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Abstract—The visual brain is optimally designed to process
images from the natural environment that we perceive. Describ-
ing the natural environment statistically helps in understanding
how the brain encodes those images efficiently. The Natural
Scene Statistics (NSS) of the luminance component of images
is the basis of several univariate and bivariate statistical models.
The NSS of other colors or chromatic components have been
less well-analyzed. In this paper, we study the univariate and
bivariate NSS of luminance and other chromatic components
and how they relate.
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I. INTRODUCTION

While most mammals are dichromatic, primates are
unique in their ability to process trichromatic color infor-
mation. Scientists believe that this is the result of evolution;
early primates gained trichromatic vision because recogniz-
ing fresh fruit and immature leaves led to a more nutritious
diet. Our visual system has evolved to optimally process
images as they are projected from the natural environment.
As with luminance properties, the color statistics of natural
scenes must have had a significant impact on both the
development and the evolution of color vision mechanisms.
As observed by Fairchild [1], there is a clear link between
the mechanisms of chromatic adaptation and knowledge of
objects that are perceived and their illuminated environment.
Color adaptation and color constancy are examples of such
physiological mechanisms. There has been a significant
amount of work towards understanding the color statistics
of natural scenes, motivated by the observation that the av-
erage color and the spectral distribution trigger physiological
mechanisms [2].

Ruderman developed a model to characterize the statistics
of cone responses, and their role in the visual encoding of
images. Su [3] studied the statistics of color and range for 3D
images and modeled the relationship between them. Towards
better understanding the efficient visual coding of color
information, we study the statistics of multiple chromatic
components. Specifically, we model cortical processing of
independent chromatic components, and observe how the
results correlate with each other. It has been shown that there
exists a close correlation between naturalness, colorfulness
and the perceived quality of images [4]. This paper a
the first step towards building a system that can restore
the colors of images suffering from color distortions, by

imposing constraints on the univariate and bivariate NSS
of the different color components, and on the correlation
between them. Chroma sub-sampling for example, can result
in artifacts such as color bleeding in images and videos. We
plan using NSS to reconstruct an improved image that would
look as natural as possible. Our findings can also be used to
improve the performance of existant other luminance based
NSS image quality assesment models [5]. For example, it
may be possible to weight different chromatic attributes to
determine a more holistic measure of perceptual quality [6].

II. RELEVANT WORK

There has been a number of studies of the statistics of
the luminance component of natural images when subjected
to cortical processing. It has been well established that the
distribution of subband images is heavy-tailed. If divisive
normalization is applied on subband images, e.g., as a
model of the nonlinear adaptive gain control of V1 neuronal
responses in visual cortex [7], the distribution becomes more
Gaussian as shown in [8]. When distortions are applied to
images, this distribution becomes non-Gaussian. As noted
by Field and Tolhurst, [9], [10] the amplitude spectra of
luminance images follows a 1/f model, which underlies
several processing models [11], [12]. There are also more
recent closed form statistical models [13], [14], [15] that
describe the correlation structure of natural images. Here,
we study existing univariate [8] and bivariate closed-form
NSS models [15] in regards to how they may be applied to
the chromatic components of images.

III. NATURAL SCENE STATISTICS MODEL

First, we review the computational steps that form the
basis of our NSS models of the chromatic components
of images. We used the 29 pristine images of the LIVE
IQA database [16] as a resource of high quality images
and considered five different color planes; luminance, the
two chroma components of the CIELAB space and the two
chromatic components of the CIELUV space.

A. The Normalized Bandpass Univariate Model
First, extract a color component of interest from an image.

Next, consider a bandpass derivative of gaussian filter DoG
filter. At a fixed scale σ, the filter is defined as:
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Each image is processed via a bank of DoG filters of
scales σ ∈ [1, 2, ..., 6]. The filter window size is increased
linearly as a function of σ.

Next, apply divisive normalization on all of the DoG
responses to model the nonlinear adaptive gain control of
V1 neuronal responses in the visual cortex. The divisive
normalization model is defined as:

uj(x) =
wj(x)√

s+
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, (2)

where wj are the DoG responses from filter indexed j, u
are the coefficients obtained after divisive normalization,
and s = 10−4 is a stabilizing saturation constant. The
weighted sum in the denominator is computed over a spatial
neighborhood of pixels from the same sub-band, where
g(xi, yi) is a circularly symmetric Gaussian function having
unit volume. To match the increase in scale applied at
the steerable filtering step (translated by increasing σ), the
variance of g(xi, yi) is also increased linearly as a function
of σ.

We then modeled the distributions of the obtained co-
efficients, using a zero-mean generalized gaussian density
(GGD):
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and Γ(·) is the gamma function:

Γ(a) =

∫ ∞
0

ta−1e−tdt a > 0. (5)

The shape parameter φ controls the shape of the distri-
bution, while η controls its variance. We used the moment
matching approach [17] to estimate these two parameters
from the histograms of each considered image’s coefficients.

B. Normalized Directional Bandpass Image Correlation
Model

The bivariate NSS model [15] has been developed and
validated on the luminance component of images. Here, we
extend this model to other chromatic components.

First, deploy a bank of steerable filters [18] to decompose
a luminance image. Steerable filters are often used to model
bandpass simple cells in primary visual cortex [19]. These
bandpass filters, are similar to the DoG filters used in the
previous section, but are also directional. A steerable filter
at a given frequency tuning orientation θ1 is defined by:

Fθ1(x) = cos(θ1)Fx(x) + sin(θ1)Fy(x), (6)

where xxx = (x, y), and Fx and Fy are the gradient compo-
nents of a two-dimensional unit-energy bivariate isotropic
gaussian function having a scale parameter σ:

G(x) =
1
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e
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2σ2 , (7)

Each analyzed image is passed through a bank of steerable
filters of scales σ ∈ [2, 3, ..., 6] and over 15 frequency
tuning orientations θ1 ∈ [0, π/15, 2π/15, ..., π], yielding 90
bandpass responses per image. We exclude σ = 1, since
steerable filters become less well defined at that scale. Then
apply divisive normalization, similarly to (2).

Next, define a window at a fixed position within the
cropped image and another sliding window of the same
dimensions. Denote the distance between the center of the
two windows of bandpass, normalized image samples of
interest by d, and the angle between them by θ2. Also
define the relative angle θ2 − θ1, where θ1 is the sub-
band tuning orientation relative to the horizontal of the
bandpass filter. Then, compute the correlation between the
two windows. The two windows are separated by horizontal
and vertical separations δx and δy , which are varied over
the integer range 1 to 25, i.e, distances of

√
δ2x + δ2y at

spatial orientations θ2 = arctan(
δy
δx

) (relative to horizontal).
We limited the range θ2 ∈ [0, π[ since the quantities being
measured are symmetrically defined. We have observed in
[15] that 4 angles (the horizontal, the vertical and the two
diagonals) contained the most stable structure information
about the images so we limited the θ2 to these values only.

The correlation function model expresses a periodic be-
havior in the relative angle θ2 − θ1, and can be modeled
as:

ρ(d, σ, θ2) = A(d, σ, θ2)cos(2(θ2 − θ1)) + c(d, σ, θ2) (8)

where A(d, σ, θ2) is the amplitude, c(d, σ, θ2) is an offset, d
is the spatial separation between the target pixels, σ is the
steerable filter spread parameter, and θ2 is as before.

Then, define the peak correlation function:

P = max(ρ) = A+ c. (9)

wherein we may rewrite (8) as:

ρ(d, σ, θ2) = A(d, σ, θ2)cos(2(θ2 − θ1))

+ [P (d, σ, θ2)−A(d, σ, θ2)]. (10)

Lee, Mumford and Huang [20] systematically observed
that the sample covariances of bandpass image pixels follow
an approximate reciprocal power law, of the form 1

|d|b . Here,
we model the peak correlation function as having a more
stable form 1

|d|β+1
. Given a fixed spatial orientation θ2 and

a scale σ, define

P̂ (d, σ, θ2) =
1

( d
α0(θ2)∗σ )β0 + 1

(11)



(a) σ = 1 (b) σ = 3 (c) σ = 6

Figure 1. Histograms normalized bandpass coefficients for an exemplar image at three scales.

where {α0, β0} are parameters that control the shape and
fall-off of the peak correlation function, which depend on
the spatial orientation θ2.

We model A as the difference of two functions of the
form (11):

Â(d, σ, θ2) =
1

( d
α1(θ2)∗σ )β1(θ2) + 1

− 1

( d
α2(θ2)∗σ )β2(θ2) + 1

(12)

where {α1, β1,α2, β2} are parameters that control the shape
of A and are functions of θ2.

Our next goal is to find, for a fixed spatial orientation θ2,
the values of the parameters {α0, β0} that produce the best
fit to (11) and the parameters {α1, β1,α2, β2}, yielding the
best fit to (12), resulting in the least mean squared error. We
form two optimization systems for P and A that account
for scale to find those optimal values, that minimize the
error. Denote by D the set of distances for a given spatial
orientation θ2. Our optimization systems are expressed as:

min
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∑
d∈D

6∑
σ=2

(P (d, σ, θ2)− P̂ (d, σ, θ2))2

min
α1,b1,α2,β2,b2

∑
d∈D

6∑
σ=2

(A(d, σ, θ2)− Â(d, σ, θ2))2

(13)

We validated the bandpass correlation model in [15] and we
were able to verify that we can reconstruct the correlation
with very low mean squared error.

IV. COMPARISON OF THE STATISTICS OF DIFFERENT
COLOR SPACE COMPONENTS

Here, we study and compare the univariate and bivariate
statistics of the chromatic components of natural images. We
begin with the normalized univariate bandpass statistics. We

observed for each image and scale how the the distribution
of the coefficients varies as a function of the color planes.
We noticed a high degree of similarity in the distributions
of the luminance component and the chromatic a and b
components, and a high similarity between the chromatic
u and v components. Fig. 1 shows an example of this
behavior based on one content from the LIVE IQA database,
“Sailing2”. We considered three scales: σ = 1, 3, and 6.
Similar observations were also observed on the other 28
contents and for the other considered σ values.

Next, we wanted to determine whether meaningful corre-
lations exist between the measured GGD parameters (shape
and variance) in (3) of the chromatic planes. We did not find
meaningful correlations between the parameters, except for
ηA and ηB which seem to be linearly correlated.

Next, we considered the correlation ρ obtained from the
normalized directional bandpass image correlation model.
Fig. 2 plots ρ at d = 1, and θ2 = 0 for σ = 2, 4, and 6 for
the “Sailing2” content. Notice that there is a considerable
overlap between the curves resulting in a resemblance in
the behavior of P between the different components as well
as A. Luminance appears to be slightly less correlated at
smaller scales as compared to the other color planes. This
may be expected since the luminance component contains
the most detailed structural information. This diversity leads
to slightly less overall correlation. Also as d is increased,
the curves overlap more. As a next step, we plan to extend
this analysis to images suffering from color distortions, and
explore whether it would be possible to correct for those
artifacts using chromatic NSS.

V. CONCLUSION

We compared univariate and bivariate NSS models on
different color planes. We found the univariate NSS of the
different color planes (CIELAB and CIELUV) to be distin-
guishable, but found similar behavior among the luminance,
chroma (a, b) components and among the chroma (u, v)
components. We also found the bivariate correlation NSS



(a) ρ(d = 1, σ = 2, θ2 = 0) (b) ρ(d = 1, σ = 4, θ2 = 0) (c) ρ(d = 1, σ = 6, θ2 = 0)

Figure 2. ρ(d = 1, σ = 4, θ2 = 0) for σ = 2, 4, and 6 for the “Sailing 2”

of the different colors spaces to be very similar. As a next
step, we plan to study the NSS of chromatic images suffering
from color distortions and augment other luminance based
NSS image quality assesment models [5] to improve their
performance.
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