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ABSTRACT The Structural Similarity (SSIM) Index is a very widely used image/video quality model that
continues to play an important role in the perceptual evaluation of compression algorithms, encoding recipes
and numerous other image/video processing algorithms. Several public implementations of the SSIM and
Multiscale-SSIM (MS-SSIM) algorithms have been developed, which differ in efficiency and performance.
This ‘‘bendable ruler’’ makes the process of quality assessment of encoding algorithms unreliable. To address
this situation, we studied and compared the functions and performances of popular and widely used
implementations of SSIM, and we also considered a variety of design choices. Based on our studies and
experiments, we have arrived at a collection of recommendations on how to use SSIM most effectively,
including ways to reduce its computational burden.

INDEX TERMS Image/video quality assessment, structural similarity index, pareto optimality, color SSIM,
spatio-temporal aggregation, enhanced SSIM.

I. INTRODUCTION
With the explosion of social media platforms and online
streaming services, video has become the most widely con-
sumed form of content on the internet, accounting for 60%
of global internet traffic in 2019 [1]. Social media platforms
have also led to an explosion in the amount of image data
being shared and stored online. Handling such large vol-
umes of image and video data is inconceivable without the
use of compression algorithms such as JPEG [2], [3], AVIF
(AV1 Intra) [4], [5], HEIF (HEVC Intra) [6], H.264 [7], [8],
HEVC [9], EVC [10], VP9 [11], AV1 [12], SVT-AV1 [13],
and the upcoming VVC and AV2 standards.

The goal of these algorithms is to perform lossy com-
pression of images and videos to significantly reduce file
sizes and bandwidth consumption, while incurring little
or acceptable reduction of visual quality. In addition to
compression-distorted streaming videos, a large fraction of
the images and videos that are shared on social media are
User Generated Content (UGC) [14], [15], i.e., not profes-
sionally created. As a result, even without any additional pro-
cessing, these images and videos can have impaired quality
because they were captured by uncertain hands. In all these
circumstances, it is imperative to have available automatic
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perceptual quality models and algorithms which can accu-
rately, reliably, and consistently predict the subjective quality
of images/videos over this wide range of applications.

One way that perceptual quality models can provide sig-
nificant gains in compression is by conducting perceptual
Rate-Distortion Optimization RDO [16], where quantiza-
tion parameters, encoding ‘‘recipes,’’ and mode decisions
are evaluated by balancing the resulting bitrates against the
perceptual quality of the decoded videos. Typically, a set of
viable encodes is arrived at by constructing a perceptually-
guided, Pareto-optimal bitrate ladder.

To understand Pareto-optimality, consider two encodes of
a video E1 = (R1,D1) and E2 = (R2,D2), where R and D
denote the bitrate and the (perceptual) distortion associated
with each encode. If R1 ≤ R2 and D1 ≤ D2, we say that E1
‘‘dominates’’ E2, since better performance (lower distortion)
is obtained at a lower cost (bitrate). So, we can prune any set
of encodes S = {Ei}, by removing all those dominated by any
other encode. The pruned set, say S ′, has the property that for
any two encodesE1 andE2 such thatR1 < R2,D1 > D2. That
is, we obtain a set of encodes such that an increase in bitrate
corresponds to a decrease in distortion. Such a set is said to be
Pareto-optimal. In general, we can define Pareto-optimality
for any setting where a cost is incurred (bitrate, running
time, etc.) to achieve better performance (accuracy, distortion,
etc.)
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The first distortion/quality metric used to measure
image/video quality was the humble Peak Signal to Noise
Ratio (PSNR), or log-reciprocal Mean Squared Error (MSE)
between a reference video and possibly distorted versions of
it (e.g., by compression). However, while the PSNR metric is
simple and easy to calculate, it does not correlate very well
with subjective opinion scores of picture or video quality [17].
This is because PSNR is a pixel-wise fidelity metric which
does not account for spatial or temporal perceptual processes.

An important breakthrough on the perceptual quality prob-
lem emerged in the form of the Universal Quality Index
(UQI) [18], the first form of the Structural Similarity Index
(SSIM). Given a pair of images (reference and distorted),
UQI creates a local quality map, by measuring luminance,
contrast and structural similarity over local neighborhoods,
then pooling (averaging) values of this spatial quality map
yielding a single quality prediction (per picture or video
frame). SSIM was later refined to better account for the
interplay between adaptive gain control of the visual signal
(the basis for masking effects) and saturation at low signal
levels [19].

The SSIM concept reached a higher performance in the
form of Multi-Scale SSIM (MS-SSIM) [20], which applies
SSIM at five spatial resolutions obtained by successive
dyadic sampling. Contrast and structure similarities are com-
puted at each scale, while luminance similarity is only cal-
culated at the coarsest scale. These scores are then combined
using exponential weighting. SSIM andMS-SSIM are widely
used by the streaming and social media industries to perceptu-
ally control the encodes of many billions of picture and video
contents annually.

While SSIM and MS-SSIM are most commonly deployed
on a frame-by-frame basis, temporal extensions of SSIMhave
also been developed. In [21], the authors compute frame-wise
quality scores, weighted by the amount of motion in each
frame. In [22], explicit motion fields are used to compute
SSIM along motion trajectories, an idea that was elaborated
on in the successful MOVIE index [23].

Following the success of SSIM, a great variety of
picture and video quality models have been proposed.
Among these, the most successful have relied on per-
ceptually relevant ‘‘natural scene statistics’’ (NSS) mod-
els, which accurately and reliably describe bandpass and
nonlinearly normalized visual signals [24], [25]. Distor-
tions predictably alter these statistics, making it possible
to create highly competitive picture and video quality pre-
dictors like the Full-Reference (FR) Visual Information
Fidelity (VIF) index [26], the Spatio-Temporal Reduced Ref-
erence Entropic Differences (ST-RRED) model [27], the
efficient SpEED-QA [28], and the Video Multi-method
Assessment Fusion (VMAF) [29] model, which uses a sim-
ple learning model to fuse quality features derived from
NSS models to obtain high performance and widespread
industry adoption. Despite these advances, SSIM remains the
most widely used perceptual quality algorithm because of its
high performance, natural definition, and compute simplicity.

Moreover, the success of SSIM can also be explained byNSS,
at least in part [30].

In many situations, reference information is not available
as a ‘‘gold standard’’ against which the quality of a test picture
or video can be evaluated. No-Reference (NR) quality models
have been developed that can accurately predict picture or
video quality without a reference, by measuring NSS devi-
ations. Notable NR quality models include BLIINDS [31],
DIIVINE [32], BRISQUE [33], and NIQE [34]. The latter
two, which have attained significant industry penetration, are
similar to SSIM since they are defined by simple bandpass
operations over multiple scales, normalized by local spatial
energy. For encoding applications where the source video to
be encoded is already impaired by some distortion(s), e.g.
UGC, as is often found on sites like YouTube, Facebook, and
Instagram, SSIM and NIQE can be combined via a 2-step
assessment process to produce significantly improved encode
quality predictions [35], [36].

Evaluating picture and video encodes at scale remains
the most high-volume application of quality assessment, and
SSIM continues to play a dominant role in this space. Nev-
ertheless, many widely used versions of SSIM exist having
different characteristics. Understanding and unifying these
various implementations would be greatly useful to industry.
Moreover, there remain questions regarding the use of SSIM
across different display sizes, devices and viewing distances,
as well as how to handle color, and how to combine (pool)
SSIM scores. Our objective here is to attempt to answer these
questions, at least in part.

II. BACKGROUND
The basic SSIM index is a FR picture quality model defined
between two luminance images of size M × N , I1(i, j) and
I2(i, j) as a multiplicative combination of three terms - lumi-
nance similarity l(i, j), contrast similarity c(i, j) and structure
similarity s(i, j). Color may be considered, but we will do so
later.

These three terms are defined in terms of the local means
µ1(i, j), µ2(i, j), standard deviations σ1(i, j), σ2(i, j), and cor-
relations σ12(i, j) of luminance, as follows. Let Wij denote
a windowed region of size k × k spanning the indices
{i, . . . , i + k − 1} × {j, . . . , j + k − 1} and let w(m, n)
denote weights assigned to each index (m, n) of this window.
In practice, these weighting functions sum to unity, and have
a finite-extent Gaussian or rectangular shape.

The local statistics are then calculated on (and between)
the two images as

µ1(i, j) =
∑

m,n∈Wij

w(m, n)I1(m, n), (1)

µ2(i, j) =
∑

m,n∈Wij

w(m, n)I2(m, n), (2)

σ 2
1 (i, j) =

∑
m,n∈Wij

w(m, n)I21 (m, n)− µ
2
1(i, j), (3)

σ 2
2 (i, j) =

∑
m,n∈Wij

w(m, n)I22 (m, n)− µ
2
2(i, j), (4)
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σ12(i, j) =
∑

m,n∈Wij

w(m, n)I1(m, n)I2(m, n)

−µ1(i, j)µ2(i, j). (5)

Using these local statistics, the luminance, contrast and
structural similarity terms are respectively defined as

l(i, j) =
2µ1(i, j)µ2(i, j)+ C1

µ2
1(i, j)+ µ

2
2(i, j)+ C1

, (6)

c(i, j) =
2σ1(i, j)σ2(i, j)+ C2

σ 2
1 (i, j)+ σ

2
2 (i, j)+ C2

, (7)

s(i, j) =
σ12(i, j)+ C3

σ1(i, j)σ2(i, j)+ C3
, (8)

where C1,C2 and C3 are saturation constants that contribute
to numerical stability. Local quality scores are then defined
as

Q(i, j) = l(i, j) · c(i, j) · s(i, j). (9)

Adopting the common choice of C3 = C2/2, the contrast
and structure terms combine:

cs(i, j) = c(i, j)s(i, j) =
2σ12(i, j)+ C2

σ 2
1 (i, j)+ σ

2
2 (i, j)+ C2

. (10)

In this way, a SSIM quality map Q(i, j) is defined, which
can be used to visually localize distortions. Since a single
picture quality score is usually desired, the average value of
the quality map can be reported as the Mean SSIM (MSSIM)
score between the two images:

SSIM (I1, I2) =
1
MN

M∑
i=1

N∑
j=1

Q(i, j). (11)

SSIM obeys the following desirable properties:
1) Symmetry: SSIM (I1, I2) = SSIM (I2, I1)
2) Boundedness: |SSIM (I1, I2)| ≤ 11

3) Unique Maximum: SSIM (I1, I2) = 1 ⇐⇒ I1 = I2
An important property of SSIM is that it accounts for

the perceptual phenomenon of Weber’s Law, whereby a Just
Noticeable Difference (JND) is proportional to the local
neighborhood property Q. This is the basis for perceptual
masking of distortions, whereby the visibility of a distortion
1Q is mediated by the relative perturbation 1Q/Q.
To illustrate the connection between SSIM and Weber

masking, consider an error 1µ of local luminance µ1 in a
test image:

µ2 = µ1 +1µ = µ1(1+3), (12)

where3 = 1µ/µ1 is the relative change in luminance. Then,
the luminance similarity term (6) becomes (dropping spatial
indices)

l =
2µ1µ2 + C1

µ2
1 + µ

2
2 + C1

(13)

1Very rarely, distortion can cause a negative correlation between reference
and test image patches.

=
2µ2

1(1+3)+ C1

µ2
1

(
1+ (1+3)2

)
+ C1

(14)

=
2(1+3)+ C1/µ

2
1

1+ (1+3)2 + C1/µ
2
1

. (15)

Since it is usually true that C1 � µ2
1, the luminance term

l is approximately only a function of the relative luminance
change, reflecting luminance masking.

Similarly, a locally perturbed contrast σ1 in a test image
may be expressed as σ2 = (1+ 6)σ1, where 6 = 1σ/σ1 is
the relative change in contrast from distortion. Similar to the
above, we can express the contrast term (7) as

c =
2(1+6)+ C2/σ

2
1

1+ (1+6)2 + C2/σ
2
1

. (16)

Since generally C2 � σ 2
1 , the contrast term c is approxi-

mately a function of the relative, rather than absolute, change
in contrast, thereby accounting the perceptual contrast mask-
ing.

Given an 8-bit luminance image, assume the nominal
dynamic range [0,L], where L = 255. Most commonly,
the saturation constants are chosen relative to the dynamic
range as C1 = (K1 L)2 and C2 = (K2L)2, where K1 and K2
are small constants.

SSIM is quite flexible and allows room for design choices.
The recommended implementation of SSIM in [19] is
• If min(M ,N ) > 256, resize images such that
min(M ,N ) = 256.

• Use a Gaussian weighting window in (1) - (5) having
k = 11 and σ = 1.5.

• Choose regularization constants K1 = 0.01,K2 = 0.03.
One of our goals here is to compare and test different, com-

monly used implementations of SSIM and MS-SSIM, which
make different design choices.We conduct performance eval-
uations on existing, well-regarded image and video quality
databases. We study the effects of several design choices
and make recommendations on best practices when utilizing
SSIM.

III. DATABASES
One of our main goals is to help ‘‘standardize’’ the way
SSIM is defined and used. Since many versions of SSIM exist
and implementing SSIM involves design choices, reliable
and accurate subjective test beds that capture the breadth
of theoretical and practical distortions are the indispensable
tools for our analysis. Among these, we selected two picture
quality databases and two video quality databases that are
widely used.

A. LIVE IMAGE QUALITY ASSESSMENT DATABASE
The LIVE IQA database [37], [38] contains 29 reference
pictures, each subjected to the following five distortions (each
at four levels of severity).
• JPEG compression
• JPEG2000 compression
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• Gaussian blur
• White noise
• Bit errors in JPEG2000 bit streams

LIVE IQA contains 982 pictures with nearly 30,000 corre-
sponding Difference Mean Opinion (DMOS) human subject
scores.

B. TAMPERE IMAGE DATABASE 2013
The Tampere Image Database 2013 (TID2013) [39] contains
3000 distorted pictures subjected to 24 impairments at 5 dis-
tortion levels synthetically applied to 25 pristine images. The
24 distortions are
• Additive Gaussian noise
• Additive noise in color components is more intensive
than additive noise in the luminance component

• Spatially correlated noise
• Masked noise
• High frequency noise
• Impulse noise
• Quantization noise
• Gaussian blur
• Image denoising
• JPEG compression
• JPEG2000 compression
• JPEG transmission errors
• JPEG2000 transmission errors
• Non eccentricity pattern noise
• Local block-wise distortions of different intensity
• Mean shift (intensity shift)
• Contrast change
• Change of color saturation
• Multiplicative Gaussian noise
• Comfort noise
• Lossy compression of noisy images
• Image color quantization with dither
• Chromatic aberrations
• Sparse sampling and reconstruction

The 3000 pictures in TID 2013 are accompanied by human
subjective quality scores on them in the form of over
500,000 MOS.

C. LIVE VIDEO QUALITY ASSESSMENT DATABASE
The LIVE VQA database [40] contains 10 reference videos,
each subjected to the following four distortions (each applied
at four levels of severity).
• MPEG-2 compression
• H.264 compression
• Error-prone IP networks
• Error-prone wireless networks

A total of 150 distorted videos are obtained, on which
4350 subjective DMOS were obtained.

D. NETFLIX PUBLIC DATABASE
The Netflix Public Database, obtained from the VMAF [29]
Github repository, contains 9 reference videos, each distorted

by spatial scaling and compression, yielding 70 distorted
videos. We selected this database because of its high rele-
vance and commonly observed distortions characteristic of
SSIM streaming video deployments at the largest scales.

IV. VERSIONS OF SSIM
Next, we take a deep dive into publicly available and
commonly used implementations of SSIM and MS-SSIM.
We compare various aspects of their performance, explain the
differences between them, and provide recommendations for
best practices when using SSIM. This is especially impor-
tant because, as we will see, subtle differences in design
choices can lead to significant changes in performance and
efficiency.

A. PUBLIC SSIM AND MS-SSIM IMPLEMENTATIONS
We considered the following ten SSIM implementations
when carrying out our experiments:

1) FFMPEG [41]
2) LIBVMAF [29]
3) VideoClarity ClearView Player (ClearView)
4) HDRTools [42]
5) Daala [43]
6) Scikit-Image in Python (Rectangular) [44]
7) Scikit-Image in Python (Gaussian) [44]
8) Scikit-Video in Python (Rectangular) [45]
9) Scikit-Video in Python (Gaussian) [45]

10) Tensorflow in Python [46]
11) MATLAB
12) MATLAB (Fast)

‘‘Rectangular’’ refers to using a constant weight window
function to calculate local statistics, while ‘‘Gaussian’’ refers
to using a Gaussian-shaped window function to calculate
local statistics, as in [19]. Only the Python and MATLAB
implementations allow the user to set parameters such as the
SSIM window size. Hence, we tested the other implementa-
tions using the default parameters. ‘‘Fast’’ in item 12 refers
to an accelerated implementation of SSIM in MATLAB.

In addition, the following eight MS-SSIM implementa-
tions were tested:

1) LIBVMAF
2) ClearView
3) HDRTools
4) Daala
5) Daala (Fast)
6) Scikit-Video in Python (Sum)
7) Scikit-Video in Python (Product)
8) Tensorflow in Python

‘‘Sum’’ and ‘‘Product’’ in 6 and 7 refer to different ways
of aggregating SSIM scores across scales. ‘‘Product’’ refers to
themethod proposed in [20], whereMS-SSIM is computed as
an exponentially-weighted product of SSIM scores from each
scale. In ‘‘Sum’’, the MS-SSIM score is instead a weighted
average of SSIM scores across scales. ‘‘Fast’’ refers to an
accelerated implementation of MS-SSIM in Daala.
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TABLE 1. Salient features of SSIM implementations.

B. SALIENT FEATURES OF SSIM AND MS-SSIM
IMPLEMENTATIONS
The salient features of various SSIM implementations have
been listed in Table 1, and the salient features of var-
ious MS-SSIM implementations have been listed below.
To avoid repetition, we only discuss the aspects in which each
MS-SSIM implementation deviates from the corresponding
SSIM implementation.

1) LIBVMAF
a) Dyadic down-sampling is performed using a

9/7 biorthogonal wavelet filter.
2) Daala

a) Uses σ = 1.5, leading to a Gaussian window of
size 11.

b) Dyadic down-sampling is performed by 2 × 2
average pooling.

3) Daala (Fast)
a) Multiscale processing is performed at 4 levels.

The first four exponents used in the standard
MS-SSIM formulation are renormalized to sum
to 1.

b) An integer approximation to Gaussian is used.
c) Dyadic down-sampling is performed by 2 × 2

average pooling.
d) When image dimensions were not multiples

of 16, we found that this implementation suffered
from memory leaks, which led to a considerable
decrease in accuracy. A simple fix restored per-
formance to expected levels.

4) Scikit-Video

a) Dyadic down-sampling is performed by low pass
filtering using a 2× 2 average filter, followed by
down-sampling.

b) Allows aggregating across scales by summation
instead of product. For summation, the exponents
βi are normalized to sum to 1, leading to a convex
combination.

c) At the coarsest scale, the algorithm uses αM =
βM = γM = 1.

d) When image dimensions were large, we found
that this implementation suffered from incom-
patible memory allocation, leading to crashes at
run-time. We fixed this error, making the imple-
mentation usable.

5) Tensorflow

a) Dyadic down-sampling is carried out by average
pooling 2× 2 neighborhoods.

C. OFF-THE-SHELF PERFORMANCE USING DEFAULT
PARAMETERS
In this section, we evaluate the off-the-shelf performance
of the implementations discussed above. We first normal-
ized the subjective scores of pictures/videos each database
to the range [0, 1] by scaling and shifting. In all of
the experiments in this section, unless mentioned other-
wise, we computed SSIM scores only on the luminance
channel.

It is well known that the relationship between SSIM (or
any other quality metric) and subjective scores is non-linear.
To account for this, we fit the five-parameter logistic (5PL)
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TABLE 2. Off-the-shelf performance of SSIM implementations.

function [47] shown in (17) from SSIM values to subjective
scores:

Q(x) = β1

(
1
2
−

1
1+ exp(β2(x − β3))

)
+ β4x + β5, (17)

where x is the SSIM score, βi are parameters of the logistic
function, and Q(x) is the predicted subjective quality.
After linearizing the SSIM values in this manner, we report

the Pearson Correlation Coefficient (PCC) which is a mea-
sure of the linear correlation between the predicted and
true quality, the Spearman Rank Order Correlation Coeffi-
cient (SROCC) which is a measure of the rank correlation
(monotonicity), and the Root Mean Square Error (RMSE)
which is a measure of the error in predicting subjective
quality.

Table 2 shows the results of the experiments, and the best
three results in each column have been boldfaced. Among
SSIM implementations, LIBVMAF and the Scikit-Video
implementations generally outperformed all other algo-
rithms. We attribute this superior performance to the use of
scaling, which we will expound in Section VI.

Among the MS-SSIM implementations, there was no con-
sistent ‘‘winners.’’ Python implementations like Scikit-Video
and the FastQA implementation were often among the
top-three implementations. Tensorflow’s MS-SSIM imple-
mentation also performs well, lending strong empirical sup-
port to the use of MS-SSIM as a training objective for deep
networks implemented in Tensorflow.

Since compression forms an important class of distor-
tions encountered in practice, we also report the off-the-shelf
performance of SSIM and MS-SSIM implementations on
compression distorted data in Table 3. When restricting the
comparisons to compression, the LIBVMAF, Scikit-Image
and FastQA implementations still generally outperform other
SSIM implementations, while HDRTools andClearView gen-
erally outperform other MS-SSIM implementations.

D. PERFORMANCE-EFFICIENCY TRADEOFFS
In addition to performance (i.e., correlation with subjective
scores), it is important to consider the compute efficiency of
these implementations. Algorithms that employ sophisticated
techniques for down-sampling, calculation of local statistics
andmulti-scale processingmay provide improvements in per-
formance, but often incur the cost of additional computational
complexity. When deployed at scale, these additional costs
can be significant.

To evaluate the compared algorithms in the context
of this performance-efficiency tradeoff, we plotted the
SROCC achieved by each algorithm against their exe-
cution time. Since some methods leverage multithread-
ing/multiprocessing, we report the user time instead of the
wall time of the processes.

As with any run-time experiments, we expected to observe
slight variations in execution times between runs due to vary-
ing system conditions. To account for this, we ran every SSIM
implementation on each database five times and recorded the
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TABLE 3. Off-the-shelf performance of SSIM and MS-SSIM implementations on compression.

total execution time of each run. We then reported the median
run-time over the five runs.

We omitted Tensorflow implementations from these exper-
iments because they run prohibitively slowly on CPUs, and
we cannot compare their GPU run-times while all other
implementations are run on the CPU.We also omit ClearView
implementations because we had to run them on custom
hardware. The results on each database are shown in Fig. 1,
where the Pareto-optimal implementations have been
circled.

From these plots, it may be observed that among the
implementations that we tested, Daala’s Fast MS-SSIM and
Scikit-Video’s SSIM (using Rectangular windows) imple-
mentation are Pareto-optimal most often, followed the
FastQA MS-SSIM implementation. In addition, among the
SSIM implementations, Daala, LIBVMAF and the FastQA
implementations were often Pareto-optimal across databases.
Note that while the concept of Pareto-optimality is often used
in the context of ‘‘optimizing’’ an encode in a rate-distortion
sense by varying a parameter, no parameters were opti-
mized during our experiments. In our setting, an imple-
mentation is considered to be Pareto-optimal among the set
of considered implementations if there is no implementa-
tion that both achieves a higher SROCC and runs in lesser
time.

The nominal computational complexity of SSIM is
O(MNk2). We propose a method to improve the efficiency of
SSIM if the weighting function is rectangular, i.e., w(i, j) =
1/k2, by using integral images, also known as summed-area
tables [48], [49].

This can be done by forming five integral images as
follows:

I (1)1 (i, j) =


∑
m≤i

∑
n≤j

I1(m, n) i, j > 0

0 otherwise
, (18)

I (1)2 (i, j) =


∑
m≤i

∑
n≤j

I2(m, n) i, j > 0

0 otherwise
, (19)

I (2)1 (i, j) =


∑
m≤i

∑
n≤j

I21 (m, n) i, j > 0

0 otherwise
, (20)

I (2)2 (i, j) =


∑
m≤i

∑
n≤j

I22 (m, n) i, j > 0

0 otherwise
, (21)

I12(i, j) =


∑
m≤i

∑
n≤j

I1(m, n)I2(m, n) i, j > 0

0 otherwise
, (22)

Given the integral image I (1)1 , calculate the sum in any k×k
windowWij in constant time via

S(1)1 (i, j) = I (1)1 (i+ k − 1, j+ k − 1)+ I (1)1 (i− 1, j− 1)

−I (1)1 (i+ k − 1, j− 1)− I (1)1 (i− 1, j+ k − 1). (23)

This operation would requireO(k2) time without the use of an
integral image. Similarly, calculate local sums using the other
integral images, and denote them S(1)2 (i, j), S(2)1 (i, j), S(2)2 (i, j),
and S12(i, j), respectively. Then calculate the necessary local
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FIGURE 1. Correlation vs execution time.

statistics as

µ1(i, j) = S(1)1 (i, j)/k2, (24)

µ2(i, j) = S(1)2 (i, j)/k2, (25)

σ 2
1 (i, j) = S(2)1 (i, j)/k2 − µ2

1(i, j), (26)

σ 2
2 (i, j) = S(2)2 (i, j)/k2 − µ2

2(i, j), (27)

σ12(i, j) = S12(i, j)/k2 − µ1(i, j)µ2(i, j). (28)

In this new way of computing rapid SSIM index, which is
applicable when using a rectangular SSIM window, the com-
pute complexity of SSIM is reduced to O(MN ).

V. SCALED SSIM
Arguably the most widespread use of SSIM (and other pic-
ture/video quality models) is in evaluating the quality of com-
pression encodes. On streaming and social media platforms,
pictures and videos are commonly encoded at lower resolu-
tions for transmission. This is done either because the source
has low-complexity content and can be down-sampled with
relatively little additional loss (or if the available bandwidth
requires it) or to decrease the decoding load at the user’s end.
Perceptual distortion models have become common tools
for determining the quality of encodes for Rate-Distortion
Optimization (RDO) [16]. Advances in video hardware have

enabled the accelerated encoding and decoding of videos,
making the distortion estimation step the bottleneck when
optimizing encoding ‘‘recipes.’’ FromSection IV-D, we know
that the computational complexity of SSIM in terms of image
dimensions isO(MN ). Including a scale factor α by which we
resize the image, the computational complexity is O(α2MN ).
Due to this quadratic growth, the computational load of dis-
tortion estimation is an increasingly relevant issue given the
prevalence of high-resolution videos.

Therefore, it is of great interest to be able to accurately
predict the quality of high-resolution videos that are distorted
in two steps - scaling followed by compression. For example,
consider High Definition (HD) videos that are first resized
to a lower resolution, which we call the compression resolu-
tion, then encoded and decoded using, for example, H.264 at
this compression resolution. The videos are then up-sampled
to the original resolution before they are rendered for dis-
play. We will refer to this higher resolution as the rendering
resolution.

We aim to reduce the computational burden of perceptually-
driven RDO by circumventing the computation of SSIM at
the rendering resolution, i.e. between the HD source and
rendered videos. We propose a suite of algorithms, called
Scaled SSIM in [50], which predict SSIMby only using SSIM
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FIGURE 2. Video compression pipeline.

values computed at the lower compression resolution during
runtime. The video compression pipeline in which we solve
the Scaled SSIM problem is illustrated in Fig. 2.

We achieve this using two classes of models that efficiently
predict Scaled SSIM, which we refer to as

• Histogram Matching
• Feature-based models

All of the proposed models operate on a per-frame basis.
We first trained and tested the performance of these

models on an in-house video corpus of 60 pristine videos.
We compressed these videos at 6 compression scales−144p,
240p, 360p, 480p, 540p, 720p using FFMPEG’s H.264
(libx264) encoder at 11 choices of theQuantization Parameter
(QP) - 1, 6, 11, . . . , 51. In this manner, we obtained a total
of 3960 videos having almost 1.75M frames.

On this corpus, we can evaluate the accuracy of predict-
ing SSIM scores, i.e., the correlation between predicted and
true SSIM, which was computed using the ‘‘ssim’’ filter in
FFMPEG. However, the end goal is to predict subjective
scores, which are not available for this corpus. So, we instead
evaluated the performance of our models against subjective
scores on the Netflix Public Database.

A. HISTOGRAM MATCHING
We observe a non-linear relationship between SSIM values
across encoding resolutions. Because framewise SSIM scores
are calculated by averaging the local quality map obtained
from SSIM, we can estimate SSIM scores by matching the
histograms of these quality maps. However, to match his-
tograms, we require the true histogram at the rendering reso-
lution, which is what we wish to avoid estimating.
So, we instead calculate the ‘‘true’’ quality map just once

every k frames, and assume that the shape of the true his-
togram does not change significantly over a short period
of k − 1 frames. This allows us to reuse this ‘‘reference
map’’ for the next k − 1 frames as a heuristic model against
which we match the shapes of the next k − 1 histograms at
the compression scale. This histogram matching algorithm is
illustrated in Fig. 3.
Let α ∈ (0, 1) be the factor by which we down-sampled the

source video. Then, the ratio of required computation using

FIGURE 3. Histogram matching solution.

FIGURE 4. Correlation vs sampling interval for histogram matching.

our proposed approach to SSIM computation directly at the
rendered scale is approximately(

1−
1
k

)
α2 (1+ β + γ )+

1
k
(1+ β). (29)

The factors β and γ account for computing and matching
the histograms respectively, which are both O(MN ) opera-
tions. This ratio is a decreasing function of k , and approaches
α2(1+ β + γ ) as k →∞.
By comparison, if the rendered SSIM map were not

sampled, the ratio would be approximately α2. In practice,
we have observed that the time taken to compute and match
histograms is comparable to the time taken to compute the
SSIM map at the compression scale. So, the computational
burden of the matching step is small, albeit not negligible.

This reduction in computational complexity as k increases
is accompanied by a reduction in performance (accurate pre-
diction of true SSIM), as shown in Fig. 4. We chose k = 5 in
all the experiments unless otherwise mentioned.

One drawback of this method is that it requires ‘‘guiding
information’’ in the form of periodically updated reference
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TABLE 4. Correlation with true SSIM on corpus test data.

quality maps. However, this issue is not a factor in the second
class of models.

B. FEATURE-BASED MODELS
As we observed earlier, the net quality degradation occurs
in two steps - scaling and compression. So, we calculate the
contribution of each operation and use these as features to
calculate the net distortion.

Let X be a source video and Sα(X ) denote the video
obtained by scaling X by a factor α. Then, the result of
up-sampling the down-sampled video back to the original
resolution may be denoted by S 1

α
(Sα(X )). The SSIM value

between X and S 1
α
(Sα(X )) is a measure of the loss in quality

from down-sampling the video. Since this SSIM is indepen-
dent of the choice of codec and compression parameters, this
can be pre-computed.

The second source of quality degradation is compression.
Let C(X; q) be the decoded video obtained by encoding the
source video X using a Quantization Parameter (QP) q. Then,
the SSIM value between Sα(X ) andC(Sα(X ); q) measures the
loss of quality resulting from compression of the video.

We use these two SSIM scores as features to predict the
true SSIM and refer to these models as Two-Feature Models.
In addition, we can also use the scaling factor α and the QP
q as features. We call such models four-feature models.

In both cases, we train three regressors to predict the
SSIM value at the rendering scale on each frame. The three
regressors considered are
• Linear Support Vector Regressor (Linear SVR)
• Gaussian Radial Basis Function SVR (Gaussian SVR)
• Fully Connected Neural Network (NN)

The Neural Network is a small fully connected network hav-
ing a single hidden layer with twice the number of neurons
as input features. We compared these models to a simple
learning-free model, which is used as a baseline. The out-
put of the baseline model is the simple product of the two
SSIM features. This is similar to the 2stepQA picture quality
model proposed in [35], [36], for two-stage distorted pictures.
We call this the Product model.

C. RESULTS
The correlations between predicted SSIM and true SSIM
achieved by the various models on our in-house corpus is
shown in Table 4, where ‘‘2’’ and ‘‘4’’ denote the number
of features input to each learning-based model. Among the

TABLE 5. Correlation with DMOS on netflix public database.

feature-based models, four-feature NN performed best. This
is to be expected, given the great learning capacity of NNs.

It is interesting to note, however, that the learning-free
product model yielded comparable or better performance
at a negligible computational cost. Finally, the Histogram
Matching model provided near-perfect predictions, outper-
forming all other models. The cost of this performance
is the additional periodic calculation of reference quality
maps/histograms.

Because our corpus contains videos generated at various
compression scales and QPs, we were able to evaluate the
sensitivity of our best models’ performance to these choices
of encoding parameters. We illustrate this in Fig. 5.

We observe that histogram matching performed consis-
tently well across all encoding parameters with only a slight
decrease in parameters at high-quality regions, i.e., high com-
pression scale and low QP. We attribute this to the fact that
most quality values at lowQPs are very close to 1. As a result,
the histogram of quality scores at the compression scale is
concentrated close to 1, making histogrammatching difficult.

On the other hand, the feature-based models performed
poorly in low-quality regions, i.e., low compression scale and
high QP. However, videos are seldom compressed at such low
qualities, so this does not affect performance in most practical
use cases.

Table 5 compares models based on the correlation they
achieved against subjective opinion scores on the Netflix
Public Database. Because our goal is to predict SSIM effi-
ciently, we hold the performance of ‘‘true’’ SSIM as the
gold standard against which we evaluated the performance
of the Scaled SSIM models. Because videos in this database
were generated by setting bitrates instead of QPs, we only
tested our two-feature and histogram matching models. It is
important to note that these models were not retrained on the
Netflix database.

From the table, it may be observed that SSIM estimated by
Histogram Matching matches the performance of true SSIM.
We also observe that the feature-based models approach true
SSIM’s performance, with the Product Model offering an
effective low complexity alternative to the learning-based
models.

VI. DEVICE DEPENDENCE
The Quality of Experience of an individual user varies to a
great extent, depending on not only the visual quality of the
content, but also various other factors. These include, but may
not be limited to [51]:
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FIGURE 5. Variation in performance with choice of encoding scale and QP.

1. Context of media contents.
2. Users’ viewing preferences.
3. Condition of terminal and application used for display-

ing contents.
4. Network bandwidth and latency.
5. The environment where users view content.

(Background lighting conditions, viewing distances, audio
devices, etc.)

From the perspective of compression and quality assess-
ment algorithms, the factors to be considered are net-
work fluctuations and terminal screens. The rest of this
section restricts the scope to only the size of screens
and pixel resolutions, excluding the influence of other
variables.

A. IMPACT OF SCREEN SIZE
The issue of screen size on viewing quality originally arose
in the context of television [52]. Large wall-sized, theatre(s)
and IMAX displays provide better experiences, with subjects
reporting increased feelings of ‘reality,’ i.e. the illusion that
viewers are present at the scene. Studies have also shown a
possible relation between screen size and viewer’s intensity
of response to contents.

B. DISPLAYED CONTENT AND PERCEIVED PROJECTION
The authors of [51] compared the experiences of users of
devices of different screen sizes, both on web browsing and
video viewing. Mean Opinion Scores were found to vary
significantly, with an approximate difference of 1 =1 MOS
between high-end devices and low-end devices of that time.
It was also discovered that viewing of videos on tablets
(iPad, etc.) benefited more from displaying contents of higher
resolutions (more significant impact onMOS) as compared to
mobile phones. User experiences are a combined function of
screen size, content resolution, and viewing distance. This is
quantified by the contrast sensitivity (CSF) of the HVS [53]
which is broadly band pass so that increases in resolutions
beyond a certain limit are not perceivable, hence pose little

impact on user experience. The pass band of the human
spatial CSF peaks between 1-10 cycles/degree (cpd) (depend-
ing on illumination and temporal factors), falling off rapidly
beyond. Naturally, it is desirable that picture and video quality
assessment algorithms be able to adapt to screen size against
assumed viewing distance, i.e., by characterizing the projec-
tion of the screen on the retina [54]. Given a screen height H
and a viewing distance D, full-screen viewing angle is

α = 2 arctan
(
H
2D

)
(30)

then, if the viewing screen contains L pixels on each (vertical
or horizontal) line, the spatial frequency of the pixel spacing
is defined as

fmax =
L
2α

(31)

in cpd.

C. TRANSFORMING ACROSS VARIOUS SCALES
While primitive specifications of viewing distances and pixel
resolutions have been provided by the ITU [55], existing sub-
jective picture and video quality databases are mainly defined
by their content and their testing environments. Likewise,
nearly all quality assessment models that operate over scales
use the down-sampling transform

Zα = max
(
1,
⌈
HI
256

⌉)
(32)

which creates discontinuities as the height is varied (e.g.,
H1 = 510 and H2 = 520) and does not account for view-
ing distance D. However, the Self-Adaptive Scale Transform
(SAST) [56] seeks to remediate these weaknesses. SAST
uses both the viewing distance and the user’s angle of view
(including the distance)

Zs =

√
HI ·WI

H · I
(33)
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=

√√√√ 1

4 tan
(
θH
2

)
tan

(
θW
2

) · HI
D
·
WI

D
(34)

where D denotes the viewing distance, HI and WI are the
height and width of the display, and the corresponding projec-
tion on the retina is H byW . Commonly assumed, horizontal
and vertical viewing angles are θH = 40◦ and θW = 50◦.
Because of the band pass nature of the visual system,

a picture or video may be preprocessed using Adaptive
High-frequency Clipping (AHC) [57]. In this method, instead
of losing high-frequency information during scaling, high fre-
quencies are selectively assigned smaller weights in a wavelet
domain.

A dedicated database called VDID2014 [58] was created
to record human visual responses under varying viewing dis-
tances and pixel resolutions. The authors derived an optimal
scale selection (OSS) model based on the SAST and AHC
model. Instead of directly comparing reference and distorted
contents, all frames of the picture or video are first prepro-
cessed according to an assumed or derived viewing distance
and pixel resolution, before applying quality assessment algo-
rithms such as SSIM. The OSS model significantly boosted
performance of both legacy and modern IQA/VQA models
while not significantly increasing computational complexity.

D. TRADEOFFS
While modern viewers maintain high expectations of visual
quality, regardless of the device and picture or video appli-
cations being used, efforts to achieve consistent quality have
been inconsistent across screens of various sizes and reso-
lutions. A study of H.264 streams without packet loss [59]
demonstrated that the required bit rate grows linearly with the
horizontal screen size, while the expected level of subjective
quality was kept fixed.

However, the required bit rates grew much faster with
increased expectations of perceived quality, with saturation
of MOS at high bit rates, and little quality improvement with
increased bit rate. Notwithstanding future improvements in
picture/video representation and compression technologies,
the results of [59] supply approximate upper bounds of MOS
against content resolution and bit rate.

E. MOBILE DEVICES
Mobile devices have advanced rapidly in recent years, fea-
turing larger screens and higher resolutions. Most legacy
databases that focused on explaining the impact of screen
sizes and pixel resolutions were constructed using Personal
Digital Assistants (PDA) or older cell phones with displays
smaller than 4.5 inches. Popular resolutions of the time of
these studies were 320p or 480p, which rarely appear on
contemporary mobile devices. In an effort to investigate the
same issue on screens larger than 5.7 inches and resolutions
of 1440p (2K) or 2160p (4K), a recent subjective study [60]
focused on more recent mobile devices having larger resolu-
tions and screen sizes. The contents viewed by the subjects
were re-scaled to 4K.

The results from a one-way analysis of variance (ANOVA)
suggested no significant relevance between screen size and
perceived quality on screens ranging from 4 inches to
5.7 inches. However, a considerable MOS improvement
of 0.15 was achieved by 1080p content over 720p content,
but no further improvement was observed by increasing the
content resolutions to 1440p, suggesting a saturation of per-
ceived quality with resolution. Of course, MOS tends to
remain constant across content resolutions higher than that of
the display, suggesting that service providers restrict spatial
resolutions whenever device specifications are available.

VII. EFFECT OF WINDOW FUNCTIONS ON SSIM
At the heart of SSIM lies the computation of the local
statistics - means, variances, and covariances - comprising
the luminance, contrast and structure terms. As described
in Section II, the computational complexity of SSIM is
O(MNk2).

A. EFFECT OF WINDOW SIZE
While computational complexity increases quadratically with
window size, using larger windows does not guarantee better
performance. Indeed, since picture and video frames are non-
stationary, computing local statistics is highly advantageous
for local quality prediction. While small values of k can lead
to noisier estimates due to lack of samples, choosing large
values of k risks losing the relevance of local luminance,
contrast, structure, and distortion.

As mentioned earlier, the two most common choices
of SSIM windows are Gaussian-shaped and rectangular-
shaped. Traditionally, the use of rectangular windows is
not recommended in image processing, due to frequency
side-lobes and resulting ‘‘noise-leakage.’’ Because the fre-
quency response of a rectangular window is a sinc func-
tion, undesired high-frequencies can leak into the output.
To mitigate this effect, Gaussian filtering is usually preferred,
especially for denoising applications or if noise may be
present. For these reasons, Gaussian-shaped windows were
recommended by the authors of SSIM when calculating local
statistics.

To investigate the effect of the choice of window and
window size, we considered a set of scaling constant values
σ = 1.0, 1.5, . . . 6.0 of the Gaussian window, while trun-
cating them at a width of about 7σ and forcing the width
to be odd. Since only Python implementations allowed set-
ting σ , we restricted our experiments to these implementa-
tions. All these experiments were conducted using a stride
of 1.

Given a Gaussian window of standard deviation σ , one
can construct analogous rectangular windows in three ways
- having the same physical size (i.e., width and height),
having the same variance (considering the rectangular win-
dow as a sampled uniform distribution), or having the same
(3dB) bandwidth. To specify a rectangular window of size
2K + 1, we only need to specify K . Equating the vari-
ance of the Gaussian to that of a uniform distribution yields
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FIGURE 6. Effect of size and choice of window function on performance.

FIGURE 7. Effect of size and choice of window function on performance on compression data.

K =
⌈
σ
√
3
⌉
, where d·e denotes the ceiling operation. Simi-

larly, equating the 3dB bandwidths of the two filters requires
K = d1.602σe.

The variation of SSIM performance against window choice
is shown in Fig. 6. For simplicity, we only show the
performance of rectangular windows having the same
physical size. We observed similar results for rectangular
windows having the same variance and 3dB bandwidth.
Surprisingly, the figure indicates that rectangular windows
are an objectively better design choice than equivalent Gaus-
sian windows! In particular, rectangular windows outper-
form Gaussian windows for smaller window sizes, achieving
slightly higher peak performance. Our experiments suggest
that using windows of linear dimension in the range 15 to
20 offers a good tradeoff between performance and com-
putation on both picture databases. Using rectangular win-
dows also offers the possibility of a significant computational
advantage, because they can be implemented efficiently using
integral images, as discussed in Section II.

We report the variation of performance against window
size on compression distorted data in Fig. 7. From these plots,
it may be seen that when tested on compression distortions,
SROCC is maximized for smaller window sizes, in the range
7 to 15. In both figures, it may be seen that the Scikit-Video
implementations peak at smaller window sizes compared to
other implementations. This is explained by the fact that the
Scikit-Video implementations downsample images, which
increases the ‘‘effective’’ size of a window function with
respect to the original image.

B. EFFECT OF STRIDE
It is also possible to compute SSIM in a subsampled way,
by including a stride s, where s is the distance between adja-
cent windows on which SSIM is computed. Then, the com-
putational complexity of SSIM is O(MNk2/s2).

We tested the effect of stride on performance using our
FastQA python implementation, because none of the existing
implementations allow varying the stride. In Fig. 8, we report
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FIGURE 8. Variation of performance with stride.

the variation of SROCC with stride, where lines labelled
‘‘(Comp)’’ denote the performance on compression distorted
data.

From the figure, it may be seen that the SROCC is largely
unaffected by stride for s ≤ 5. This means that by choosing
a stride of s = 5, we can obtain a significant improvement
in efficiency (25x speedup), with little change in prediction
performance.

VIII. MAPPING SCORES TO SUBJECTIVE QUALITY
Because of the different parameter configuration and approx-
imations they use, the many available implementations of
SSIM tend to disagree with each other, producing (usually
slightly) different scores on the same contents. Of course,
any inconsistencies between deployed SSIM models is unde-
sirable, since otherwise in a given application (such as con-
trolling an encoder), changing the SSIM implementation may
lead to unpredictable results.

One way to address this issue is by applying a
pre-determined function to map the obtained SSIM results
to subjective scores. Among a collection of both nonlinear
and piecewise linear mappings, the 5PL function in (17) is
particularly useful.

A. IMPROVEMENT DUE TO MAPPING
Fig. 9 shows a typical example of fitting raw results (scatter
plot of MOS vs. MS-SSIM) to a 5PL function. Both the
MOS and objective scores cover fairly wide ranges while the
mapping function lies approximately in the middle these.

It can be easily observed that utilizing the fitted curve
yields a considerable improvement in PCC and RMSE, while
the SROCC remains the same due to the monotonic nature
of the function. Table 6 shows the improvement obtained
in PCC and RMSE after utilizing the fitted curve. For most
of the evaluated models there is a considerable performance
enhancement.

FIGURE 9. Example of fitting 5PL curve to a scatter plot of MOS vs.
MS-SSIM.

B. GENERALIZING TO OTHER DATABASES
While better performance against subjective scores is
obtained after mapping the raw data using logistic functions,
this only works on databases where subjective scores are
available to help optimize the model parameters. In real life,
however, social media and streaming service providers lack
subjective opinions of their shared of streamed content. This
means that it is uncertain whether a set of fitted parame-
ters will apply well to unknown data. In order to study the
generalizability provided by logistic mapping, we optimized
the function parameters on each individual database, mapped
the raw data in the other three databases using the obtained
model, as a way of assessing performance on unknown con-
tent. If the correlationmetrics were to remain similar, it would
demonstrate that the logistic function can be used to provided
steady performance on unseen data.

The results of the cross-database generalization experi-
ments are shown in Table 7. The result in each cell of the
table is the RMSE obtained by training a 5PL function on
a ‘‘source’’ database (SD), then testing it on each ‘‘target’’
database (TD). From these experiments, we observed that
when using MATLAB SSIM, the 5PL function generalized
well between the TID 2013 and LIVE IQA Databases.

However, we observed poor generalization when fitting
5PL on the LIVE VQA database, then testing on the LIVE
IQA database. While it may be too much to expect strong
performance on video distortions after training on pictures
and picture distortions, the lesson learned is still that a user
or service provider either select the most relevant database to
train on, or conduct a user study directed to their use case,
on which a SSIM mapping may be optimized.

IX. COLOR SSIM
Of course, the vast majority of shared and streamed pic-
tures and videos are in color. Hence it is naturally of
interest to understand whether SSIM can be optimized to
also account for color distortions. however, most avail-
able SSIM implementations only operate on the luminance
channel. Distortions of the color components may certainly
exert considerable influence on subjective quality. The most
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TABLE 6. Improvement in performance due to linearization.

TABLE 7. Generalizability of 5PL SSIM mappings across databases.

common approach to incorporating color information into
SSIM is to calculate it on each color channel, whether
RGB, YUV, or other color space, then combine the channel
results.

More sophisticated approaches have been taken to incor-
porate color channel information into quality models. For
example, CMSSIM [61] utilized CIELAB color space [62]
distances to better distinguish color distortions and noises.
This approach evolved, based on a later subjective study,
into CSSIM [63], which generalizes the calculations of
SSIM.

Another approach, called SHSIM [64] defines hue simi-
larity (HSIM) much like structural similarity, then combines
uses SSIM scores together with the HSIM scores. The com-
bination of two was found to better predict subjective quality
than when only using luminance or color.

The method called Quaternion SSIM (QSSIM) [65] com-
bines multi-valued RGB (or any other tristimulus) color
space vectors from picture or video pixels into a quater-
nion representation, providing a formal way to assess
luminance and chrominance signals and their degradations
together.

Although different in their formulations, these algorithms
express individual frames in a tristimulus color space,
whether RGB, YUV, or CIELAB depending on the applica-
tion. In the following, we will define and assess each of these
approaches.

A. QUATERNION SSIM
The quaternion SSIM algorithm uses quaternions [65] to rep-
resent color pixels with a vector of complex-like components
(quaternions are often described as extensions of complex or

phasor representations):

q(m, n) = r(m, n) · i+ g(m, n) · j+ b(m, n) · k. (35)

The quaternion picture or video frame can then be decom-
posed into constituent ‘‘DC’’ and ‘‘AC’’ components via

dc , µq =
1
MN

M∑
m=1

N∑
n=1

q(m, n), (36)

and

acq , q(m, n)− µq. (37)

The quaternion contrast is then defined as

σq =

√√√√ 1
(M − 1)(N − 1)

M∑
m=1

N∑
n=1

∥∥acq∥∥2, (38)

which, when computed on both reference and test signals,
is used to form a correlation factor

σqref ,dis =
1

(M − 1)(N − 1)

M∑
m=1

N∑
n=1

acqref · acqdis , (39)

yielding a quaternion formulation similar to the legacy
grayscale SSIM:

QSSIM =

∣∣∣∣∣
(

2µqref · µqdis
µqref

2 + µqdis
2

)(
σqref ,dis

µqref
2 + µqdis

2

)∣∣∣∣∣ . (40)
B. CMSSIM
The CMSSIM algorithm first transforms the input picture or
video signal into the CIE XYZ tristimulus color space. These
XYZ pixels are then transformed into luminance, red-green,
and blue-yellow planes [63] as Q1

Q2
Q3

 =
 0.279 0.72 −0.107
−0.449 0.29 −0.077
0.086 −0.59 0.501

 X
Y
Z

 (41)
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The resulting chromatic channels are then smoothed using
Gaussian kernels, then transformed back into XYZ tristimu-
lus color space via X

Y
Z

 =
 0.6204 −1.8704 −0.1553

1.3661 0.9316 0.4339
1.5013 1.4176 2.5331

 Q1
Q2
Q3

 (42)

and then into the CIELAB L∗, a∗, and b∗.
The dissimilarities between the reference and test chro-

matic components is then found as

1E(x, y) =
((
L∗1 (x, y)− L

∗

2 (x, y)
)2

+
(
a∗1(x, y)− a

∗

2(x, y)
)2

+
(
b∗1(x, y)− b

∗

2(x, y)
)2) 1

2
(43)

which are the used to weight the values of the final SSIM
map:

CSSIM = l(x, y) · c(x, y) · s(x, y) ·
(
1−

1E(x, y)
45

)
. (44)

C. HSSIM
The HSSIM index is calculated by first transforming pictures
or frames into an HSV color space. The color quality is
then predicted using a weighted average of SSIM and hue
similarity:

HSSIM (x, y) =
SSIM (x, y)+ 0.2H (x, y)

1.2
, (45)

where H (x, y) is of the same form as SSIM but operates on
hue channel instead of grayscale.

Next we discuss straight-forward channel-wise SSIM as
applied in YUV space. This model is also tested on the four
databases.

D. CHANNEL-WISE SSIM
While image sensors normally capture RGB data in accor-
dance with photopic (daylight) retinal sampling, most of the
structural information is present in the luminance signal. This
implies the existence of a lower information (reduced band-
width) color representation. In fact, both the retinal represen-
tation and modern opponent (chromatic) color spaces exploit
this property of visual signals. Modern social media and
streaming platforms ordinarily process RGB into a chromatic
space such as YUVorYCrCb prior to compression. Likewise,
IQA/VQA may be defined on color frames represented by
luminance and chrominance.

Since chromatic representations reduce the correlation
between color planes, the chromatic components with
reduced entropies may be down-sampled prior to compres-
sion. YCbCr values can be obtained directly from RGB via a
linear transformation, typically

Y = 0.213× R+ 0.715× G+ 0.072× B (46)

Cb = 0.539× (B− Y ) (47)

Cr = 0.635× (R− Y ) (48)

assuming ITU-R BT.709 conversion. However the YCbCr
components are defined, a chromatic SSIM model may be
defined based on a weighted average of the objective qualities
of the individual YCbCr channels

F(ref , dis) =
(
f (Yref ,Ydis)+ αf (Cbref ,Cbdis)

+ βf (Crref ,Crdis)
)
/(1+ α + β) (49)

where f (·, ·) denotes similarity between reference and dis-
torted frames.

In our case, the baseline SSIM is used as the base QA
measure, i.e. f (·, ·) = SSIM (ref, dis). This method is used
in popular image and video processing tools like FFMPEG
and Daala, where a Color SSIM is calculated as

SSIM = 0.8 · SSIMY
+ 0.1 · SSIMCb

+ 0.1 · SSIMCr (50)

Instead of testing all possible combinations of the hyperpa-
rameters during our experiments, we fixed α = β. We found
α = β = −0.3 to yield optimal results in our experiments,
with the obtained performances of this optimized Color
SSIM (CSSIM) on the four databases included in Table 8.

E. RESULTS
We compared the performances of the above four Color SSIM
models on the same databases, with the results tabulated
in Table 8. As may be observed, using color information
can noticeably boost SSIM’s quality prediction power, with
QSSIM RGB and YUV yielding the largest gains.

X. SPATIO-TEMPORAL AGGREGATION OF QUALITY
SCORES
In its native form, SSIM is defined on a pair of image regions
and returns a local quality score. When applied to a pair
of images, a quality map is obtained of (approximately)
the same size as the image. The most common method of
aggregating these local quality values is to calculate Mean
SSIM (MSSIM) to obtain a SSIM score on the entire image.
This method of aggregating quality scores is also usually
applied when applying SSIM to videos. Frame-wise MSSIM
scores are calculated between pairs of corresponding frames,
and the average value of MSSIM (over time) is reported as
the single SSIM score of the entire video.

In the context of HTTP streaming, the authors of [66]
evaluated various ways of temporal pooling SSIM scores,
and found that over longer durations, the simple temporal
mean performed about as well as other more sophisticated
pooling strategies. Here, we summarize and expand this work
by simultaneously testing various spatial and temporal aggre-
gation methods on the two video databases.

We begin by discussing various spatial and temporal pool-
ing strategies that can be used to pool SSIM. Some of these
methods require the tuning of hyperparameters. To optimize
these hyperparameters, we use the baseline sample mean as
the other poolingmethod, by comparing the SROCC achieved
by each choice of hyperparameters. That is, when optimizing
a spatial pooling method, we use temporal mean pooling, and
vice versa.
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TABLE 8. Comparison of color SSIM models.

As we will discuss below, many methods have been pro-
posed which leverage either side information, such as visual
attention maps, or computationally intensive procedures like
optical flow estimation. While these methods offer principled
ways to improve the SSIM model, we omit them from our
comparisons because they have a high cost, which is often
unsuitable for practical deployments of SSIM at large scales.

In subsequent sections, all of the SSIM quality maps were
generated using the Scikit-Image implementation of SSIM,
with rectangular windows and the default parameters. While
the exact results of the experiments may vary slightly with the
choice of ‘‘base implementation,’’ we expect these trends to
hold across implementations.

A. MOMENT-BASED POOLING
A straightforward extension of the averaging operation used
in SSIM is to replace it by one of the other two Pythagorean
means - the Geometric Mean (GM) and the Harmonic Mean
(HM). Since local SSIM scores can be negative, we can
only use GM and HM pooling on the structural dissimilar-
ity (DSSIM) scores, i.e. 1− SSIM . However, this means that
if the SSIM at any location is close to 1, the pooled score is
dramatically decreased. So, we do not recommend using GM
or HM for spatial pooling. However, framewise SSIM scores
are nearly always positive, so we investigate the use of the
Pythagorean means for temporal pooling. We also consider
the sample median, since it is a robust measure of central
tendency (MCT), unlike the mean.

Another method of pooling quality scores can be found
in the MOVIE index [23]. It was found that the coefficient
of variation (CoV) of quality values correlated well with

subjective scores. Let x = (i, j) denote spatial indices. Given
a quality map Q(x, t) having mean value µQ(t) and standard
deviation σQ(t), the CoV-pooled score is defined as

SCoV (t) = σQ(t)/µQ(t). (51)

The same method can be used to pool frame-wise quality
scores. One can also adapt the CoV method of temporal
pooling using windowing, where the CoV is computed over
short temporal windows before being averaged. That is, given
a sequence of ‘‘local’’ temporal CoV values ρQ(t), define the
windowed-CoV-pooled scores

SW−CoV =
1
T

∑
t

ρQ(t). (52)

In the same vein, windowed versions of the three
Pythagorean means can be used for temporal pooling. Using
framewise SSIM scores obtained using the Scikit-Image
implementation with a rectangular window of size 11,
we tested the performance of the three windowed means
(W-AM, W-GM, W-HM) and windowed-CoV (W-CoV)
pooling. We analyzed the variation of performance of the
windowed means against window size, for window sizes
w = 1, 2, . . . 100. The results of these experiments are shown
in Fig. 10. We omitted the W-CoV method from this plot
because it gave significantly inferior performance, as shown
in Table 9, which lists the best performance of eachwindowed
method.

These plots reveal similar trends. There is an initial
decrease in performance with increased window size, but for
large enough windows, there is improvement in performance
over the baseline. While windowed-CoV performed very
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FIGURE 10. Windowed-Moment-Pooling SROCC vs Window Size.

TABLE 9. Performance of Windowed-Moment-Pooling.

poorly, the difference between the three Pythagorean means
is small, with windowed-GM being a good choice. However,
to observe a reliable improvement in performance, a large
window size is needed, of k ≈ 80 on the LIVEVQA database
and k ≈ 50 on the Netflix Public database. However, such
large values of k could lead to significant delays in real-time
applications, which may not be a reasonable cost considering
the small increase in performance.

B. FIVE-NUMBER SUMMARY POOLING
The five-number summary (FNS) [67] method was proposed
as a better way of summarizing the histogram of a spatial
quality map, as compared to the simple mean. Given a spatial
quality map Q(x, t) at time t , let Qmin(t) denote the mini-
mum value, Q1(t) denote the 25th percentile, (lower quar-
tile), Qmed (t) denote the median value, Q3(t) denote the 75th
percentile (upper quartile) and Qmax(t) denote the maximum
value. The five number summary is then defined as

SFNS (t) =
Qmin(t)+ Q1(t)+ Qmed (t)+ Q3(t)+ Qmax(t)

5
(53)

Of course, FNS may likewise be applied to the framewise
quality scores as a way of temporal pooling.

C. MEAN-DEVIATION POOLING
In [68], the authors proposed a SSIM-like quality index,
which is then pooled using a ‘‘mean-deviation’’ operation.
The deviation is defined as the power o of the Minkowski
distance of order p between the quality values and its mean.
More concretely, given a spatial quality map Q(x, t) at time t
having mean value µQ(t), the pooled mean-deviation quality

score is given by

S(p,o)MD (t) =

( 1
MN

∑
x

(Q(x, t)− µQ(t))p
)1/p

o

. (54)

In our experiments, the most common optimal choice was
p = 2, corresponding to the standard deviation. When apply-
ing MD pooling to temporal scores, the final exponent o does
not affect the SROCC, since exponentiation is a monotonic
function. So, while we select p using the SROCC as discussed
above, we choose o for temporal pooling by comparing PCC
values.

D. LUMINANCE-WEIGHTED POOLING
In [21], the authors proposed a method of spatial pool-
ing which assigns weights to regions of an image based
on the local luminance (brightness), which we call
Luminance-Weighted (LW) pooling. These weights are used
to account for the fact that the HVS is less sensitive to
distortions in dark regions. Following our earlier convention,
the local mean µ1(x) is a measure of the local luminance in
the reference image. Given a lower limit as and an interval
length bs, the weighting function is defined as

wLW (x) =


0, µ1(x) < as
(µ1(x)− as)/bs, as ≤ µ1(x) < as + bs
1, µ1(x) ≥ as + bs

(55)

Then, the spatially-weighted SSIM score is given by

SLW (t) =
1
MN

∑
x

wLW (x)Q(x, t) (56)

We tested the performance of LW-pooling on all four
databases for values of as = 0, 10, . . . , 100 and bs =
0, 10, . . . 50. Note that choosing as = bs = 0 corresponds
to the standard baseline SSIM. The experimental variation of
performance (SROCC) against choices of as and bs is shown
in Fig. 11.

On the LIVE IQA and Netflix Public databases,
we observed that the best performance was achieved by
the baseline as = bs = 0. On the other two databases,
the improvement in performance was insignificant, with an
elevation of SROCC of less than 0.002. So, we do not
recommend using LW-pooling.

E. DISTORTION-WEIGHTED POOLING
Distortion-Weighted (DW) pooling is a method that assigns
different weights to low and high-quality regions. We con-
sider the common method of distortion weighting, where
the weight assigned to a quality score is proportional to a
power of the quality score. Concretely, given an exponent p,
the spatial DW-pooled score of a spatial quality map Q(x, t)
as time t is given by

S(p)DW (t) =

∑
x
(1− Q(x, t))pQ(x, t)∑
x
(1− Q(x, t))p

. (57)
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FIGURE 11. LW-pooling SROCC vs parameters as and bs.

Likewise, DW-pooling may be applied to the times series
of framewise quality scores to perform temporal DW-pooling.
We tested DW-pooling using values of p = 1/8, 1/4, . . . 8
on all four databases, for both spatial and temporal pool-
ing. While DW-pooling can lead to a considerable increase
in performance, we also found that the optimal value of p
varied significantly between databases. So, in the absence of
a dataset that the user can use to select p reliably, we do not
recommend using DW-pooling off the shelf. If a user does
have a relevant dataset, then DW-pooling may be profitably
applied. We refer the reader to Table 13 for detailed results.

F. MINKOWSKI POOLING
TheMinkowski Pooling (Mink) method is a generalization of
the arithmetic mean, which provides another way to provide
additional weight to low quality scores. Because local quality
scores can be negative, we pool the DSSIM scores. Given an
exponent p, define the spatial Minkowski-pooled score as

SpMink (t) =
1
MN

∑
x

(1− Q(x, t))p . (58)

Once again, we tested values of p = 1/8, 1/4, . . . , 8.
Note that we omitted p = 1 since it is identical to the
baseline mean pooling. Spatial Minkowski pooling provided
improvement in performance on the video databases, with
p = 4 being a good choice of p across databases. However,
as with DW-pooling, the optimal choice of p for tempo-
ral pooling varied significantly between databases and any
improvement in performance was modest. So, we do not

FIGURE 12. Spatial PP SROCC vs parameters pt and rt .

recommend using temporal Minkowski pooling, unless a spe-
cific application-relevant dataset is available.

G. PERCENTILE POOLING
More sophisticated techniques have been proposed to spa-
tially pool of SSIM scores. In [69], the authors propose
pooling SSIM scores by visual importance. The visual impor-
tance of distortions was measured in two ways: visual atten-
tion maps using the Gaze-Attentive Fixation Finding Engine
(GAFFE) [70], and percentile pooling (PP) of quality scores.
Because this guide is tailored towards practical application
of SSIM, we omit the additional computation of running
GAFFE and focus only on PP.

The spatial PP method is specified by two parameters: ps,
the percentile of lower values to bemodified, and rs, the factor
by which the lower ps percentile is weighted. The idea of PP
is to heavily weight the worst quality regions, which are likely
to heavily bias the perception of quality. Define the lowest ps
percentile of values of the quality mapQ(x, t) by perc(Q, ps).
The quality values are then re-weighted as

Q̃(rs,ps)(x, t) =

{
Q(x, t)/rs, Q(x, t) ∈ perc(Q, ps)
Q(x, t), otherwise

. (59)

The PP quality score is then defined as the average of the
re-weighted quality values:

S(rs,ps)PP (t) =
1
MN

∑
x

Q̃(rs,ps)(x, t). (60)

Larger values of ps penalize more low-quality values,
which may dilute the distortion severity, while larger values
of rs weight the low quality regions more heavily. While
the authors of [69] were circumspect regarding the value of
percentile pooling, they recommended choosing ps = 6 and
rs = 4000. However, on all four databases, we found that
all choices of parameters ps and rs performed worse than the
baseline. This behavior is illustrated in Fig. 12 for values of
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FIGURE 13. Temporal PP SROCC vs parameters pt and rt .

TABLE 10. Performance of temporal PP SSIM.

ps in the range [0, 25] (%) and rs in the range [1, 5]. While
the discrepancy between our results and those of [69] can
be attributed to variations in the implementations, we found
that the performance of percentile pooling was inferior across
all the tested databases. So, we do not recommend spatial
percentile pooling.

We also studied temporal PP of aggregated framewise
quality scores by penalizing low-quality frames. Once again,
to find the optimal choice of the temporal PP parameters
pt and rt , we computed framewise SSIM scores, one which
we tested values of pt in the range [0, 25] (%) and rt in the
range [1, 5]. Fig. 13a and 13b plot the variation of perfor-
mance (SROCC) with choices of pt and rt on the LIVE VQA
and Netflix Public databases, respectively. The performances
of the optimal PP algorithm and baseline SSIM are compared
in Table 10.
From Table 10, it may be observed that temporal PP gave

only a minor improvement in performance over baseline
SSIM. From the accompanying plots, while there were gen-
eral trends in performance with variations of each param-
eter, the prediction performance of the pooled models was
sensitive to small perturbations of the parameters. Coupled
with the fact that the observed increases in performance
were small, it is difficult to reliably identify good choices of
the parameters pt and rt . So, we do not recommend using
percentile pooling for temporal aggregation either.

H. SPATIO-TEMPORAL SSIM
Efforts have also been made to create spatio-temporal
versions of SSIM. In [71], the authors proposed a 3D
spatio-temporal SSIM, and its motion-tuned extension.
To avoid additional computation related to motion estima-
tion, we consider only the SSIM-3D model and replace the
motion-tuned weighting function by a rectangular window.
Thus, SSIM-3D was defined as identical to SSIM, other than
that local statistics - mean, standard deviation and correla-
tion - were computed on 3D spatio-temporal neighborhoods

FIGURE 14. Variation of SSIM and MS-SSIM 3D performance with
Temporal Window Size Kt .

TABLE 11. Performance of 3D SSIM/MS-SSIM.

instead of 2D spatial neighborhoods. Similarly, define MS-
SSIM-3D as 3D SSIM computed over multiple spatial scales.
Because we choose rectangular windows, we used integral
images to efficiently compute the local statistics.

We tested these 3-D variants of SSIM and MS-SSIM on
the LIVE VQA and Netflix Public video databases. We used
rectangular filters of size 11 × 11 × Kt , and investigated
the variation of the algorithm’s performance with Kt . The
performances of the baseline frame-wise SSIM/MS-SSIM
(Kt = 1) models and the best SSIM/MS-SSIM 3D are listed
in Table 11. The variation in performance of SSIM-3D and
MS-SSIM-3D with Kt is plotted in Fig. 14.

From these figures, performance increases by both
SSIM-3D and MS-SSIM-3D relative to the 2D frame-based
versions may be observed on the LIVE VQA database,
with the improvement being much more pronounced in
the case of single scale SSIM. When tested on the
Netflix-Public database, the improvement was much lower.
Again, the improvement was lower for MS-SSIM-3D than
SSIM-3D. From the plots, choosing Kt from the interval
[3, 10] offers solid improvement in performance. Another
advantage of this approach is that using small rectangular
temporal windows, performance increases can be obtained
without any increase in computational complexity, by main-
taining rolling sums of the last Kt frames. This can be
achieved as below, using a buffer of Kt frames, leading to an
O(MNKt ) memory complexity.

As in equations (24) - (28), we can calculate the local
statistics from the analogously defined sums over 3D neigh-
borhoods S(1)1 (i, j, k), S(2)1 (i, j, k), S(1)2 (i, j, k), S(2)2 (i, j, k), and
S12(i, j, k). As an illustrative example, consider

S(1)1 (i, j, k) =
i∑

m=i−l+1

j∑
n=j−l+1

 k∑
o=k−Kt+1

I1(m, n, o)

.
(61)
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TABLE 12. Comparing the performance of spatial pooling methods on image databases.

Defining the temporal sum

T (1)
1 (i, j, k) =

 k∑
o=k−Kt+1

I1(i, j, o)

 , (62)

we can rewrite (61) as

S(1)1 (i, j, k) =
i∑

m=i−l+1

j∑
n=j−l+1

T (1)
1 (m, n, k). (63)

Knowing T (1)
1 (m, n, k), this sum can be computed effi-

ciently using integral images, using the
equations (18) - (23). The temporal sum T (1)

1 (m, n, k) itself
can be updated efficiently with each new frame, by observing
that

T (1)
1 (i, j, k) = T (1)

1 (i, j, k − 1)− I1(i, j, k − Kt )+ I1(i, j, k).

(64)

In the same manner, we can also compute S(2)1 (i, j, k),
S(1)2 (i, j, k), S(2)2 (i, j, k), and S12(i, j, k) efficiently. Combining
these two methods, we can compute SSIM-3D in O(MN )
time at each frame, irrespective of the temporal size of the
window Kt .
Motion vectors were also used to incorporate temporal

information in [72], which proposed a Motion Compen-
sated SSIM (MC-SSIM) algorithm. Motion vectors were
used to find matching blocks in the reference and test video
sequences at each temporal index. The SSIM scores between
these matched blocks were then used to calculate a temporal
quality score. The clear drawback of this method is the com-
putation of motion vectors, which are expensive and may not
be readily available.

This issue was addressed in [73], which proposed a
spatio-temporal SSIM which did not use motion information.
Instead, the authors visualize the video as a 3D volume in x, y,
and t , where the frames lie in the x − y planes. The x − t and
y − t planes contain both spatial and temporal information,
and can also be compared using SSIM. The spatio-temporal
SSIM (ST-SSIM) model is then defined as the average of the
three SSIM values. Note that neighborhoods in the x−y, x−t
and y − t directions are special cases of 3-D neighborhoods
used in SSIM-3D (obtained by setting the size along one
dimension to 1). So, while we discuss ST-SSIM for complete-
ness, we did not include it in our experiments.

I. FINAL RESULTS
Here, we provide comprehensive results of our exper-
iments with the various spatial and temporal pooling
algorithms described above. In all cases, we refer to each
pooling method by the abbreviations listed above. To include
information about the choice of optimal hyperparame-
ters, we added superscripts to the abbreviated algorithm
names. So, we denote Mean-Deviation Pooling by MD(p,o),
Distortion-Weighted Pooling by DW(p), Minkowski Pooling
by Mink(p) and the Windowed AM, GM and HM algorithms
by W-AM(k), W-GM(k) and W-HM(k) respectively, where k
denotes the window size. Once again, we linearized pooled
SSIM scores by fitting them with the 5PL function in (17),
and report performance in terms of the PCC, SROCC and
RMSE values.

The performances of the various spatial pooling methods
on the two image databases is tabulated in Table 12. On the
video databases, we tested all pairs of spatial and temporal
pooling methods, and these results are given in Table 13.
In these tables, the columns represent the choice of spatial
pooling (SP) method, while the rows represent the choice of
temporal pooling (TP) methods.

In Table 12, the best performing spatial pooling method
is boldfaced. We found that CoV pooling performed best on
the challenging TID 2013 database, while the baseline Mean
SSIM method performed best on the LIVE IQA database,
with CoV pooling a close second.

In Table 13, we boldfaced the five best results in each
sub-table. It may be observed that MD Pooling and CoV
pooling performed best among the spatial pooling meth-
ods, while using large windowed means performed well
among the temporal pooling methods, significantly outper-
forming the spatio-temporal SSIM-3D and MS-SSIM-3D
algorithms. However, as discussed earlier, using windowed
means requires large windows (k ≈ 50, 80) while providing
only a minor performance improvement over the baseline.
In addition, because CoV pooling performed consistently
well across all databases and does not have any hyperpa-
rameters to tune, we recommend using spatial CoV pooling
on picture or video frame quality maps, and the standard
arithmeticmean pooling of temporal frame SSIM scores. This
quality aggregation method is identical to the one used in
MOVIE.

As in previous sections, we repeated the experiments
on compression distorted data, and reported the results
in Tables 14 and 15. Even when we restricted the distortion
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TABLE 13. Comparing the performance of pairs of spatial and temporal pooling methods on video databases.

TABLE 14. Comparing the performance of spatial pooling methods on compressed images.

types, we did not obtain concordant values of hyperparame-
ters across the video databases.

Based on our recommendations, we propose a variant
of SSIM, called ‘‘Enhanced SSIM’’, which we are making
publicly available to the community as a command line
tool. The specifications of Enhanced SSIM are described
below.

1) Operates only on the luminance channel.

2) Uses rectangular windows, to calculate local statistics,
with a default size of 11 × 11. These rectangular win-
dows are implemented using integral images.

3) Local quality scores are computed with a stride
of 5.

4) The input image is down-sampled by a factor inferred
from values of D/H , using a default ratio of 3.0, corre-
sponding to a typical D/H ratio for TV viewing.
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TABLE 15. Comparing the SROCC achieved by pooling methods on
compressed live VQA videos.

TABLE 16. Performance of enhanced SSIM.

5) Coefficient of Variation pooling is used to spatially
aggregate the local quality scores.

We compare the performance of our implementation with
LIBVMAF in Table 16, since LIBVMAF was the best per-
forming implementation in Section IV. This table highlights
the computational and performance benefits of using our rec-
ommendations. Once again, ‘‘(Comp)’’ refers to experiments
conducted on compression data from each database.

XI. CONCLUSION
In this guide, we detailed the results of a series of experiments
we conducted towards determining optimal design choices
when deploying SSIM. We first evaluated the off-the-shelf
performance and efficiency of several public implementa-
tions of SSIM and MS-SSIM, using which we identified a
set of Pareto-optimal implementations. Using these results,
we also described a method to improve the computational
efficiency of SSIM using integral images. We then reviewed
a method, called Scaled SSIM, to improve the efficiency of
computing SSIM across resolutions, when conducting RDO
in encoding pipelines. Following this, we reviewed the depen-
dence of SSIM performance on the viewing device, where we
discussed improvements to SSIM which account for viewing
distance and screen size.We then investigated the dependence
of SSIM on the choice of window, where we conducted
extensive experiments to identify good choices for the size
and type of window function (rectangular windows of size
15–20), thereby validating some observations we made when
testing public SSIM implementations.

Due to the non-linear nature of SSIM, it is crucial to
develop a good mapping function from SSIM scores to sub-
jective scores. We tested a popular choice of such a mapping,

the five parameter logistic function, and demonstrated its
generalizability. Further, while the baseline SSIM model is
defined on two luminance images, most practical applications
involve media having color. To account for this, we reviewed
several Color SSIMmodels and compared their performance,
finding that Quaternion SSIMwas a consistently good choice.
Finally, we performed a comprehensive evaluation of spatial
and temporal aggregation methods used to deploy SSIM on
videos. Based on these results, we recommended using spa-
tial CoV pooling and temporal arithmetic mean pooling of
framewise SSIM scores.

In all, we have conducted a comprehensive study of many
design choices involved when implementing SSIM, andmade
recommendations on the best practices. In addition, we have
incorporated these recommendations into a variant of SSIM
which we call Enhanced SSIM, for which we provide an
openware command line tool for use by video quality engi-
neers in academia and industry here.
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