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Abstract—We investigate the scale-invariant properties of di-
visively normalized bandpass responses of natural images in
the DCT-filtered domain. We found that the variance of the
normalized DCT filtered responses of a pristine natural image
is scale invariant. This scale invariance property does not hold
in the presence of noise and thus it can be used to devise
an efficient blind image noise estimator. The proposed noise
estimation approach outperforms other statistics-based methods
especially for higher noise levels and competes well with patch-
based and filter-based approaches. Moreover, the new variance
estimation approach is also effective in the case of non-Gaussian
noise. The research code of the proposed algorithm can be found
at https://github.com/guptapraful/Noise Estimation.

Index Terms—scale invariance, normalized bandpass re-
sponses, noise estimation

I. INTRODUCTION

Images can be corrupted by noise during image acquisition,
transmission and storage. Blind image noise estimation, i.e.,
estimating the noise variance when the reference image is not
known, is crucial for various image processing applications
including image denoising [1], image segmentation [2], object
recognition [3] and image restoration [4].

The statistics of natural images have been well studied
in the literature over the past many years [5]. One of the
most remarkable property of natural scenes is their scale
invariance property, which dates back to Field et al. [6] and
Burton et al. [7]. They discovered that the power spectrum of
bandpass-filtered natural images decays as A

|k|2−η , where |k|
is the magnitude of the spatial frequency and η takes a small
value that varies depending on the image content. Other scale-
invariance properties of natural scenes have also been studied
in [8], [9].

The higher order statistics of natural images have also been
investigated extensively. It is well known that natural scenes
are highly non-Gaussian and the marginal distribution of their
bandpass responses is highly kurtotic, i.e., they exhibit sharp
peaks and heavy tails [8]. This non-Gaussianity was demon-
strated to be modeled well by a generalized Laplacian density
[10] and generalized Gaussian density [11]. Other works have
described the relationships between subband coefficients from
adjacent scales and orientations of natural images as a Gaus-
sian Scale Mixture (GSM) model, and successfully applied
the GSM model in various imaging applications including
image denoising [1], image restoration [4], full-reference [12],
reduced reference [13], [14] and no-reference [15]–[17] image
and video quality assessment in both the spatial and wavelet
transform domains.

More recently, Zoran et al. [18] observed the scale in-
variance property of kurtosis, the fourth order moment, of

natural images. Specifically, the kurtosis of marginal bandpass
coefficients obtained after filtering the image using the DCT
basis were demonstrated to remain constant over different
scales. This scale-invariance property was successfully utilized
to estimate the image noise variance in the DCT [18], random
unitary [19] and various other linear transform domains. Fur-
ther, the scale-invariance of higher-order statistics was used
along with the piecewise stationarity of natural scenes in
spatial domain for more robust estimation of noise variance
[20].

Apart from statistics-based noise estimation methods, there
exist filter-based methods which rely on noise estimation of
residual images obtained after suppressing the image signals
using highpass filtering [21], and patch-based methods that
estimate noise levels from a handful of carefully selected
homogeneous image patches [22]. Although these filter-based
and patch-based approaches estimate the noise variance quite
accurately, they lack the conceptual elegance of statistics-based
methods that utilize the regular properties of pristine natural
images which are affected in the presence of distortions.

We propose a noise estimation approach by exploiting the
scale-invariance properties of normalized, bandpass-filtered
natural image coefficients. We first describe the scale-invariant
properties of natural images in Section II, then develop a blind
image noise estimation approach using these principles in
Section III. Section IV studies the performance of the proposed
approach and Section V concludes with future work.

II. SCALE INVARIANCE PROPERTY OF NORMALIZED DCT
FILTERED RESPONSES

In this work, we study the statistics of the normalized
bandpass responses of the natural images and leverage these
to estimate the image noise variance effectively. In particu-
lar, we investigate the scale invariance of locally, contrast-
normalized coefficients distribution of DCT filtered responses.
The motivation behind this study stems from the seminal
work of Ruderman [9] on natural images, who observed
the scale invariance of the pixel contrasts log(I(x)/Io) in
the spatial domain. Divisive normalization using the local
energies has a decorrelating and Gaussianizing effect on the
bandpass statistics of natural images. It is a perceptually
significant step that accounts for gain control – the non-linear
behavior of the neurons in the human visual cortex [23]. Since
divisive normalization decorrelates the image structures, it is
suitable for image noise estimation. We utilize this observation
together with the reasonable assumption of scale invariance of
normalized bandpass responses to develop an accurate blind
image noise estimator.

https://github.com/guptapraful/Noise_Estimation


Before describing the noise estimation steps in detail, we
analyze the statistics of normalized bandpass coefficients. First
the image, I(i, j), is filtered using a DCT basis filter, h(i, j),
to obtain the bandpass response Î(i, j):

Î(i, j) = h(i, j) ∗ I(i, j)

Let Ī(i, j) be the normalized response, i.e., compute Ī(i, j) =
Î(i, j)/z(i, j), where z(i, j) is the variance field and is deter-
mined using the neighboring coefficients as:

z(i, j) =

√√√√ K∑
k=−K

L∑
l=−L

wk,l(Ik,l(i, j)− µ(i, j))2

where w = {wk,l, k = −K, ...,K and l = −L, ..., L} is a
unit volume 2D Gaussian weighting function. Since the DCT
filter, h(i, j) is zero-mean, the mean field, µ(i, j) simplifies to
0. We note that the above operation is very similar to contrast
normalization used in no-reference IQA in the spatial [15],
[16] and wavelet domain [17]. Fig. 1 shows the histograms of
before and after normalization of the marginal DCT filtered
responses.

-300 -200 -100 0 100 200 300

Bandpass coefficients

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
u

m
b

e
r 

o
f 

c
o

e
ff

ic
ie

n
ts

 (
n

o
rm

a
li

z
e

d
)

(a)

-4 -3 -2 -1 0 1 2 3 4

Normalized Bandpass coefficients

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
u

m
b

e
r 

o
f 

c
o

e
ff

ic
ie

n
ts

 (
n

o
rm

a
li

z
e

d
)

(b)

Fig. 1: Distribution of the DCT filtered coefficients (a) before
and (b) after normalization.

Next, we consider the scale invariance of the distribution
of normalized bandpass coefficients. Fig. 2 indicates that the
variance of the normalized responses is roughly constant over
different scales. This scale invariance principle does not hold
for images afflicted with noise. As one would expect, the
variance of the distribution increases as the standard deviation
of the noise is increased – the effect becoming more prominent
for higher frequencies as shown in Fig. 2.

III. NOISE ESTIMATION

We begin by assuming that the image is distorted solely
by additive white Gaussian noise (AWGN) with unknown
variance σ2

n, that is to be estimated. We denote the noisy
image by a random variable y, AWGN by n and the underlying
pristine image by x. Since the noise is additive we have,

y = x+ n (1)

An example of an image afflicted by AWGN is shown in
Fig. 3. We substitute y and x by the normalized bandpass
coefficients, ȳ and x̄, and their corresponding normalizers, zy
and zx, and then apply variance on both sides to get,

Var(zy ȳ + µy) = Var(zxx̄+ µx + n)
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Fig. 2: The scale-invariance property of natural images in the
variance of contrast normalized bandpass coefficients. Images
afflicted by AWGN do not obey this property.
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Fig. 3: (a) Original image from BSD database [24], (b) image
with σn = 5, (c) image with σn =15.

Given that n is zero-mean and independent of the original
signal implies that the mean field of y and x are equal (µy =
µx) and that Cov(x, n) = 0, i.e.,

Var(zy ȳ) = Var(zxx̄) + σ2
n (2)

using the linearity property of the variance operator under
independence. As in the GSM model in the wavelet domain
[1], we make a reasonable assumption that the DCT bandpass
coefficients x̂ of a pristine natural image can be written as a
GSM vector and can be expressed as a product between the
variance field zx and the zero-mean Gaussian vector x̄:

x̂ = zxx̄ (3)

where x̄ is independent of zx. Using this independence as-
sumption from (3) and the zero-mean property of x̄, we have
Var(zxx̄) = E[z2

x]E[x̄2]. Plugging this back in (2) yields:

Var(zy ȳ) = E[z2
x]E[x̄2] + σ2

n (4)

Using the spatial stationarity of noise, we can express
E[z2

x] = E[z2
y ] − σ2

n. Similar notion was employed in [25] in
which the image noise variance was estimated using average
of the local variances of unique set of homogeneous patches.
Substituting for E[z2

x] in (5), we get:

Var(zy ȳ) = (E[z2
y ]− σ2

n)E[x̄2] + σ2
n (5)

The above equation can be used to solve for σ2
n. However,

since the underlying pristine image x is not known, E[x̄2] is
also an unknown quantity. The hypothesis we developed in
the previous section that the variance of the distribution of
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Fig. 4: Plot of σ2
x/E[z2

x] for all images from the BSD database.

the normalized bandpass coefficients, E[x̄2], is scale-invariant,
and that the presence of noise violates the scale-invariance
principle is utilized to address for the unknown E[x̄2]. In
practice, the noisy image is the observed quantity and we can
recover both E[x̄2] and σ2

n by minimizing:

σ̂2
n, Ê[x̄2] = arg min

σ2
n,E[x̄2]

N2∑
i=2

(
Var(zy,iȳi)

− (E[z2
y,i]− σ2

n)E[x̄2]− σ2
n

)2
(6)

where i is the scale index ranging from 2,3,..,N2 ignoring the
DC component (i = 1) and zy,i denotes the variance map
of the noisy image at scale i. Taking the derivative of the
objective to be minimized in (6) with respect to σ2

n and setting
it to 0 yields:

2

N2∑
i=2

(
Var(zy,iȳi)−(E[z2

y,i]−σ2
n)E[x̄2]−σ2

n

)(
E[x̄2]−1

)
= 0

It is clear from the above equation that one of the extrema is
at E[x̄2] = 1, which needs to avoided. We utilize the other
term in the above equation to get a necessary bound on E[x̄2].
Equating the first term to 0 for any scale, k, followed by
straightforward simplification yields:

E[x̄2] =
Var(zy,kȳk)− σ2

n

E[z2
y,k]− σ2

n

=
σ2
x,k

E[z2
x,k]

For any given natural image, the ratio of the global variance
at scale k, σ2

x,k and the average of the local variances,
E[z2

x,k] can be assumed to be greater than 1 since images
are generally piecewise smooth. To further strengthen this
argument, we selected the BSD database [24] and computed
the ratio σ2

x,k/E[z2
x,k] for all the images at different scales.

Indeed, as shown in Fig. 4, the ratio σ2
x/E[z2

x] is larger than
1 in all cases. Integrating the lower bound with (6) yields the
following optimization:

σ̂2
n, Ê[x̄2] = arg min

σ2
n,E[x̄2]

N2∑
i=2

(
Var(zy,iȳi)

− (E[z2
y,i]− σ2

n)E[x̄2]− σ2
n

)2
(7)

subject to E[x̄2] > 1, which can be solved for σ2
n using

any non-linear optimization routine. Here we used Matlab’s
fminsearchbnd function to perform the constrained non-
linear optimization.

IV. PERFORMANCE EVALUATION

A. Additive White Gaussian Noise

We evaluated the performance of the proposed noise estima-
tor on two databases: Berkeley Segmentation Database (BSD)
[24] (100 images) and LIVE database [26] (29 images). To
simulate the effects of noise, we added AWGN to every high-
quality image using a σn from 5 to 50 in steps of 5.

Tables I and II show the performance in root-mean-squared-
error (RMSE) of the proposed method against that of other
well-known and state-of-the-art noise estimators for each noise
level averaged across all the images in BSD and LIVE
database respectively. We infer from these tables that the
performance of the proposed noise estimator is competitive
to PCA based estimation [22] for mid-level noise standard
deviations and outperforms other methods for higher noise
levels. We note that the PCA based noise estimation approach
makes an initial guess of the noise’s standard deviation upper
bound and significantly depends on the initialization. By
contrast, our approach is very simple, is based on natural scene
statistics models, requires no tuning and is highly robust to the
initialization point.

It is important to observe that patch-based approaches [22],
[27] are significantly better for larger noise levels since they
adaptively consider homogeneous patches for noise estimation
neglecting patches where the contribution from image structure
is significant. Statistics-based approaches as in [18], [20]1

are sensitive to higher noise levels since the contribution
of variance from the edges is relatively small to the noise
variance, affecting the kurtosis in an unpredictable manner.
By contrast, our approach competes well with patch-based
methods even for higher noise levels, since it decorrelates
the image structures and considers second-order statistics,
enabling the optimizer to recover the noise standard deviation
more precisely.

B. Non-Gaussian Noise

While our approach assumes that the noise added is
Gaussian-distributed, similar principles hold in the non-
Gaussian case. Zoran et al. [18] showed that non-Gaussian
independent noise in the pixel domain results in Gaussian
noise in the transform domain due to the central limit theorem
and the noise independence. Therefore, we can apply similar
ideas in the case of non-Gaussian noise, including Laplacian
and Uniform-distributed, as shown in Fig. 5. It can be seen
that the approach in [18] performs poorly for higher noise
levels, while the proposed method maintains a much better
performance level.

V. CONCLUSION

We described the scale invariance of contrast-normalized
bandpass responses of natural images in the DCT-filtered
domain. We demonstrated that in the presence of additive
Gaussian noise this principle is violated and we used this

1Since we were not able to find a publicly available implementation of
[20], we did not compare its performance in Tables I and II.



TABLE I: Comparison of different noise estimation algorithms in terms of RMSE between the predicted and actual σn evaluated
at each noise level on BSD database, The best two results are highlighted in boldface.

σn
5 10 15 20 25 30 35 40 45 50

Zoran et al. [18] 1.40 1.00 1.71 3.79 9.47 14.08 21.11 27.01 34.00 38.88
Liu et al. [27] 0.21 0.36 0.52 0.75 1.08 1.52 2.07 2.77 3.61 4.61
Pan et al. [28] 1.45 1.14 1.44 1.97 2.66 3.53 4.55 5.73 7.08 8.58

Pyatykh et al. [22] 0.31 0.26 0.34 0.43 0.57 0.80 1.17 1.66 2.29 3.11
Proposed 1.24 0.79 0.49 0.60 0.92 1.39 1.99 2.74 3.63 4.67

TABLE II: Comparison of different noise estimation algorithms in terms of RMSE between the predicted and actual σn
evaluated at each noise level on LIVE database. The best two results are highlighted in boldface.

σn
5 10 15 20 25 30 35 40 45 50

Zoran et al. [18] 0.83 0.86 0.81 4.61 6.96 13.38 18.99 25.97 32.98 38.91
Liu et al. [27] 0.24 0.48 0.74 1.05 1.42 1.88 2.44 3.12 3.94 4.92
Pan et al. [28] 0.88 0.85 1.20 1.73 2.42 3.25 4.22 5.34 6.60 8.01

Pyatykh et al. [22] 0.16 0.12 0.18 0.27 0.43 0.68 1.01 1.47 2.11 2.88
Proposed 1.28 0.46 0.52 0.80 1.20 1.70 2.30 3.04 3.90 4.90
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Fig. 5: Noise estimation results on Lena image for Laplace
and Uniform noise of different standard deviations

observation to blindly estimate the noise variance. The pro-
posed noise estimator compares well with other state-of-the-
art noise estimation approaches on different databases across
wide range of standard deviations. Finally, we also showed
that our approach can be also be used to estimate additive
white non-Gaussian noise with promising performance.

REFERENCES

[1] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli, “Image
denoising using scale mixtures of gaussians in the wavelet domain,”
IEEE Trans. on Image Proc., vol. 12, no. 11, pp. 1338–1351, 2003.

[2] P. Rosin, “Thresholding for change detection,” in Intl. Conf. on Comp.
Vision, 1998, pp. 274–279.

[3] B. J. Kang and K. R. Park, “Real-time image restoration for iris
recognition systems,” IEEE Trans. on Systems, Man, and Cybernetics,
vol. 37, no. 6, pp. 1555–1566, 2007.

[4] Y.-W. Wen, M. K. Ng, and Y.-M. Huang, “Efficient total variation
minimization methods for color image restoration,” IEEE Transactions
on Image Processing, vol. 17, no. 11, pp. 2081–2088, 2008.

[5] G. Burton, N. Haig, and I. Moorhead, “A self-similar stack model for
human and machine vision,” Biological Cybernetics, vol. 53, no. 6, pp.
397–403, 1986.

[6] D. J. Field, “Relations between the statistics of natural images and
the response properties of cortical cells,” Journ. of the Opt. Society of
America, vol. 4, no. 12, pp. 2379–2394, 1987.

[7] G. Burton and I. R. Moorhead, “Color and spatial structure in natural
scenes,” Applied Optics, vol. 26, no. 1, pp. 157–170, 1987.

[8] D. L. Ruderman, “Origins of scaling in natural images,” Vision research,
vol. 37, no. 23, pp. 3385–3398, 1997.

[9] D. L. Ruderman and W. Bialek, “Statistics of natural images: Scaling in
the woods,” in Adv. in Neural Information Proc. Sys., 1994, pp. 551–558.

[10] S. G. Mallat, “A theory for multiresolution signal decomposition: the

wavelet representation,” IEEE Trans. on Pattern Anal. Machine Intell.,,
vol. 11, no. 7, pp. 674–693, 1989.

[11] M. Bethge, “Factorial coding of natural images: how effective are linear
models in removing higher-order dependencies?” JOSA A, vol. 23, no. 6,
pp. 1253–1268, 2006.

[12] H. R. Sheikh and A. C. Bovik, “Image information and visual quality,”
IEEE Trans. Image Process., vol. 15, no. 2, pp. 430–444, 2006.

[13] R. Soundararajan and A. C. Bovik, “RRED indices: Reduced reference
entropic differencing for image quality assessment,” IEEE Trans. Image
Process., vol. 21, no. 2, pp. 517–526, 2012.

[14] C. G. Bampis, P. Gupta, R. Soundararajan, and A. C. Bovik, “SpEED-
QA: Spatial efficient entropic differencing for image and video quality,”
IEEE Signal Proc. Letters, vol. 24, no. 9, pp. 1333–1337, 2017.

[15] A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image quality
assessment in the spatial domain,” IEEE Tran. Image Process., vol. 21,
no. 12, pp. 4695–4708, 2012.

[16] A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a “completely
blind” image quality analyzer,” IEEE Signal Proc. Letters, vol. 20, no. 3,
pp. 209–212, 2013.

[17] A. K. Moorthy and A. C. Bovik, “Blind image quality assessment:
From natural scene statistics to perceptual quality,” IEEE Trans. Image
Process., vol. 20, no. 12, pp. 3350–3364, 2011.

[18] D. Zoran and Y. Weiss, “Scale invariance and noise in natural images,”
in Intl. Conf. on Comp. Vision, 2009., 2009, pp. 2209–2216.

[19] G. Zhai and X. Wu, “Noise estimation using statistics of natural images,”
in Int’l Conf. Image Process, 2011, 2011, pp. 1857–1860.

[20] L. Dong, J. Zhou, and Y. Y. Tang, “Noise level estimation for natural
images based on scale-invariant kurtosis and piecewise stationarity,”
IEEE Trans. on Image Proc., vol. 26, no. 2, pp. 1017–1030, 2017.

[21] J. Immerkaer, “Fast noise variance estimation,” Comp. Vision and image
Understanding, vol. 64, no. 2, pp. 300–302, 1996.

[22] S. Pyatykh, J. Hesser, and L. Zheng, “Image noise level estimation by
principal component analysis,” IEEE Trans. on Image Proc., vol. 22,
no. 2, pp. 687–699, 2013.

[23] M. J. Wainwright, O. Schwartz, and E. P. Simoncelli, “Natural image
statistics and divisive normalization: modeling nonlinearities and adap-
tation in cortical neurons,” Stat. Theories of Brain, pp. 203–222, 2002.

[24] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,” in Intl. Conf. on Comp.
Vision, 2001., vol. 2, 2001, pp. 416–423.

[25] P. Jiang and J.-z. Zhang, “Fast and reliable noise level estimation based
on local statistic,” Pattern Recognition Letters, vol. 78, pp. 8–13, 2016.

[26] H. R. Sheikh, M. F. Sabir, and A. C. Bovik, “A statistical evaluation of
recent full reference image quality assessment algorithms,” IEEE Trans.
on Image Proc., vol. 15, no. 11, pp. 3440–3451, Nov. 2006.

[27] X. Liu, M. Tanaka, and M. Okutomi, “Noise level estimation using weak
textured patches of a single noisy image,” in Int’l Conf. Image Process,
2012, 2012, pp. 665–668.

[28] X. Pan, X. Zhang, and S. Lyu, “Exposing image splicing with inconsis-
tent local noise variances,” in Int’l Conf. on Comp. Photography, 2012,
2012, pp. 1–10.


	Introduction
	Scale Invariance Property of Normalized DCT Filtered Responses
	Noise Estimation
	Performance Evaluation
	Additive White Gaussian Noise
	Non-Gaussian Noise

	Conclusion
	References

