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ABSTRACT
Most of today’s video quality assessment (VQA) databases
contain very limited content and distortion diversities and fail
to adequately represent real world video impairments. This
is in part because conducting subjective studies in the lab is
slow, inefficient and expensive process. Crowdsourcing qual-
ity scores is a more scalable solution. However given that
viewers operate under innumerable viewing conditions (in-
cluding display resolutions, viewing distances, internet con-
nection speeds) and because they are not closely supervised,
multiple technical challenges arise. We carefully designed a
framework in Amazon Mechanical Turk (AMT) to address
the many technical issues that are faced. We launched the
largest available VQA study, collecting more than 205000
opinion scores provided by more than 4700 unique partici-
pants. We have verified that our framework provided us with
results that are highly consistent with the ones obtained in a
lab environment under controlled conditions.

Index Terms— Video Quality Assessment, Subjective
Study, Crowdsourcing.

1 Introduction
The goal of VQA research entails to develop algorithms that
closely correlate with humans’ perception of quality. Conse-
quently, these algorithms need to be trained and/or tested on
extensive subjective video quality data sets so that it maybe
asserted that they reflect or are capable of closely replicating
human judgments. Over the past decade, researchers have de-
veloped multiple VQA databases. Notable databases include
the LIVE VQA Database [1], the LIVE QoE Database [2],
the LIVE Mobile Video Quality Database [3], the TUM
databases [4, 5], and the MCL-V [6]. These databases of-
fer very limited content and distortion diversity and were
usually conducted under highly-controlled laboratory condi-
tions by introducing sets of graded simulated impairments
(H.264/AVC, packet loss, scalng artifacts...) onto a limited
number of high-quality videos that were captured using high-
end cameras. Real world videos are far more diverse and
complex as they have been subjected to complex, nonlinear,
commingled distortions that are likely impossible to accu-
rately synthesize. The content in the these VQA databases

1: The author is at the Laboratory for Image and Video Engineering
(LIVE) at the University of Texas at Austin, Austin, Texas, 78712. (emails:
zeina@utexas.edu - bovik@ece.utexas.edu).

has been videographed by only a few users, thereby con-
straining the ability of learned VQA models trained on them
to generalize to diverse contents, levels of videographic ex-
pertise, and shooting styles [1–7].

Among the reasons behind these limitations is that each
video must be rated by a substantial of subjects [8], while re-
cruiting participants and conducting the experiments is time
consuming and expensive. The subjects need to use allocated
hardware, in some reserved physical space, and they need
to be instructed individually about how to take these studies.
These constraints limit how many studies can be ran concur-
rently, making the collection of the results inefficient.

Crowdsourcing still picture quality scores [9] has proved
to be an efficient and successful way of collecting the data,
motivating us to attempt a similar video study. Crowdsourc-
ing video quality scores is, however, significantly more chal-
lenging because in addition to the issues related to partici-
pant problems (distraction, reliability and a imperfect train-
ing) encountered in the case of images, serious issues need
to be addressed when videos are displayed, including varia-
tions in display quality, size and resolution, display hardware
speed and bandwidth conditions. For example, slow hard-
ware or bandwidth can cause video interruptions and stalls
which will highly impact (skew) the collected quality scores.
These technical problems listed above have not been fully
addressed in previous attempts to crowdsource video quality
scores [10–16].

In this work, we present a new framework in AMT to scale
up the collection of video quality scores. We have meticu-
lously designed the framework, paying attention to the de-
sign of the user interface, the monitoring of the subjects, and
the overall supporting pipeline used to execute a large-scale
study. We believe that this new approach is a more scalable
way of collecting subjective scores than in-lab experiments.
However, we were able to verify that the crowdsourced scores
were quite consistent with those obtained in the lab. Scaling
up subjective studies and collecting scores more efficiently is
key for creating more comprehensive and representative VQA
databases, which in turn will help advance VQA research.

2 Crowdsourced Video Quality Study

Here, we present the details of our new framework.



Table 1. Imposed constraints in the study.
Constraint Reason(s)

(1) The subject’s reliability score = Accepted Tasks
Completed Tasks ≥ 90. To filter out negligent subjects.

(2) The subject can participate only once. To avoid any judgment biases .

(3) Mobile phones and tablets cannot be used to participate in the study.

1) For mobile devices, preloading videos into memory
is disabled. The videos are streamed instead, causing stalls.

2) Mobile browsers downscale/upscale videos, causing
additional artifacts.

(4) The minimum display resolution is 1280×720.
The majority of the videos in the database

had a resolution ≥ 1280x720.

(5)
The supported browsers are: Google Chrome, Safari, Mozilla Firefox,
and Opera. The unsupported browsers are: Internet Explorer and Edge.

Video preloading is disabled on some
browsers (Internet explorer and Edge).

(6) The browser zoom level must be set to 100%. To avoid downscaling/upscaling artifacts.
(7) The used device should have a good computational power. Slow hardware introduces video stalls.

(8) The subject’s network should have a good internet capacity.
1) For fast video preloading.

2) To avoid an additional computational overhead.

2.1 Content
Our goal is to create a framework that would allow us to col-
lect subjective scores efficiently, leading to the availability of
databases that represent real world videos more closely. To
demonstrate this, we built a database of videos that were cap-
tured by 80 different inexpert videographers, aged between
11- 65 years, that volunteered to provide us with the con-
tent. The volunteers used 101 different devices (43 models
- 15 mobile brands). The content was very diverse featur-
ing scenes of nature, sports games, music concerts, parades,
dancers, cowboys... The content was shot in all the popu-
lated continents and in ∼ 30 countries. We did not provide
the volunteers with any instructions, except to upload their
videos just as captured, without any processing (for example
by video processing ‘apps’ like Instagram or Snapchat).

Originally, the volunteers provided us with 1000+ videos.
We removed redundant content shot by the same volunteer,
disturbing content (e.g.violent bull fight), and any videos with
a duration of less than 10 seconds. We cropped the remaining
videos to 10 seconds, while preserving story continuity. As a
result, we obtained 585 videos. The final pool of videos had
18 different resolutions and spanned a wide range of qual-
ity owing to the intrinsic nature of many distortions includ-
ing poor exposures, and a variety of motion blurs, haziness,
various imperfect color representations, low-light effects in-
cluding blur and graininess, resolution and compression arti-
facts, diverse defocus blurs, complicated combinations of all
of these, and much more. The interactions of multiple arti-
facts also give rise to very complex, difficult to describe com-
posite impairments, that were hard to identify. The resulting
database is original as it presents the largest number of unique
contents, capture devices, distortion types, contributors, and
combinations of distortions ever found in a VQA database.

During a study session, a subject viewed 50 different
videos: 7 during training and 43 during testing. The testing
videos contained 4 distorted videos drawn from the LIVE
Video Quality Assessment Database [1], which we will refer

to as the “golden videos.” These videos were previously rated
by human viewers in the tightly controlled study [1], and are
used, along with the prior subjective scores from [1], as a con-
trol to validate the subjects’ ratings. The remaining 39 videos
were drawn our database. 4 of those videos were displayed
to all users, and 31 others were randomly selected, among
which, 4 were displayed at relatively displayed moments as a
control. The 43 testing videos were placed in re-randomized
order for each subject.

2.2 Human Subjects
4776 AMT workers took part of our study, from highly di-
verse age groups, about half from each gender, and from di-
verse backgrounds (located in 56 different countries). This
participants’ sample is a much more globally representation
sampling than any lab experiment. The participants received
a single US dollar once they completed the study. Since the
subjects were unsupervised and had various viewing condi-
tions, we had to impose eligibility constraints to guarantee
that the study would be executed smoothly and to collect more
consistent results. A summary of the eligibility constraints
and a brief justification of each of them are found in Table 1.

2.3 Framework
The subjective study workflow is presented in Fig. 1. Workers
that meet constraint (1) are able to preview the study.

2.3.1 Overview

An overview containing a description of the task is presented
along with some instructions on how to rate a video, and a few
example videos to give them a clearer sense of the task. The
worker was instructed to rate the videos based on how well
s/he believes the presented video quality compares to an ideal,
or best possible video of the same content. Several example
videos were then played to demonstrate exemplars of some of
the video distortions such as under exposure, stalls, shakes,
blur and poor color representation. The worker was informed
that other types of distortions exist and would be seen, so the



Fig. 1. Subjective study workflow.

worker would not supply ratings based only on the exemplar
types of distortions, but would instead rate all distortions.

2.3.2 Constraints’ Check

Once a worker accepted our hit, constraints (2)-(5) were
checked. If the worker did not meet any, a message was dis-
played informing which constraint was not met. The worker
was also encouraged to user a different display device and
supported browser and to try again in case constraints (3)-(5)
were not met. We automatically adjusted the browser’s zoom
level to 100% if constraint (6) was not met.

2.3.3 Timed Instructions

Next, the instructions were repeated again, with a countdown
timer of one minute. While the instructions were being re-
peated, the first three videos began loading in the background,
and the videos that were to be displayed during the testing
phase were determined. Once the countdown timer reached
zero, a Proceed button would appear at the bottom of the
page, thereby allowing the worker to move forward.

2.3.4 Training

Afterwards, the training phase began, which consists of 7
videos. This phase was designed to feature various reso-
lutions and videos suffering from multiple distortions and
distortion levels, that span all the range of quality. The
videos were displayed one at a time. The video controls
were disabled and hidden to prevent less dedicated workers
from pausing, replaying or skipping the videos. Before a
video was fully loaded, a message was displayed showing the
loading progress. Once the video was fully loaded, a mes-
sage informed the user that “Video loaded and ready to be
played.” At this moment, an external Play button appeared,
once clicked, the video was played in entirety (while being
muted).

Once each video finished playing, it disappeared, reveal-
ing the rating interface consisting of a continuous bar that al-
lowed the workers to rate the quality of the videos, where a
Likert-like scale with 5 marks; Bad, Poor, Fair, Good, and
Excellent is displayed. The initial position of the cursor was
randomized. Once a change in the cursor location was de-
tected, a Next Video button became clickeable. Once clicked,

the worker moved to a new page, with a new video to be rated
and the process continued until the last video had been rated.

During the training process, the play duration of each
video was measured to assess the workers’ play capability,
to check constraints (7-8). There are many ways that stalls
could occur while a video is playing. If a worker’s hardware
CPU was slow, or if other programs were running in the back-
ground (CPU is busy) then stalls or frame freezes could (and
did) occur. Required background tasks (such as loading the
videos to be played next) added processing overhead, while
slower Internet bandwidths required increased processing
overhead, further impacting foreground performance. During
the training process, 7 videos of 10 seconds duration each
were played. Importantly, the workers were not able to pro-
ceed further if it took more than 15 seconds to play any of the
7 videos or if any 3 of the 7 videos each required more than
12 seconds to play. Adopting this strategy guaranteed that
most of the training videos were played smoothly, and also
allowed us to eliminate workers who were unlikely be able to
successfully complete the ‘hit.’

2.3.5 Testing

A message was displayed informing the worker that testing
was about to start. This phase was very similar to the training
phase; the videos were displayed, controlled and rated in the
same way. However, the testing phase required 43 videos to
be rated, instead of 7.

2.3.6 Survey

Once the worker finished rating all of the videos, s/he was
directed to the exit survey so that information regarding the
following factors could be collected: the display, viewing dis-
tance, demographic information (gender, age and location of
the worker), and whether the worker needed corrective lenses,
and if so, if s/he wore them. The subjects were also asked
whether they had any additional comments or questions.

3 Processing of the Results
On average, it took a worker 16.5 minutes to complete the
study. Once the study was completed, after about a month,
we had a total of 205 000 subjective scores.



While we hid the control bar of the videos, to prevent the
subjects from skipping through them, we found that 2% of the
workers were able to re-enable the controls by re-configuring
the browser settings. So we excluded their results and we did
not compensate them. We also excluded the results of the
workers (2.5%) who indicated in the survey that they needed
corrective lenses, but mentioned that they were not wearing
them at the time of the study.

As mentioned earlier, we adopted a strategy to identify,
during the training phase, the subjects that were the most sus-
ceptible to experiencing video stalls. While we were able to
substantially mitigate the video stall problem, we were not
able to eliminate it entirely owing to the fact that the per-
formance of the processor changes over time, which might
introduce hardware related stalls. Also internet connectivity
can slow down, which might add an extra overhead (e.g. if the
video in the background fails to load, it needs to be requested
again). We observed that 77% of the videos were played with-
out any stalls at all, while the rest of the played videos mostly
suffered overall stall durations of 1-9 secs, all of which were
rejected. We observed that in 95%, stalls were not favorable
and led to a drop in the provided quality scores. We excluded
the results of 11.5% of the subjects who suffered from stalls
in 75% or more in the videos, because this can lead to a loss
of focus. Next, on the remaining population we applied the
guidelines of BT. 500-13 (Annex 2, section 2.3) [8] for sub-
ject rejection on the portion of non-stalled videos watched by
the subjects and found that 0.5% of the subjects were outliers.

This number seemed low, so we also studied the intra-
subject consistency. By design, each subject viewed 4 re-
peated videos during the test phase; we examined the differ-
ences in these pairs of scores, as follows. The average stan-
dard deviation of all non-stalled videos was about 18. We
used this value as a threshold for consistency: given a non-
stalled video that was viewed twice, the absolute difference
in MOS of the two videos was computed. If it was below the
threshold, then the rating for the video was regarded as consis-
tent. Otherwise, it was not. We repeated this analysis across
all the 4 videos across all subjects, and found that the major-
ity (∼99%) of the subjects were self-consistent at least half
of the time. It is important to emphasize that we excluded the
stalled videos from the consistency analysis and when apply-
ing the subject rejection [8], because the presence of any stalls
rendered the corresponding subject ratings non-comparable.

Finally, we computed the mean opinion scores (MOS) of
the videos. We noticed that the distribution of MOS spanned
nearly all the range of possible qualities, with a greater den-
sity in the range 60-80.

4 Validation of the Results
4.1 Golden Videos
During the testing phase of each subject’s session, 4 distorted
videos from the LIVE VQA Database [1] - the aforemen-

tioned “Golden Videos” - were displayed at random place-
ments to each worker to serve as a control. The mean Spear-
man rank ordered correlation (SROCC) values computed be-
tween the workers’ MOS on the gold standard videos and the
corresponding ground truth MOS values from the LIVE VQA
was found to be 0.99. The mean absolute difference between
the MOS values obtained from our study and the ground truth
MOS values of the “Golden Videos” was 8.5. We also con-
ducted a paired-sampled Wilcoxon t-test, and found that the
differences between these to be insignificant at p < 0.05. The
excellent agreement between the crowdsourced scores and the
laboratory MOS significantly validates our experimental pro-
tocol.

4.2 Overall inter-subject consistency
To study overall subject consistency, we divided the opinion
scores obtained on each video into two disjoint equal sets,
then we computed MOS values on each set. We conducted
on all the videos, then computed the SROCC between the two
sets of MOS. This experiment was repeated 100 times, and the
average SROCC between the halves was found to be 0.984.

5 Conclusion
We have described the construction of a new crowdsourced
framework which we used to collect more than 205000 on-
line opinion scores of the quality of 585 videos. The scores
were provided by AMT workers of various backgrounds op-
erating under highly variable viewing conditions. The sig-
nificant geographic diversity of the subject pool raised many
technical challenges related to user bandwidth and comput-
ing resources. The framework we built proved to be robust
against the many variables affecting the video rating process,
and we demonstrated that the data that we collected are in ex-
cellent agreement with these obtained in a laboratory setup.
Our approach is faster, more efficient and less expensive. An
extensive analysis of the results, including the impact of the
different viewing parameters on the responses of the subjects,
as well as an evaluation of the performance of leading VQA
algorithms on the newly created dataset will follow in [17].
We believe that scaling up video subjective studies will be a
driving factor in advancing VQA algorithm design and will
help motivate the creation of VQA databases of more diverse
content, and distortions.
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T. Szirányi, S. Li, and D. Saupe, “The konstanz nat-
ural video database (konvid-1k),” Qual. Mult. Exp.
(QoMEX), pp. 1–6, 2017.

[12] T. Hossfeld, C. Keimel, M. Hirth, B. Gardlo, J. Habigt,
K. Diepold, and P. Tran-Gia, “Best practices for QoE
crowdtesting: QoE assessment with crowdsourcing,”
IEEE Trans. Multim., vol. 16, no. 2, pp. 541–558, 2014.
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