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ABSTRACT
Objective image quality assessment (IQA) research entails
developing algorithms that predict human judgments of pic-
ture quality. Validating performance entails evaluating algo-
rithms under conditions similar to where they are deployed.
Hence, creating image quality databases representative of
target use cases is an important endeavor. Here we present
a database that relates to quality assessment of billboard
images commonly displayed on mobile devices. Billboard
images are a subset of thumbnail images, that extend across
a display screen, representing things like album covers,
banners, or frames or artwork. We conducted a subjective
study of the quality of billboard images distorted by pro-
cesses like compression, scaling and chroma-subsampling,
and compared high-performance quality prediction models
on the images and subjective data.

Index Terms— Subjective Study, Image Quality Assess-
ment, User Interface, Mobile Devices.

I. INTRODUCTION

Over the past few decades, many researchers have worked
on the design of algorithms that automatically assess the
quality of images in agreement with human quality judg-
ments. These algorithms are typically classified based on
the amount of information that the algorithm has access
to. Full reference image quality assessment algorithms (FR
IQA), compare a distorted version of a picture to its pristine
reference; while no-reference algorithms evaluate the quality
of the distorted image without the need for such comparison.
Reduced reference algorithms use additional, but incomplete
side-channel information regarding the source picture [1].

Objective algorithms in each of the above categories are
validated by comparing the computed quality predictions
against ground truth human scores, which are obtained by
conducting subjective studies. Notable subjective databases
include the LIVE IQA database [2], [3], the TID 2013
databases [4], the CSIQ database [5], and the recent LIVE
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Challenge database [6]. The distortions studied in many
databases are mainly JPEG and JPEG 2000 compression,
linear blur, simulated packet-loss, noise of several variants
(white noise, impulse noise, quantization noise etc.), as well
as visual aberrations [6], such as contrast changes. The LIVE
Challenge database is much larger and less restrictive, but
is limited to no-reference studies. While these databases are
wide-ranging in content and distortion, they fail to cover
a use case that is of importance thumbnail-sized images
viewed on mobile devices. Here we attempt to fill this gap
for the case of billboard images.

We consider the use case of a visual interface for an
audio/video streaming service displayed on small-screen
devices such as a mobile phone. In this use case, the user is
presented with many content options, typically represented
by thumbnail images representing the art associated with the
selection in question. For instance, on a music streaming site,
such art could correspond to images of album covers. Such
visual representations are appealing and are a standard form
of representation across multiple platforms. Typically, such
images are stored on servers and are transmitted to the client
when the application is accessed.

While these kinds of billboard images can be used to
create very appealing visual interfaces, it is often the case
that multiple images must be transmitted to the end-user to
populate the screen as quickly as possible. Further, billboard
images often contain stylized text, which needs to be ren-
dered in a manner that is true to the artistic intent should
allow for easy reading even on the smallest of screens.
These two goals imply conflicting requirements: the need
to compress the image as much as possible to enable rapid
transmission and a dense population, while also delivering
high quality, high resolution versions of the images.

Fig. 1(a) shows a representative interface of such a service
[7], where a dense population is seen. Such interfaces may
be present elsewhere as well, as depicted in Fig. 1(b),
which shows the display page of a video streaming service
provider [8], which includes images in thumbnail and bill-
board formats on the interface. These images have unique
characteristics such as text and graphics overlays, as well
as the presence of gradients, which are rarely encountered
in existing picture quality databases that are used to train
and validate image quality assessment algorithms. Images
in such traditional IQA databases consist of mostly natural



images, as seen in Fig. 2, which differ in important ways
with the content seen in Figs. 1(a) and (b).

(a) (b)

Fig. 1. Screenshots of mobile audio and video streaming
services (a) Spotify and (b) Netflix.

To address the use case depicted in the interfaces in Figs.
1(a) and (b), we conducted an extensive subjective study to
capture the perceptual quality of such content. The study
detailed here targets billboard images, which are thumbnail
images arranged in a landscape orientation, spanning the
width of the screen, that may be overlayed with text, gradi-
ents and other graphic components. The test was designed to
replicate the viewing conditions of users interacting with an
audio/video streaming service. The source images that we
used are all billboard artwork at Netflix [8]. The distortions
considered represent the most common kinds of distortions
that billboard images are subjected to when presented by a
streaming service.

Specifically we describe the components of the new
database, and how the study was conducted, and we examine
how several leading IQA models perform.

Fig. 2. Sample images from the LIVE IQA database [2], [3],
which consists only of natural images.

II. DETAILS OF THE EXPERIMENT

In this section we detail the subjective study that we
conducted on billboard images viewed on mobile devices.

We first describe the content selection, followed by a de-
scription of the distortions studied, and finally detail the test
methodology.

II-A. Source Image Content
The source content of the database was selected to repre-

sent typical billboard images viewed on audio and video
streaming services. Twenty-one high resolution contents
were selected to span a wide range of visual categories
such as animated content, contents with (blended) graphic
overlays, faces, and to include semi-transparent gradient
overlays. A few contents were selected containing the Netflix
logo, since it has some saturated red which exhibit artifacts
when subjected to chroma subsampling. Fig. 3 shows some
of the content used in the study.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Several samples of content in the new database.

The images, which were all originally of resolutions
2048×1152, or 2560×1440, were downscaled to 1080×608,
so their width matched the pixel density of typical mobile
displays (when held in portrait mode). These 1080×608
images form the reference set.

II-B. Distortion Types
The reference images were then subjected to a combina-

tion of distortions using [9], that are typically encountered
in streaming app scenarios:

• Chroma subsampling: 4:4:4 and 4:2:0.
• Spatial subsampling: by factors of 1, (no subsampling),√

2, 2, and 4.
• JPEG compression: using quality factors 100, 78, 56,

and 34 in the compressor.
All images were displayed at 1080×608 resolution, hence

all of the downsampled images were upsampled back to the
reference resolution as would be displayed on the device. We
applied the following imagemagick [9] commands to obtain
the resulting images:

• magick SrcImg.jpg -resize 1080x608 RefImg.jpg
• magick RefImg.jpg -resize hxw -compress JPEG -

quality fq -sampling-factor fc DistortedImg.jpg
• magick DistortedImg.jpg -resize 1080x608 Distorted-

Img.jpg



where SrcImg.jpg, RefImg.jpg, and DistortedImg.jpg are
source, reference and the distorted images respectively, h
and w are the dimensions to which the images were down-
sampled, defined as w = 1080

fs
and h = 608

fs
where fs is the

imagemagick spatial subsampling factor, fc is the chroma
subsampling factor and fq is the quality factor.

The above combinations resulted in 32 types of multi-
ply distorted images (2 chroma subsamplings × 4 spatial
downsamplings × 4 quality levels), yielding a total of 672
distorted images (21 contents × 32 distortion combinations).
The distortion parameters were chosen so that distortion
severities were perceptually separable, varying from nearly
imperceptible to severe.

II-C. Test Methodology

A double-stimulus study was conducted to gauge human
opinions on the distorted image samples. Our goal was that
even very subtle artifacts be judged, to ensure that picture
quality algorithms could be trained and evaluated in regards
to their ability to distinguish even minor distortions. After
all, each billboard image might be viewed multiple times
by many millions of viewers. Further, we attempt to mimic
the interface of a generic streaming application, whereby
the billboard would span the width of the display when
held horizontally (landscape mode). Hence, we presented the
double stimulus images in the way depicted in Fig. 4. In each
presentation, one of the images is the reference, while the
other is a distorted version of the same content. The subjects
were not told which image was the reference. Instead they
were asked to rate which image was better than the other,
and by how much (on a continuous rating bar) as depicted
in Fig. 4. Further presentation order was randomized so that
(top/bottom) reference-distorted and distorted-reference pairs
were equally likely. Finally, the distorted content order was
randomized, but so that the same content was never presented
consecutively (to reduce memory effects), and the content
ordering was randomized across users.

Equipment and Display

The subjective study was conducted on two LG Nexus
5 mobile devices, so that two subjects could concurrently
participate in the study. Auto brightness was disabled and
the two devices were calibrated to have the same mid-level
of brightness, to ensure that all the subjects had the same
viewing conditions. LG Nexus 5 devices are Android based
and have a display resolution of 1920 × 1080, which is
ubiquitous on mobile devices. They were mounted in portrait
orientation on a stand [10], and the users were positioned at
a distance of three screen widths as in [11]. Although the
users were told to try to maintain their viewing distance, they
were allowed to adjust their position if they felt the need to
do so.

Fig. 4. Screenshot of the mobile interface used in the study.

Human Subjects, Training and Testing

The recruited participants were mostly Netflix employees,
spanning different departments: engineering, marketing, lan-
guages, statistics etc. A total of 122 participants took part in
the study. The majority did not have knowledge of image
processing of the image quality assessment problem. We
did not test the subjects for vision problems, but a verbal
confirmation of (corrected-to-) normal vision was obtained.

Each subject participated in one session, lasting about
thirty minutes. The subjects were provided with written
instructions explaining the task. Next, each subject was
given a demonstration of the experimental procedure. During
a session, the subject viewed a random subset of eight
different contents (from amongst the 21). Thirteen different
distortion levels were randomly selected for each session,
and each session also included a reference-reference control
pair so that a total of fourteen distorted-reference pairs were
displayed for the subject to rate. A short training session pre-
ceeded the actual study, where six reference-distorted pairs
of images were presented to each subject where distorted
images approximately spanned the entire range of picture
qualities. The images shown in the training sessions were
different from those used in the actual experiment.

Thus, each subject viewed a total of 118 pairs [8 contents
× (13 distortion levels + 1 reference pair) + 6 training pairs]
in each session. A black screen was displayed for three
seconds between successive pair presentations. Finally, at the
halfway point, a screen was shown to the subjects indicating
that they had completed half of the test, and that they could
take a break if they chose to.

II-D. Processing of the results
The position of the slider after the subject ranked the

image was converted to a scalar value between 0 and 100,
where 0 represents the worst quality and 100 represents
the highest possible quality. The reference images were



anchors, having an assumed score of 100. We found that
the subject scores on the reference-reference pairs follow
a binary distribution with p ≈ 0.5, indicating that no bias
could be attributed to the location (top/bottom) of the images
as they were being evaluated.

We used the guidelines of BT. 500-13 (Annex 2, section
2.3) [11] for subject rejection. Two subjects were outliers,
hence their scores were removed for all further analysis.
Finally, we computed the mean opinion scores (MOS) of
the images.

III. ANALYSIS OF THE RESULTS
First, we study the individual effects of the three con-

sidered distortion types (JPEG compression, spatial subsam-
pling, and chroma subsampling) on reported quality.

III-A. Impact of the individual distortions
Figure 5(a) plots the distribution of the MOS while

varying the chroma subsampling between 4:4:4 and 4:2:0
at a fixed JPEG quality factor fq = 56 and a fixed spatial
subsampling factor fs = 1. Chroma subsampling is very
difficult to perceive in the quality range 80-95, but easier
to perceive (in the quality range 60-75). Confusion often
occurs when there are conspicuous red objects, e.g, in Fig.
3(c) and (d), owing to the heavy subsampling on the red
channel. Figure 5(b) plots the distribution of MOS against
the JPEG quality factor fq for fixed chroma subsampling
(4:4:4) and fixed spatial subsampling factor fs = 2. The
plots shown that these values of fq produce clear perceptual
separation, except for fq ∈ {78, 100} and fq ∈ {34, 56},
which is expected at the quality extremes. Figs 3(b) and (f)
show examples of such content.

Finally, Fig. 5(c) plots MOS against the spatial subsam-
pling factor fs, for fixed chroma subsampling (4:4:4) and
quality factors fq = 76. The downsampling artifacts are
clearly perceptually separable.

III-B. Objective Algorithm Performance
We also evaluated the performances of several lead-

ing objective picture quality predictors on the collected
database. We computed Pearson’s Linear Correlation Coef-
ficient (LCC) and Spearman’s rank correlation coefficient
(SROCC) to assess the following IQA model performances
on the new dataset: Peak-Signal to-Noise Ratio (PSNR),
PSNR-HVS [12], Structural Similarity Index (SSIM) [3],
Multi-Scale Structural Similarity Index (MS-SSIM) [13],
Visual Information Fidelity (VIF) [14], Additive Distortion
Metric (ADM) [15], and the Video Multi-method Assess-
ment Fusion (VMAF) version 1.2.0 [16]. LCC was computed
after applying a non-linear map as prescribed in [17]. We
also computed the root mean squared error (RMSE) between
the obtained objective scores after mapping the subjective
scores.

All of the models were computed on the luma channel
only, at the source resolution of the reference images. The
results are tabulated in Table I. As may be seen, VMAF and
ADM were the top performers.

Given its good performance, we decided to analyze
VMAF, towards better understanding when it fails or when it
could be improved. Figure 6 plots the VMAF scores against
the MOS. While the scatter plot is nicely linear, as also
reflected by the correlation numbers, of interest are outlying
failures that deviated the most from the general linear trend.
Based on our analysis of these we can make the following
observations:

1) VMAF tends to overestimate quality when chroma
subsampling distortions are present. This is not un-
expected since the VMAF is computed only on the
luminance channel. This suggests that using features
computed on the chroma signal when trying and
applying VMAF may be advisable.

2) VMAF tends to underestimate quality on certain con-
tents containing gradient overlays when the dominant
distortion is spatial subsampling. This may occur be-
cause of banding (false contouring) effects that occur
on the gradients.

3) Likewise, on contents with both gradient overlays and
heavy compression artifacts, VMAF poorly predicts
the picture quality, perhaps for similar reasons.

IV. CONCLUSION
We have taken a first step towards understanding the

quality assessment of thumbnail images on mobile devices,
like those supplied by audio/video streaming services. We
conducted a subjective study where viewers rated the sub-
jective quality of billboard-style thumbnail images that were
impaired by chroma subsampling, compression and spatial
subsampling artifacts. We observed that spatial subsampling,
followed by compression, were the main factors affecting
perceptual quality. There are other types of interesting sig-
nals, such as boxshot images, which are displayed in a
portrait mode at lower resolutions, usually with a dense
text component. These characteristics can render both com-
pression and objective quality prediction more challenging.
Broader studies encompassing these and other kinds of
thumbnail images could prove fruitful for advancing this new
subfield of picture quality research.
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