumption of quantized latents, the rate
loss is defined by

Lrate =
∑

𝑞∈
− log2 𝑝𝑞 (𝑞) , (11)

where 𝑝𝑞 refers to an entropy model estimated over the unknown
distribution of input images, and  denotes the set containing all
the respective quantized latents. For example, in the work of Ballé
et al. [25], the quantized latents �̂� and hyper-latents �̂� are encoded
into bits, which is a case where  = {�̂�, �̂�}. Coupling the losses from
(10) and (11), and all the trainable parameters collectively denoted
by 𝜽 = {𝜃𝑔𝑎 , 𝜃𝑔𝑠 , 𝜙pre, 𝜙post, 𝜙resize, 𝑝𝑞|𝑞∈}, the overall training objective
that is used to optimize the system is defined as:

Ltotal (𝜽) = 𝜆Ldist + Lrate, (12)

where 𝜆 is a weight parameter that balances bitrate against distortion
of the encoded bitstream. By increasing 𝜆, better quality of recon-
structed images can be achieved at the cost of compression ratio. The
loss derivative was used to update the model parameters 𝜽 by back-
propagating through the feed forward model. It is also interesting to
note that (12) does not contain any loss terms specific to the resize
factor 𝑀 . Instead, the networks learn to directly estimate the resize
factor as a byproduct of minimizing the rate–distortion loss.

3.5. Visualization of the learned resizing factors

To understand how a source image is resized in our framework,
we used a subset of 1000 image patches from the ImageNet database,
and fed them into ResizeParamNet trained with different weighting
parameters 𝜆. In Fig. 5, exemplar patches are arranged according to the
estimated resize factor 𝑀 to demonstrate the efficacy of ResizeParam-
Net. Generally, contents containing significant detail and texture are
assigned values of 𝑀 closer to 1, indicating less resolution reduction
will be applied before compression. This is not unexpected, since
high-frequency components are more susceptible to degradation from
scaling. On the other hand, the patches of less complexity, or that are
more blurry, are compressed at lower resolutions using smaller values
of 𝑀 . This is because in such instances, bitrate consumption can be
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Table 2
Overall comparison of different codecs and results of optimized deep image compression on three datasets. Each cell shows the average change of BD-rate expressed as percent.
The baseline comparison is against the Ballé17 model [15]. Smaller or negative values indicate better coding efficiency.

Image dataset Kodak [59] Tecnick [60] JPEG AI [61]

BD-rate metric PSNR MS-SSIM VIF VMAF PSNR MS-SSIM VIF VMAF PSNR MS-SSIM VIF VMAF

JPEG +181.69 +193.13 +207.60 +90.27 +173.98 +202.28 +179.30 +103.14 +167.29 +184.31 +192.59 +85.44
JPEG2000 −12.70 +0.07 +3.81 −33.54 −13.95 −9.92 −9.02 −34.20 −17.79 −11.69 −10.53 −35.80
WebP −0.80 +2.72 +20.56 −18.90 +11.24 −2.67 +18.21 −15.78 +1.41 −0.94 +18.31 −16.40
HEVC Intra −31.34 −7.44 −17.22 −30.39 −31.07 −13.79 −23.73 −29.43 −31.52 −12.01 −24.40 −25.62
Ballé17 [15] (Baseline) +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00
Ballé17 +Resize (Ours) −5.20 −6.60 −8.53 −10.25 −9.74 −14.40 −14.62 −12.91 −11.21 −11.44 −14.13 −10.60
Ballé18-Fact [25] −11.52 −3.92 −2.29 −12.53 −8.52 −6.70 −4.34 −14.30 −9.94 −4.62 −4.31 −12.24
Ballé18-Fact +Resize (Ours) −11.46 −7.56 −9.60 −17.84 −12.51 −17.67 −15.60 −20.09 −14.15 −15.12 −16.00 −19.03
Ballé18-Hyper [25] −25.81 −13.07 −12.87 −31.08 −28.43 −21.45 −21.45 −35.89 −28.11 −19.51 −17.25 −33.52
Ballé18-Hyper +Resize (Ours) −24.91 −19.69 −23.88 −42.93 −31.69 −32.44 −33.74 −45.81 −32.45 −29.76 −33.89 −44.21
Cheng20 [30] −50.78 −42.95 −45.39 −56.20 −50.87 −48.75 −47.19 −58.28 −47.35 −43.57 −46.66 −54.58
Cheng20 +Resize (Ours) −47.69 −44.66 −47.38 −58.00 −50.34 −49.45 −51.20 −59.30 −49.07 −44.69 −48.80 −55.65
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significantly reduced by downsampling, while still maintaining similar
uality level.

Fig. 6 plots the spreads of the predicted resize factor for models
trained with different values of 𝜆. It is evident that the estimated
resize factor 𝑀 increases with 𝜆, as should be expected, since the loss
function in (12) is dominated by the MSE term, making downsampling
an undesirable operation. At the high-bitrate extreme of 𝜆 = 0.1,
he distribution of 𝑀 is centered around 1. As we will demonstrate
n Section 4.2, this phenomenon is the underlying reason why the

performance of our model reaches a saturation point in the high bitrate
region. It is also worth noting that 𝑀 spans a wide range of values when
𝜆 ≤ 0.001. Similar to the observation we made in Fig. 5, this indicates
he complex interplay between picture content, bitrate, and distortions:
nder constrained bitrate conditions, there is room to improve the
perceptual) rate–distortion tradeoff, by optimally applying different
mounts of image resizing.

3.6. Implementation and training details

We developed and trained our models in Python using the Ten-
sorFlow framework (version 1.15). All of the models were trained
using NVIDIA Tesla K80 GPU cards. We used the CLIC Professional
Dataset [62], an image dataset consisting of high quality pictures, as
training data. We did not use images smaller than 384 pixels along
either the vertical or horizontal axix, resulting in a subset of 1600
images. No augmentation was applied on the training data.

During training, we used the Adam solver [63] to optimize the
networks, with parameters 𝛽1 = 0.9, 𝛽2 = 0.999 and a batch size of 8
with a crop size of 256 pixels. The networks were initially trained over
1M iterations, using a learning rate that was fixed at 1𝑒−4. Then, the
learning rates were decreased to 3𝑒−5 for an additional 1M iterations.
We found that using larger patches tended to facilitate the training
stability of our framework, but with much slower training speed. Thus,
we further refined the models using patches of size 384 × 384 for only
100K steps, resulting in a total of 2.1M iterations of backpropagation.
For fair comparison, all of the models (including the original baselines)
were trained from scratch under the same conditions.

4. Experiments and analysis

4.1. Evaluation experiments

Evaluation Dataset To compare our method and various image
codecs, we utilized the well-known Kodak dataset [59] of 24 very high
quality uncompressed 768 × 512 images. This publicly available image
set is commonly used to evaluate image processing algorithms. We also
used the Tecnick dataset [60] containing 100 images of 1200 × 1200
resolution, and 16 test images that are nearly ultra high definition
from the JPEG-AI Call for Evidence [61], yielding images having more
6 
diverse resolutions and contents. None of the test images were included
in the training sets, to avoid bias and overfitting problems.

Evaluation Protocol The coding efficiency on the test set was
measured by the Bjøntegaard-Delta bitrate (BD-rate) [64] of each im-
ge codec, which quantifies average differences in bitrate at a same
istortion level relative to another reference encode. A negative BD-
ate means that the bitrate was reduced as compared with the baseline.
e encoded the images at 8 approximate different bitrates, ranging

rom 0.05 bpp (bits per pixel) to 1 bpp. Then, the BD-rates with
espect to a variety of quality models were calculated. Aside from
easuring the pixel-wise PSNR for completeness, we mainly relied on
erception-based quality models, including MS-SSIM [65], VIF [66] and

VMAF [67], to quantify the distortion levels that were used for BD-rate
calculation. We are aware of recent studies [68,69] of quality evalua-
tion on deep learning based image compression. It has been shown that
n this context, these three perceptual quality models have the highest
orrelation against subjective scores, whereas absolute fidelity mod-

els like the PSNR correlate poorly with visual perception, producing
significantly inferior quality predictions than perception-based quality
redictors. It is also worth noting that PSNR was not even considered
s an evaluation criteria in the JPEG-AI Call for Evidence [61].

4.2. Overall comparison

We comprehensively evaluated neural compression models against
four conventional image codecs: JPEG, JPEG2000, WebP, and the
intra-coded HEVC main-RExt (Format Range Extension) profile. For all
conventional codecs, we choose maximum gain over encoding speed,
and conducted encoding in the codec’s native YCbCr color space with-
out chroma subsampling. Extensive experiments were carried out on
he three aforementioned datasets, using four representative deep com-
ression models as the backbone to test the generality of our frame-

work: Ballé171 [15], Ballé18-Fact1 (the model using a factorized prior
n [25]), Ballé18-Hyper1 (the hyperprior model proposed in [25]), and

Cheng202 [30]. We tabulated the performances of all of the compared
models in Table 2, with respect to different objective image quality
assessment models. We report the BD-rate changes obtained relative
to the baseline (Ballé17 [15]), averaged over all the images in the test
set.

As may be observed from the results in the table, our approach
(highlighted in boldface) was able to deliver significant BD-rate gains
against the original compression model. Interestingly, greater RD per-
ormance gains achieved against MS-SSIM, VIF, and VMAF show the
erceptual benefits of our proposed Resize-Compress framework to

1 https://github.com/tensorflow/compression
2 We implemented the training code based on the network architecture

rovided by the authors, which has been made available online at https:
//github.com/treammm/TrainCompression-ChengCVPR2020.

https://github.com/tensorflow/compression
https://github.com/treammm/TrainCompression-ChengCVPR2020
https://github.com/treammm/TrainCompression-ChengCVPR2020
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Fig. 7. Rate–distortion plots aggregated over of the (a) Kodak, (b) Tecnick, and (c) JPEG AI datasets. The numbers in parentheses are the BD-rates of our Resize-Compress framework
against the original compression models. We display the 𝑥-axis on a log scale and excluded Ballé18-Fact for better visualization. The BD-rates shown in the figures were calculated
from C+Resize against C, where C represents a compression model.
more general perceptual metrics, even though it was trained using
MSE loss. For example, despite having similar or marginally worse
PSNR BD-rates, we were able to demonstrate that building the early
Ballé17 model on top of our framework (Ballé17+Resize) achieved
similar or better results than the more complex Ballé18-Fact model,
when the results were measured by the perceptual quality models. This
suggests that the improvements made were not only in a pixel-wise
(PSNR) sense, but that the ResizeParamNet model also learned to resize
images that contributed favorably towards optimizing the visual quality
of neural image compression models. It is worth noting that the PSNR
BD-rates obtained using our framework performed better particularly
on higher resolution test sets (Tecnick and JPEG-AI), possibly because
large resolution images are less affected by the boundary cropping
described in Section 3.2. In some cases, in particular the Kodak dataset,
he BD-rate with respect to the PSNR metric did not always perform as
ell as the original compression model. This may have been a problem

with PSNR, as we will analyze next.
In addition to the overall BD-rate results, we present the aggre-

ated R–D curves on the three test datasets in Fig. 7 to study coding
erformance at different bitrates. In this scenario, each R–D point

presents the aggregated value calculated by averaging across all test
mages compressed by the same model with a specific value of 𝜆. To be

clear, the calculation of R–D performance here is different from that of
7 
Table 2, which followed common practice in the MPEG community of
averaging over per-image BD-rates. Similar to the trends observed from
Table 2, significant coding gains were obtained by applying our Resize-
Compress framework, especially as measured by perceptual quality
models. As is evident, the benefits obtained by resolution reduction are
most significant in low bitrate compression scenarios (e.g., below 0.5
bpp), while the models with Resize-Compress delivered similar levels
of performance at high bitrates. This is not surprising, and has been
well demonstrated in early literature [40–42], since the reduction in
quantization error is not large enough to offset the increase of resizing
artifacts in high-quality compression. The dominance of the distortion
in the loss function for the high bitrate encoding models also suggests
a lower likelihood of bitrate reduction through downscaling. It may
also be inferred from the figures that the worse PSNR BD-rate case in
the low-resolution Kodak set was caused at high bitrates, likely due
to the property of PSNR: when PSNR is large, it is more sensitive to
small changes in the MSE. Since our models were trained on high
resolution datasets, slight estimation errors of the resize factor may
be introduced when testing on low resolution images. Consequently, a
small increment in MSE may result in a noticeable decrement in PSNR.
Yet, this did not affect perceived quality, as attested by the perceptual
quality measurements and by the subjective study we will describe
later.
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Table 3
Ablation experiments on the design of resize layers and resize factor estimation. The
aseline comparison is against the Ballé17+Resize model.
Ablation PSNR MS-SSIM VIF VMAF

Ballé17 +Resize (full model) +0.00 +0.00 +0.00 +0.00
Ballé17 [15] (original model) +1.48 +11.29 +13.93 +14.00

(a) w/o bicubic (w/ bilinear) +2.29 +2.99 +1.21 +2.38
(b) w/o pre-filter +0.02 +4.21 +3.90 +6.40
(c) w/o post-filter +3.87 +8.31 +8.14 +16.70
(d) = (a) + (b) + (c) +10.32 +13.87 +13.55 +22.98

(e) w/o ResizeParamNet +0.87 +3.14 +8.23 +2.96
(f) w/o ResizeParamNet (𝑀 = 1) +1.14 +8.64 +10.46 +11.75

(g) est. 𝐌 = (𝑀𝑥 , 𝑀𝑦) +12.86 +2.62 +2.94 +5.48
(h) Lanczos interpolation −0.38 +1.05 −1.18 −1.69

4.3. Ablation study

In order to study the significance of each module in our framework,
we conducted an ablation study by training a series of intermediate
models between the original Ballé17 model [15] and the corresponding
sing Resize-Compress. In this study, all the models were re-trained
ith 256 × 256 patch sizes and with the learning rate fixed at 1𝑒−4

or 1M steps. For simplicity, we only tested the performance at four
ifferent bitrates, ranging from 0.025 bpp to 0.75 bpp. We measured
hanges the R–D performance introduced by removing components
rom the full model.
Study of resize layers We studied the design choice of resize layers

by comparing the four intermediate models below against the full
model:

(a) Replacing bicubic interpolation in both down-sampling and up-
sampling layer with bilinear interpolation;

(b) Removing the pre-filter in the down-sampling layer;
(c) Removing the post-filter in the up-sampling layer;
(d) Removing the pre-filter and the post-filter on top of (a).

From the results in Table 3, we can draw a number of conclusions. The
first thing to notice is the drop in performance attained by removing
each component. As expected, the best performances were achieved
using the full model, indicating that all the modules were important.
It may also be observed that adding a post-filter in the up-sampling
layer was more effective than using the pre-filter. Among the four
cases, the poorest performance in (d) shows that, simply using bilinear
interpolation to resize images is insufficient in this context.

Importance of resize parameter estimator Estimating parameters
for image resizing is another essential component of Resize-Compress.
In this experiment we investigated the significance of the estimation
methodology against complexity:

(e) Learning a content-agnostic resize factor using a trainable vari-
able 𝑀 (without ResizeParamNet);

(f) Removing the ResizeParamNet and the trainable variable 𝑀
(fixed 𝑀 = 1);

In (e), we found that the performance of the content-agnostic model
underperformed the full model, since it lacked the flexibility to adjust
resize parameter according to the input content. The result given by
the experiment (f) demonstrated the importance of having resizing,
since the perceptual rate–distortion performance dropped significantly.
In other words, merely deepening the compression network with the
pre-filter and post-filter is insufficient to improve the performance.

We also tried to improve the performance by adopting more com-
lex models. Specifically,

(g) Estimating separate resize parameters 𝐌 = (𝑀𝑥, 𝑀𝑦) for the 𝑥,
𝑦 dimensions, respectively. Here 𝑀𝑥 and 𝑀𝑦 were predicted by
two separate CNNs.
8 
Table 4
Runtime comparison of deep compression models. All computational speeds are given
in milliseconds.

Compression model Enc. (CPU) Dec. (CPU) Enc. (GPU) Dec. (GPU)

Ballé17 [15] 320.62 369.65 210.16 222.73
Ballé17 +Resize 1136.69 702.22 393.69 307.76
Ballé17 +Resize† 749.02 513.62 318.56 267.64
Ballé18-Fact [25] 824.52 1086.26 199.46 263.77
Ballé18-Fact +Resize 1686.69 1336.37 431.51 343.75
Ballé18-Fact +Resize† 1332.70 1147.26 377.16 310.15
Ballé18-Hyper [25] 1006.54 1096.46 308.52 301.09
Ballé18-Hyper +Resize 1781.32 1463.94 595.75 419.84
Ballé18-Hyper +Resize† 1416.68 1204.02 488.91 386.11
Cheng20 [30] 46 136.25 47 263.21 42 506.73 44 553.21
Cheng20+Resize 46 526.51 47 392.57 42 736.56 45 012.58
Cheng20+Resize† 46411.31 47305.02 42611.29 44892.03

Resize†: replace the customized differentiable bicubic interpolation layer by the built
in Tensorflow bicubic resizing block (tf.image.resize), which is not differentiable
to the resize factor 𝑀 . Note that the output result may have small numerical difference
due to the implementation.

(h) Replacing bicubic interpolation in both down-sampling and up-
sampling layer with Lanczos interpolation;

Surprisingly, the result in (g) shows that doubling the number of
parameters to conduct independent bidirectional scaling significantly
lowered the performance. This may have been due to training instabil-
ity introduced by an overparameterized model. Thus, we recommend
sharing the same resize parameter for both the 𝑥 and 𝑦 dimensions. In
(h), the use of a more sophisticated Lanczos interpolation marginally
improved the performance. This suggests that the pre-filter and post-
filter were able to be trained to offset the gap between bicubic and
Lanczos interpolations.

4.4. Execution time

We evaluated the processing times of the various compared deep
mage compression models in Table 4. The results were calculated by

averaging the runtime (in terms of milliseconds) over all Kodak images
on the same machine equipped with an Intel Xeon Platinum 8259CL

PUs@2.50 GHz, 128G RAM, and an NVIDIA Tesla K80 GPU. The
odel loading time was not included. From Table 4, it may be observed

that, due to the integration of Resize-Compress, the encoding and
decoding complexity was higher as compared to the original models,
especially when measured on CPU. However, as seen in the Table,
the complexity overhead of our framework was negligible on top of
more sophisticated models like Cheng20. Since ResizeParamNet is not
present during decoding, the decoding speed is slightly faster, and we
may also infer that the customized differentiable bicubic interpolation
is the component that slows the execution speed. This can be further
optimized by using native languages such as C++ or by re-compiling
with a low-level instruction set. In investigating this aspect, we exper-
imented with substituting the custom bicubic layer with an optimized
built-in resizing block (denoted by Resize†) during inferencing, which
resulted in substantial improvements in runtime.

4.5. Subjective study and analysis

We conducted an online human subject study to better understand
he perceptual preferences of human viewers against different compres-

sion models. We selected the Ballé17 and Ballé18-Hyper models for the
tudy, and compared them against the corresponding versions equipped
ith our Resize-Compress framework. We adopted the two-alternative

forced choice (2AFC) method, since it can be easier for humans to make
comparisons between simultaneously displayed pictures having subtle
perceptual differences at similar bitrates. We selected all 18 landscape
image contents from the Kodak dataset, where each content was en-
coded at four different bitrates ranging from 0.01 bpp to 1 bpp. To
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Fig. 8. Subjective performance of perceptual win rate of our Resize-Compress frame-
work against the original compression model for each comparison (denoted by �̂�).
The error bars indicate the 95% binomial proportion confidence intervals obtained
by �̂� ± 1.96√�̂�(1 − �̂�)∕𝑛, 𝑛 = 47.

equate bitrates in each comparison, we encoded the images using a 2D
13 × 13 grid of models at different 𝜆 values (𝜆original, 𝜆Resize-Compress) ∈
{𝜆𝑖} × {𝜆𝑖}|𝑖=1,2,…,13, where 𝜆𝑖 ∈ [0.0001, 0.1]. We selected four 𝜆 pairs
that minimized percent bitrate differences. We customized a user inter-
face to carry out the human study, whereby participants could easily
compare pairs of images in their natural environment. On each trial,
subjects were shown two images encoded by the original compression
model and our Resize-Compress framework, both presented next to
the corresponding reference image. After viewing each image triplet, a
subject was asked to choose which of the two images had better fidelity
compared to the reference. The study included 47 volunteer participants
and about 46% were somewhat knowledgeable about image/video pro-
cessing, while the others were naive. In sum, we asked each participant
to compare 18 × 4 × 2 = 144 pairs of images, which lasted about 30-40
minutes.

Given the collected subjective comparisons, we analyzed the re-
sults by computing the percentage of subjects that preferred Resize-
Compress over the original model, and plotted the results with respect
to the bitrate of each comparison in Fig. 8. On average, the images
encoded with Resize-Compress framework were preferred by 67.24% of
the subjects. Among all the comparisons, 88 of 144 cases had win rates
significantly larger than 50% while only 2 cases were worse. It may
also be observed that, as bitrate was increased, our approach began
to obtain win rates around 50% of the votes, since the distinctions
between the codecs then becomes quite subtle.

Failure case analysis While Resize-Compress attained very good
performance at low bitrate compression, it did not perform well in a few
particular cases. Fig. 9 shows a failure case where more subjects rated
the result without using our model as better (corresponding to the blue-
boxed datapoint in Fig. 8). This may have been because the subjects
were less forgiving of the blurred logo (highlighted by the red box)
which may have worsened using our approach, and which may have
drawn their attention. Conversely, the checkerboard artifacts (gray box)
or blurry (yellow box) created by the original Ballé18-Hyper model
may have been neglected due to their location and relative faintness.
These cases further illustrate the challenges of predicting optimal resize
factors for compression, given the content diversity of natural images.

2AFC similarity scores We are also interested in how different
image quality assessment (IQA) models correlate with human percep-
tion in our study. A standard approach is to compare the correlations
between human opinion scores and the predictions made by picture
quality models. However, the number of comparisons we obtained in
the study is insufficient to estimate the Mean Opinion Score (MOS)
using the Bradley–Terry model [70]. To understand the performance of
IQA models under this limitation, we instead adopted the 2AFC scoring
9 
Fig. 9. A failure case on image Kodim20: the original Ballé18-Hyper at 0.135 bpp
was preferred by 67% of the subjects over our framework (33% win rate) at 0.124
bpp.

Fig. 10. Performance comparison of various IQA methods using the 2AFC score. Larger
values indicate better agreement with human judgments.

method [71] given by �̂� ̂𝑞 + (1 − �̂�)(1 − 𝑞), where �̂� is the percentage of
human votes and 𝑞 ∈ {0, 1} is the decision made by an IQA model. The
idea behind this index is simple: when �̂� agrees with 𝑞, the 2AFC score
is larger, indicating better performance of a quality model. The theoret-
ical upper bound of the 2AFC score is given by max{�̂�, 1 − �̂�}, which can
be achieved by an oracle agent 𝑞 = 1�̂�>0.5. We evaluated several popular
image quality models, including SSIM [72], MS-SSIM [65], PSNR-HVS-
M [73], VIF [66], VMAF [67], FSIM [74], and VSI [75], and plotted
the 2AFC scores in Fig. 10. Overall, VIF and VMAF achieved the closest
performance to the human oracle of 0.69, whereas MS-SSIM ranked a
close third. On the other hand, the levels of performance attained by
the PSNR family, which are commonly used in compression, were poor.
Like other studies in the literature that analyzed the perceptual quality
of learning based image compression models [68,69], our experiments
also confirmed the value and perceptual relevance using models like
MS-SSIM, VIF, and VMAF.

5. Conclusion and future work

We have introduced a framework for collectively optimizing resize
parameter prediction and deep image compression. A distinguishing
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characteristic of our design is that the optimal resize factor for different
ontents is estimated by an auxiliary network, without the need for pre-
ssigned labels. We experimentally demonstrated that, at low bitrate
ompression, our approach achieved significant improvements in terms
f rate–distortion performance, relative to the original compression
odels. The RD performance gain measured with perceptual quality
odels and a subjective study further establish the efficacy of optimal

esizing as a way of improving perceptual RD tradeoffs and subjec-
ive quality. The proposed learned resizing framework is simple and
eneralizes well across compression models while delivering significant
erformance improvements.

The concept of content-adaptive resizing may serve as a tractable
nd useful tool for perceptually improving the network architectures
f other image restoration problems. Our results have also shown that
he ResizeParamNet network produces powerful representations for
esizing, with perceptual relevance. Looking ahead, it is possible that
he deep features extracted from the learned ResizeParamNet network
ould be transferred as a ‘‘fast estimator’’ of optimal resize factors in
he context of non-differentiable hybrid video codecs.
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