
Signal Processing: Image Communication 66 (2018) 87–94

Contents lists available at ScienceDirect

Signal Processing: Image Communication

journal homepage: www.elsevier.com/locate/image

Generalized Gaussian scale mixtures: A model for wavelet coefficients of
natural images
Praful Gupta a,*, Anush Krishna Moorthy b, Rajiv Soundararajan c, Alan Conrad Bovik a,1

a Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, USA
b Netflix Inc., USA
c Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore, India

A R T I C L E I N F O

Keywords:
Generalized Gaussian scale mixture model
Distorted image modeling
Distortion-identification
No-reference image quality assessment

A B S T R A C T

We develop a Generalized Gaussian scale mixture (GGSM) model of the wavelet coefficients of natural and
distorted images. The GGSM model, which is more general than and which subsumes the Gaussian scale mixture
(GSM) model, is shown to be a better representation of the statistics of the wavelet coefficients of both natural as
well as distorted images. We demonstrate the utility of the model by applying it to various image processing
applications, including blind distortion identification and no reference image quality assessment (NR-IQA).
Similar to the GSM model, the GGSM model is useful for motivating the use of local divisive energy normalization,
especially when the wavelet coefficients are computed on distorted pictures. We show that the GGSM model can
lead to improved performance in distortion-related applications, while providing a more principled approach to
the statistical processing of distorted image signals. The software release of a GGSM-based NR-IQA approach
called DIIVINE-GGSM is available online at http://live.ece.utexas.edu/research/quality/diivine-ggsm.zip for
further experimentation.

1. Introduction

A popular theory in visual neuroscience is that because the human
visual system has evolved in the natural environment, many of its
properties have, over time, adapted to the statistical properties of the
natural environment that the eyes are exposed to [1,2]. One could
study the statistics of natural images and draw certain conclusions
regarding the properties of the environment. Such conclusions could
then be correlated with results from studies of the human visual system,
and hypotheses regarding the function of cortical processing could be
posited [2–4]. On the other hand, one could posit a hypothesis on the
goal of sensory coding, and by quantifying the goal in information
theoretic terms, attempt to describe the statistical properties of the
natural environment, and analyze the obtained results [5]. While both
approaches lead to interesting observations regarding human visual
processing, such study of scene statistics has tremendous relevance for
perceptual image processing. Such notions, for instance, have been
successfully applied to the design of a number of perceptual image
quality assessment (IQA) algorithms [6–10].
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Many researchers have studied and modeled the scene statistics of
natural images subjected to a scale-space-orientation decomposition
(loosely, a bandpass or wavelet transform). It is a well known obser-
vation that the (marginal) coefficient distributions of wavelet filters
tend to follow an approximate Laplacian distribution (i.e., more heavy
tailed than a Gaussian) [11]. However, simple marginal statistics do not
capture the statistical regularities that exist across intra and inter band
wavelet coefficient neighbors. One model for wavelet coefficients that
not only models the marginal distributions, but also the relationships be-
tween neighboring coefficients in the same subband, and those between
adjacent subbands is the Gaussian scale mixture (GSM) model [2,11].
In the GSM model, a set of local wavelet coefficients are modeled
using a scale mixture and in [11,12], the authors demonstrate that
this semi-parametric model satisfies the dual requirement of being able
to describe the heavy-tailed nature of wavelet coefficients as well as
the multiplicative scaling between neighboring coefficients. The GSM
model has been successfully used for image denoising [13], image
restoration [14,15], full-reference (FR) IQA [16,17], reduced-reference
(RR) IQA [18–20] and no-reference (NR) IQA [21–25]. It has also been
applied to the video QA problem [26–30], the stereoscopic 3D QA
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Table 1
Percentage of divisively normalized wavelet coefficients of natural image at
different scales and orientations that were deemed to be Gaussian with high
confidence.

30◦ 60◦ 90◦ 120◦ 150◦ 180◦

Scale 1 13.79% 51.72% 58.62% 0% 44.83% 44.83%
Scale 2 3.45% 34.48% 34.48% 0% 41.38% 34.48%
Scale 3 3.45% 27.59% 44.83% 10.34% 34.48% 31.03%

problem [31,32], and to devise a simple but effective way to compute
monocular 3D depths [33,34].

While the GSM model is robust, it is only an approximate model of
un-distorted natural bandpass images. Further, the GSM model does not
generalize to distorted natural images, and hence does not lend itself nat-
urally to problems in which one requires a model for distorted images.
Here we propose a generalization of the GSM model that addresses these
two drawbacks. The generalized Gaussian scale mixture model (GGSM)
which is described in the remainder of this article, models the statistics
of neighboring bandpass or image wavelet coefficients as obeying a scale
mixture of multivariate generalized Gaussian distributions. The GGSM
accurately models the statistics of natural un-distorted images and is also
capable of describing the scene statistics of distorted natural images. The
GGSM is a generalization of the GSM, and therefore subsumes the GSM,
and models a larger space of natural images.

In this article, we first discuss the limitations of the GSM model
and then describe the GGSM model. The ability of the GGSM to
model bandpass natural images is evaluated, and properties similar
to GSM modeling are studied (Section 2). Section 3 describes three
applications of the GGSM model: modeling the statistics of distorted
images, distortion identification and no-reference quality assessment.
In Section 4, we describe possible future extensions of the GGSM model
for perceptual image processing.

2. Modeling wavelet coefficients

2.1. Gaussian scale mixtures

A 𝑑-dimensional random vector 𝐱 is a GSM if 𝐱 ≡
√

𝑧 ⋅ 𝐮, where ≡
denotes equality in probability distribution, 𝐮 is a zero-mean Gaussian
random vector with covariance 𝜮𝐮, and 𝑧 is a scalar random variable
called a mixing multiplier. The density of 𝐱 is then given by

𝑝𝐱(𝐱) = ∫
1

(2𝜋)𝑑∕2|𝑧𝜮𝐮|
1∕2

exp

(

−𝐱𝑇𝜮−1
𝐮 𝐱

2𝑧

)

𝑝𝑧(𝑧)𝑑𝑧,

where 𝑝𝑧(𝑧) is the density of 𝑧. In the case of natural images, the vector 𝐱
is formed by clustering a set of neighboring wavelet coefficients within a
subband, or across neighboring subbands in scale and orientation [11].
The GSM model of natural wavelet coefficients has been successfully
applied to noise estimation [35], denoising [13] and image qual-
ity assessment [19,22,23,25,36–38]. IQA algorithms that utilize other
bandpass decompositions have also been extensively studied [10,39–
41]. While the GSM model is robust, it is only an approximate model of
image wavelet coefficients. In order to demonstrate this, we analyze the
GSM model as applied on pristine natural images from the LIVE image
quality assessment (IQA) database [42], utilizing the steerable pyramid
decomposition [43], which is an overcomplete bandpass wavelet trans-
form that in the implementation we use, decomposes images over two
scales and six orientations. In our analysis (as depicted in Fig. 1), the
vector 𝐱 contains 15 coefficients, including 9 from the same subband (a
3 × 3 neighborhood around 𝑥𝑐 — the center coefficient), 1 from the
parent band, and 5 from the same spatial location in the neighboring
bands at the same scale.

The mixing multiplier 𝑧 may be estimated as 𝑧̂ = 𝐱𝑇𝜮−1
𝐮 𝐱∕𝑑 [18,44].

Once this multiplier is estimated, one can perform a ‘divisive normal-
ization transform’, whereby each center coefficient, 𝑥𝑐 is divided by the

Fig. 1. The neighborhood structure used to construct GSM/GGSM vectors in
the experiments. The GSM/GGSM vector 𝑌 contains 15 coefficients, including
9 from the same subband (3 × 3 neighborhood around 𝑥𝑐 — the center
coefficient), 1 from the parent band, and 5 from the same spatial location in
the neighboring bands at the same scale.

local energy estimate 𝑧̂. We performed such a divisive normalization
process on the wavelet coefficients of each of the 29 LIVE [42] reference
images, then estimated the shape and scale parameters of the resulting
generalized Gaussian distribution to verify whether the divisively nor-
malized coefficients could indeed be regarded as Gaussian with high
(95%) confidence.

The results in Table 1 imply that, while the GSM model of wavelet
coefficients of natural images is a fairly robust model, it is by no
means comprehensive. Less than 60% of the images follow the wavelet
GSM model over all scales. Even amongst un-distorted, pristine, natural
images, the model fails to produce the predicted Gaussian (divisively-
normalized) response distribution. Indeed, as the authors in [11] note,
the divisive normalization process applied to a GSM only ensures that
the resulting marginal coefficients are approximately Gaussian. This
implies that there is a need for a more general class of models that would
not only subsume the GSM model, but will also extend to those situations
where the GSM model is inadequate — for example, in modeling the
statistics of distorted images. In the next section, we describe such
a general class of scale-mixtures – the Generalized Gaussian scale
mixtures (GGSM) – which can not only be used to model the statistical
relationships between the bandpass coefficients of natural images, but
also those from distorted images.

2.2. Generalized Gaussian scale mixtures

Before we describe the generalized Gaussian scale mixture (GGSM)
model, we set up the multivariate generalized Gaussian (MVGG) distri-
bution which we shall use with the GGSM model. We also detail the
parameter estimation procedure which will be of use in later sections of
this paper.

2.2.1. The multivariate generalized Gaussian distribution
There exist multiple definitions of the Multivariate Generalized

Gaussian (MVGG) distribution in the literature [45–47]. Here we con-
sider a particular case of the Kotz-type distribution, a multivariate
elliptical distribution [45] which has been used to model the statistics
of wavelet coefficients in the past [48]. The zero-mean MVGG is defined
as

𝑝𝐱(𝐱) =
𝛤
(

𝑑
2

)

⋅ 𝑠

𝜋𝑑∕2𝛤
(

𝑑
2𝑠

)

2𝑑∕2𝑠|𝜮|

1∕2
⋅ exp

{

−1
2
(𝐱𝑇𝜮−1𝐱)𝑠

}

, (1)
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Fig. 2. Visual illustration of the parameter estimation procedure. 𝑒𝑠𝑡 = estimated parameters,  = identity matrix. (a) 𝑑 = 1, 𝑠 = 0.5, 𝛴 = 1; 𝑠𝑒𝑠𝑡 = 0.52, 𝛴𝑒𝑠𝑡 = 1.1744;
KLD = 0.0015 and (b) 𝑑 = 2, 𝑠 = 0.7, 𝛴 = ; 𝑠𝑒𝑠𝑡 = 0.7, 𝛴𝑒𝑠𝑡 = [1.0044 0.0005; 0.0005 0.9905]; KLD = 0.0422.

Fig. 3. The mean and standard error bars of squared errors between actual
and estimated shape parameter (top) and the covariance matrix (bottom) across
1000 sample draws of a MVGG, as a function of the dimension 𝑑.

where 𝑑 is the dimension, 𝑠 is a shape parameter (scalar), 𝜮 is the scale
parameter (matrix) and 𝛤 (⋅) is the gamma function.

𝛤 (𝑧) = ∫

∞

0
𝑒−𝑡𝑡𝑧−1𝑑𝑡 ∀𝑧 ≥ 0.

Methods of estimating the parameters of MVGG distributions has been
explored in the past [45–47]. We used the moment-matching technique
to estimate the parameters of an MVGG distribution as described in [45].
Specifically, given a set of 𝑁 i.i.d. MVGG vectors of dimension 𝑑,
𝐱1 … 𝐱𝑁 , compute the sample version of Mardia’s multivariate kurtosis
coefficient – 𝛾2(𝐱) = 𝐸[(𝐱𝑇𝜮−1𝐱)2] − 𝑑(𝑑 + 2) –as [49]

𝛾̂2(𝐱1 … 𝐱𝑁 ) = 1
𝑁

𝑁
∑

𝑖=1
(𝐱𝑇𝑖 𝐒

−1𝐱𝑖)2 − 𝑑(𝑑 + 2), (2)

where 𝐒 is the sample covariance. Fortunately, 𝛾2(𝐱) has a closed form
expression in the case of (1) [45] and is expressed as

𝛾2(𝐱) =
𝑑2𝛤 ( 𝑑

2𝑠 )𝛤 ( 𝑑+42𝑠 )

𝛤 2( 𝑑+22𝑠 )
− 𝑑(𝑑 + 2). (3)

By equating (2) and (3) we compute an estimate of the shape param-
eter 𝑠. Once the shape-parameter is computed, the scale parameter is
estimated from the expression for the covariance 𝐕(𝐱) [45] as

𝐕(𝐱) =
21∕𝑠𝛤 ( 𝑑+22𝑠 )

𝑑𝛤 ( 𝑑
2𝑠 )

𝜮, (4)

where 𝐕(𝐱) can be replaced by the sample covariance 𝐒 [45].
Thus, the parameters of the MVGG distribution may be estimated

using a moment-matching approach. A similar approach was used by
the authors in [46] in order to construct an MVGG model of wavelet
coefficients from the R, G and B planes of a color image.

In order to demonstrate that the above technique estimates the
parameters reliably, we drew multiple samples from MVGG distributions
with random values for the covariance matrix and shape parameter
using the technique described in [45]. Multiple such draws (1000)
were performed for each 𝑑 = 1, 5, 10, 15, 20, 25 and we computed the
squared error between the actual value of the shape parameters and the
covariance matrix and their estimated value. Fig. 3 plots the mean and
standard error bars of these computed errors for each 𝑑. To provide a
visual illustration of the sampling and fitting procedure, Fig. 2 graphs a
univariate and a bivariate generalized Gaussian and an overlay of the fits
obtained for these two cases. We also list the Kullback Leibler divergence
(KLD) [50] between the empirical histogram and the estimated fit. As
may be seen from these examples, the above procedure is capable of
estimating the parameters of a MVGG with high accuracy.

Having described the MVGG distribution and its parameter estima-
tion procedure, we now describe the generalized Gaussian scale mixture
model.

2.2.2. Generalized Gaussian scale mixtures
A 𝑑-dimensional random vector 𝐱 is a Generalized Gaussian scale

mixture (GGSM) if 𝐱 ≡
√

𝑧 ⋅ 𝐮, where ≡ denotes equality in proba-
bility distribution, 𝐮 is a zero-mean Multivariate Generalized Gaussian
(MVGG) random vector with scale parameter 𝜮𝐮 and shape parameter 𝑠,
and 𝑧 is a scalar random variable called a mixing multiplier. The MVGG
reduces to the multivariate Gaussian when 𝑠 = 1, hence the GGSM
model subsumes the GSM model. Both the GSM and the GGSM represent
infinite (scale) mixtures of Multivariate Gaussian and MVGG vectors,
respectively. The conditional density of the GGSM vector 𝐱 given the
variance field 𝑧, is given by

𝑝(𝐱|𝑧) =
𝛤
(

𝑑
2

)

⋅ 𝑠 ⋅ 𝑧−𝑑∕2

𝜋𝑑∕2𝛤
(

𝑑
2𝑠

)

2𝑑∕2𝑠|𝜮𝐮|
1∕2

⋅ exp
{

− 𝑧−𝑠

2
(𝐱𝑇𝜮−1

𝐮 𝐱)𝑠
}

. (5)
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(a) Pristine image. (b) (c) (d)

(e) JPEG compressed im-
age.

(f) (g) (h)

Fig. 4. (a), (e) A pristine and JPEG compressed image from the LIVE database; (b)–(h) Histograms of raw wavelet coefficients with a Gaussian fit, GSM-based divisively
normalized coefficients with a Gaussian fit, and GGSM-based divisively normalized coefficients with a generalized Gaussian fit. The signals being processed are the
first subbands of pristine and JPEG compressed digital photographs from the LIVE corpus. Notice in (c) and (g), the prediction of the GSM model that the normalized
responses follow a Gaussian distribution is less accurate for a distorted image, while it is accurate for a pristine image, whereas in (d) and (h), the GGSM model’s
prediction that the normalized coefficients follow a generalized Gaussian is accurate for both pristine and its distorted counterpart.

Fig. 5. Box plot of the estimated shape parameter values of an MVGG
distribution model of the first subband of the pristine and distorted images of
the LIVE database. The implicit assumption of the shape parameter value (𝑠 = 1)
under the GSM model is highlighted in red.

In order to form the maximum likelihood (ML) estimate of the

variance field 𝑧, proceed as follows:

𝑧̂ = argmax
𝑧

(log 𝑝(𝐱|𝑧)) (6)

= argmax
𝑧

(

−𝑑
2
log(𝑧) − 1

2
𝑧−𝑠(𝐱𝑇𝜮−1

𝐮 𝐱)𝑠
)

= argmin
𝑧

(𝑑
2
log(𝑧) + 1

2
𝑧−𝑠(𝐱𝑇𝜮−1

𝐮 𝐱)𝑠
)

.

Setting the derivative of the objective equal to zero (necessary condition
of optimality) yields the variance field estimate

𝑧̂ =
( 𝑠
𝑑

)1∕𝑠
(𝐱𝑇𝜮−1

𝐮 𝐱). (7)

Note that the normalizer is the same as that for the GSM model
when 𝑠 = 1. We use an iterative approach to estimate the normalizer, 𝑧̂,
while matching the statistics of the normalized coefficients to that of the
underlying MVGG distribution. Specifically, at each iteration, we use the
parameters obtained by fitting a MVGG distribution to the normalized
subband coefficients to compute the variance field estimates. We outline
the iterative estimation procedure for the variance field of each subband
as follows:

Iterative Variance Field Estimation
1: Initialize:

𝐱0: original subband coefficients
𝑠0,𝚺0 ← 𝑓 (𝐱0) ⊳ Detailed in Section 2.2.1

2: while |𝑠𝑛+1 − 𝑠𝑛| ≥ 𝜖 do

3: 𝑧̂𝑛 ←
(

𝑠𝑛
𝑑

)1∕𝑠𝑛
(𝐱𝑇0 𝚺

−1
𝑛 𝐱0) ⊳ From Eq. 7

4: 𝐱𝑛 ← 𝐱0∕
√

𝑧̂𝑛 ⊳ Divisive Normalization
5: 𝑠𝑛+1,𝚺𝑛+1 ← 𝑓 (𝐱𝑛) ⊳ Detailed in Section 2.2.1
6: end while
7: return 𝑧̂𝑛

In the above-mentioned variance field estimation procedure, 𝑠,𝜮 ←
𝑓 (⋅) refers to the parameter estimation of MVGG described in detail
in Section 2.2.1. We observed that the above estimation procedure
converges to a stable value of 𝑠 for each subband.

It is interesting to note that the MVGG belongs to a class of GSM, if
and only if 𝑠 ∈ (0, 1] [51]. This proposition, when integrated with the
definition of GGSM, implies that the GGSM model could be considered to
be a specific case of the GSM model, but only when 𝑠 ∈ (0, 1]. However,
in practice the empirical values of 𝑠 encountered do not generally fall
within this range of shape parameter values (as shown in Fig. 5) when
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Fig. 6. Distorted images (first row) and histograms of normalized coefficients (second row) from one subband. Note that the shape of the distribution is a function
of the distortion.

modeling both pristine and/or distorted images. Indeed, often the
estimated value of 𝑠 exceeds 1, even approaching 𝑠 = 2 on some distorted
images. Thus, the GGSM model provides a natural way to model pristine
and distorted images over all values of the shape parameter (𝑠 ∈ (0,∞)),
and is well-suited as a model of the bandpass statistics of pristine and
distorted pictures.

As with the GSM, we model a set of neighboring wavelet coefficients
using the GGSM model. In our simulations, we utilize the steerable
pyramid decomposition over 2 scales and 6 orientations, and the GGSM
vector is formed in the same way as the GSM vector [23] — given
a center coefficient 𝑥𝑐 at each subband, 𝐱 contains 15 coefficients,
including 9 from the same subband (3 × 3 neighborhood around 𝑥𝑐),
1 from the parent band, and 5 from the same spatial location but
from neighboring bands at the same scale. Fig. 4 plots the marginal
statistics of the subband responses of a distorted and undistorted image,
before and after divisive normalization under the GSM and GGSM
models. The GGSM model predicts that the normalized responses should
be distributed as generalized Gaussian which is exactly what Fig. 4
demonstrates.

3. Applications of the GGSM model

Having described the GGSM model of natural, photographic images,
we next consider relevant applications of the GGSM model that demon-
strate its efficacy for image processing applications. Specifically, we
study three applications: (1) distorted image modeling in the wavelet
domain, (2) blind distortion identification, and (3) no-reference image
quality assessment (NR IQA).

We shall demonstrate that the GGSM is a useful model for mod-
eling the statistics of distorted natural images. Statistics based on the
GSM model, as mentioned earlier, have been successfully used for no-
reference image quality assessment (NR IQA) [21–25] and reduced-
reference (RR) IQA [19]. Yet these approaches lack a consistent and
coherent model for distorted image statistics, instead relying on the
GSM model of undistorted natural images. The GGSM model provides a
natural way in which one may probe image distortions.

3.1. Modeling the statistics of distorted images

We have demonstrated that the GGSM model is better suited to
modeling the statistics of natural images than the GSM model. However,
the GGSM model has a far more important advantage — its ability
to describe the statistics of distorted images. We propose that the
GGSM models not only the local statistical properties of neighboring
wavelet coefficients from un-distorted natural images, but provides an

improved model for statistical characterizations of distorted natural
images. Modeling distorted image statistics using GGSMs lends itself
naturally to image quality assessment and distortion identification [23].

As we have noted before, the GGSM model predicts that the co-
efficient distribution after divisive normalization will be generalized
Gaussian in nature, and hence, if distorted image coefficients follow
the generalized Gaussian distribution after GGSM-based normalization,
then the GGSM model is indeed appropriate for modeling distorted
image statistics. The same implication does not hold under the GSM
model. Fig. 6 shows five images corrupted by different distortions
and their coefficient histograms from one subband of the steerable
pyramid decomposition after GGSM-based divisive normalization. One
may observe that the divisively-normalized coefficients of the distorted
images follow a generalized Gaussian distribution.

3.2. Distortion-identification

Researchers have observed that natural image distortions (such as
compression, blur etc.) follow certain characteristic statistics which can
easily be parameterized, and such parameterizations can be used to
identify a distortion that is present in an image [52].

In [23], we extracted a series of statistical features from the wavelet
subband and demonstrated that these features are not only sufficient
to identify the distortion present in the image, but to also perform
no-reference image quality assessment. In [23], the features were
extracted after divisive normalization using the GSM model. While the
performance of the algorithm was good, the underlying model was not
appropriate for distorted image modeling. Here we modify the approach
by replacing the GSM-based divisive normalization step with GGSM-
based normalization.

The approach in [23] uses a training-testing procedure, where a
multi-class classifier is trained using the extracted statistical features
and the known distortion-class labels; the performance is evaluated on
the test set. We consider three leading IQA databases — LIVE [42],
CSIQ [53] and TID13 [54] with diverse distortions to evaluate the
distortion classification performance. LIVE IQA database consists of 29
reference images and 779 distorted images spanning five distortion
categories (JPEG2000 compression, JPEG compression, white noise,
Gaussian Blur, and wireless packet loss over a fading channel), CSIQ
database comprises of 866 distorted images covering 6 distortion cat-
egories (JPEG2000 compression, JPEG compression, global contrast
decrements, additive white and pink Gaussian noise, and Gaussian blur),
and TID13 database contains 3000 distorted images with 25 unique
contents encompassing 24 diverse distortion types. Since one content
from the TID13 database does not belong to a natural image category,
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Table 2
Brief summary of the DIIVINE features and their computation procedure. For detailed description refer [23].

Feature number Feature Description Computation Procedure

1–24 Shape and variance
of subband coefficients

Generalized Gaussian distribution (GGD)
fit to subband coefficients

25–31 Shape parameter across subband coefficients GGD fit to stacked subband coefficients
at the same orientation but at different scales

32–43 Correlations across scales Structural correlation between windowed
highpass and bandpass filter responses

44–73 Spatial correlation across subbands Error and coefficients of the 3rd order polynomial
fit to the spatial correlation function

74–88 Across orientation statistics Windowed structural correlation between
adjacent orientations at same scale

Table 3
Median classification accuracy across 100 train–test trials on LIVE, CSIQ, and
TID13 image databases. ‘Avg’ column includes the average accuracies weighted
by the number of images from each database.

LIVE CSIQ TID13 Avg

GSM-Classifier (%) 83.38 64.94 43.83 54.68

GGSM-Classifier (%) 86.96 67.54 44.42 56.19

we test our algorithm only on 24 unique contents. The LIVE in the Wild
Challenge database [55] cannot be utilized for distortion identification
tests, since unlike other synthetically distorted databases, the images it
contains are afflicted by complex combinations of commingled authentic
distortions, and as such, they are not annotated with distortion labels.

We split each of these databases into a training set consisting of
80% of the images and a test set consisting of the remaining 20%,
such there was no content overlap between the training and the test
sets. The classifier was trained on the training set and the accuracy
of the classifier is tested on the test set. To ensure that performance
was independent of the training set, we repeated this 80% train–
20% test split over 100 iterations and report the median classification
accuracy in Table 3. In order to provide a comparison, we also list the
performance of the classifier from [23], which uses the GSM model. As
Table 3 indicates, the GGSM-based model outperforms the GSM model
in distortion classification for all databases. This is advantageous since
the GGSM model based classifier provides a justification for the divisive
normalization applied on distorted images.

3.3. No-reference image quality assessment

We earlier proposed a framework for no-reference image quality
assessment (NR-IQA) called the Distortion Identification-based Image
Verity and INtegrity Evaluation (DIIVINE) index [23], where statistical

Table 5
Median Spearman’s rank ordered correlation coefficient (SROCC) across 100
train–test trials on all distortion categories of LIVE IQA database. Italicized al-
gorithms are NR IQA algorithms, others are FR IQA algorithms.

JP2K JPEG WN Gblur FF All

PSNR 0.920 0.915 0.984 0.835 0.905 0.897
SSIM (SS) 0.942 0.954 0.965 0.929 0.949 0.919
DIIVINE-GSM 0.903 0.905 0.982 0.928 0.867 0.916
DIIVINE-GGSM 0.901 0.927 0.982 0.927 0.900 0.931

features were extracted in the wavelet domain after divisive normaliza-
tion under the GSM model. A brief description of these features, along
with their method of computation is included in Table 2. Interested
readers may refer to [23] for more details.

The use of divisive normalization for image quality assessment is
well motivated by models of cortical neurons in area V1 of primary
visual cortex [12]. Divisive normalization accounts for the non-linear
behavior of cortical neurons and provides a method to model contrast
masking [12,56]. While the use of divisive normalization is well moti-
vated, the use of GSM model is not conceptually accurate. Since we have
demonstrated that the GGSM is a more appropriate model of distorted
wavelet coefficients, we conducted an experiment where we replaced
the GSM model in [23] with the GGSM model. We call this NR-IQA
model DIIVINE-GGSM and the previous one DIIVINE-GSM.

Many other NR IQA algorithms leverage distortion-dependent sta-
tistical models of natural images [39,57,58]. Other NR IQA methods
that are data-driven [7,59,60], also achieve effective performance. We
compared the performance of DIIVINE-GGSM against several leading
NR IQA models, including NIQE [21], which is ‘completely blind’,
BRISQUE [22], BLIINDS [39], SSEQ [61], CORNIA [7], NFERM [62],
and DIIVINE-GSM [23]. Our comparison also includes two FR IQA
models: PSNR and SSIM [63]. Five representative IQA databases were
used: [42], CSIQ [53], TID13 [54], the LIVE in the Wild Challenge

Table 4
Median Spearman’s Rank Ordered Correlation Coefficient (SROCC) and Pearson’s Linear Correlation Coefficient (PLCC) across 100 train–test trials on LIVE, CSIQ,
TID13, LIVE Challenge, and LIVE Multiply Distorted IQA databases. Italicized algorithms are NR IQA algorithms, others are FR IQA algorithms. Best two NR-IQA
algorithms for each database are boldfaced.

Training DB LIVE CSIQ TID13 Challenge Multiply Overall

SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC

PSNR 0.892 0.883 0.803 0.800 0.652 0.679 – – 0.803 0.843 0.747 0.757

SSIM (SS) 0.919 0.906 0.841 0.823 0.639 0.695 – – 0.698 0.791 0.752 0.775

NFERM 0.948 0.949 0.794 0.817 0.634 0.676 0.582 0.605 0.869 0.896 0.742 0.769

NIQE 0.912 0.907 0.632 0.721 0.327 0.430 0.458 0.502 0.787 0.844 0.560 0.623

SSEQ 0.895 0.902 0.699 0.734 0.568 0.624 0.475 0.506 0.822 0.852 0.659 0.697

CORNIA 0.946 0.946 0.696 0.768 0.657 0.734 0.620 0.657 0.906 0.913 0.747 0.791

BLIINDS-II 0.931 0.952 0.675 0.692 0.598 0.667 0.499 0.529 0.848 0.866 0.689 0.726

BRISQUE 0.937 0.938 0.695 0.698 0.524 0.549 0.608 0.637 0.893 0.915 0.691 0.709

DIIVINE-GSM 0.916 0.913 0.733 0.756 0.655 0.700 0.600 0.623 0.855 0.877 0.727 0.753

DIIVINE-GGSM 0.931 0.930 0.762 0.795 0.664 0.702 0.600 0.610 0.870 0.873 0.743 0.770
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Table 6
Median SROCC when trained and tested on different databases.

Training DB LIVE CSIQ TID13

Testing DB CSIQ TID13 LIVE TID13 CSIQ LIVE

DIIVINE-GSM 0.860 0.864 0.641 0.694 0.741 0.759
DIIVINE-GGSM 0.871 0.872 0.859 0.791 0.723 0.821

database [55] and the LIVE Multiply Distorted database [64]. Table 4
compares the performance in terms of Spearman’s rank order correlation
coefficient (SROCC), which measures the monotonicity between the pre-
dicted objective scores and the subjective opinion scores, and Pearson’s
Linear Correlation Coefficient (PLCC), which captures the degree of
linear relationship between the two. Similar training strategy was used
as in distortion classification to report the SROCC and PLCC results —
median of 80% train–20% test splits with no content overlap over 100
iterations. Support Vector Regressor [65] with radial basis function
(RBF) kernel, whose parameters were estimated using cross-validation
on the training set, was utilized for this regression task. The overall
average correlation coefficient across the different databases listed in
Table 4 was computed by transforming each correlation coefficient using
Fisher’s 𝑧-transformation [66]:,

𝑧 = 1
2
ln 1 + 𝑟
1 − 𝑟

,where 𝑟 is SROCC or PLCC, (8)

then calculating the mean of the 𝑧 values, and finally back-transforming
by inverting (8), yielding the overall correlation coefficient.

It is evident from Table 4 and Table 5 that DIIVINE-GGSM performed
better than its predecessor DIIVINE-GSM, and competes quite well
against the compared IQA algorithms on most of the databases used
for comparison. An important exception was the CSIQ database, which
contains global contrast changes as one of the distortions on which most
of the NR IQA metrics fail, since NSS-based IQA models which employ
‘divisive normalization’ are less sensitive to changes in image contrast,
while they are more effective in capturing statistical changes due to
structural distortions.

We also compared the generalization capability of DIIVINE-GGSM
against DIIVINE-GSM by using an entire database for training and then
testing on common distortions from a test database. The distortions
used for testing were: JPEG2000 compression, JPEG, Additive white
noise (WN) and Gaussian Blur (blur). As in the classification case,
DIIVINE-GGSM showed an overall improved performance over DIIVINE-
GSM, as indicated in Table 6. The philosophy behind the DIIVINE-GSM
approach is to model the distorted images using a model for the pristine
images — the GSM. The GGSM on the other hand, more appropriately
models natural images that are either pristine or distorted in a larger
model-space, yielding better model fits and a reasonable improvement
in performance.

4. Conclusion and future work

We have developed a new statistical model for the image wavelet
coefficients by generalizing the GSM model for natural images. The
GGSM model is suitable for the wavelet coefficients of both natural and
distorted images. We also showed that the GGSM distribution better
models the wavelet coefficients of distorted images as compared to the
GSM distribution. Further, we demonstrated applications of the GGSM
model in distortion identification, and NR-IQA.

There are a number of directions for possible future work. Recently,
an interesting strategy was designed to evaluate the performance of
NR IQA algorithms, which utilizes more than 100,000 distorted images
to find a mapping from a feature space to quality scores [67,68]. An
important ingredient of this strategy is the use of FR IQA algorithm
scores as a proxy for human opinion scores. The authors argue that this
technique can be used to more reliably verify the effectiveness of NR
IQA features, as compared to approaches that involve a certain number
of train–test splits of the dataset, which is more prone to overfitting.

While the estimation procedure for the GGSM model parameters
uses a moment matching approach, an important extension would be
to investigate maximum likelihood parameter estimation of the GGSM
model parameters. Although we only sampled a few applications to
demonstrate the utility of the GGSM model, there are a number of other
applications, including image restoration, full reference and reduced
reference quality assessment, compression, retrieval, and so on where
the model could be useful.
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[50] T. Cover, J. Thomas, Elements of Information Theory, Wiley-Interscience, 2006.
[51] E. Gómez-Sánchez-Manzano, M. Gómez-Villegas, J. Marín, Multivariate exponential

power distributions as mixtures of normal distributions with Bayesian applications,
Comm. Statist. Theory Methods 37 (6) (2008) 972–985.

[52] A.K. Moorthy, A.C. Bovik, Statistics of natural image distortions, in: IEEE Int’l Conf.
on Acoustics Speech and Signal Process., 2010, pp. 962–965, 2010.

[53] E.C. Larson, D.M. Chandler, Most apparent distortion: full-reference image quality
assessment and the role of strategy, J. Electron. Imaging 19 (1) (2010) 011006–
011006.

[54] N. Ponomarenko, L. Jin, O. Ieremeiev, V. Lukin, K. Egiazarian, J. Astola, B. Vozel,
K. Chehdi, M. Carli, F. Battisti, et al., Image database TID2013: Peculiarities, results
and perspectives, Signal Process., Image Commun. 30 (2015) 57–77.

[55] D. Ghadiyaram, A.C. Bovik, Massive online crowdsourced study of subjective and
objective picture quality, IEEE Trans. Image Process. 25 (1) (2016) 372–387.

[56] R. Sekuler, R. Blake, Perception, McGraw Hill, 2002.
[57] M. Jenadeleh, M.E. Moghaddam, BIQWS: Efficient wakeby modeling of natural scene

statistics for blind image quality assessment, Multimedia Tools Appl. 76 (12) (2017)
13859–13880.

[58] W. Hachicha, M. Kaaniche, A. Beghdadi, F.A. Cheikh, No-reference stereo image
quality assessment based on joint wavelet decomposition and statistical models,
Signal Process., Image Commun. 54 (2017) 107–117.

[59] J. Kim, H. Zeng, D. Ghadiyaram, S. Lee, L. Zhang, A.C. Bovik, Deep convolutional
neural models for picture-quality prediction: Challenges and solutions to data-driven
image quality assessment, IEEE Signal Process. Mag. 34 (6) (2017) 130–141.

[60] S. Bosse, D. Maniry, K.-R. Müller, T. Wiegand, W. Samek, Deep neural networks for
no-reference and full-reference image quality assessment, IEEE Trans. Image Process.
27 (1) (2018) 206–219.

[61] L. Liu, B. Liu, H. Huang, A.C. Bovik, No-reference image quality assessment based
on spatial and spectral entropies, Signal Process., Image Commun. 29 (8) (2014)
856–863.

[62] K. Gu, G. Zhai, X. Yang, W. Zhang, Using free energy principle for blind image quality
assessment, IEEE Trans. Multimedia 17 (1) (2015) 50–63.

[63] Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: From
error measurement to structural similarity, IEEE Trans. Image Process. 13 (4) (2004)
600–612.

[64] D. Jayaraman, A. Mittal, A.K. Moorthy, A.C. Bovik, Objective quality assessment of
multiply distorted images, in: Signals, Systems and Computers (ASILOMAR), 2012,
pp. 1693–1697.

[65] B. Schölkopf, A.J. Smola, R.C. Williamson, P.L. Bartlett, New support vector algo-
rithms, Neural Comput. 12 (5) (2000) 1207–1245.

[66] D.M. Corey, W.P. Dunlap, M.J. Burke, Averaging correlations: Expected values and
bias in combined Pearson rs and Fisher’s z transformations, J. Gen. Psychol. 125 (3)
(1998) 245–261.

[67] K. Gu, J. Zhou, J.-F. Qiao, G. Zhai, W. Lin, A.C. Bovik, No-reference quality
assessment of screen content pictures, IEEE Tran. Image Process. 26 (8) (2017) 4005–
4018.

[68] K. Gu, D. Tao, J.-F. Qiao, W. Lin, Learning a no-reference quality assessment model
of enhanced images with big data, IEEE Trans. Neural Netw. Learn. Syst. (2017).

94

http://refhub.elsevier.com/S0923-5965(18)30371-0/sb28
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb28
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb28
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb28
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb28
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb29
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb29
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb29
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb30
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb30
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb30
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb31
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb31
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb31
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb32
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb32
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb32
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb32
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb32
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb33
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb33
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb33
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb33
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb33
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb34
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb34
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb34
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb36
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb36
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb36
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb37
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb37
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb37
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb37
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb37
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb38
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb38
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb38
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb39
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb39
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb39
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb39
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb39
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb40
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb40
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb40
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb40
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb40
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb42
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb42
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb42
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb42
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb42
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb43
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb43
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb43
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb44
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb44
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb44
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb45
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb45
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb45
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb45
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb45
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb47
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb47
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb47
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb47
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb47
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb48
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb48
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb48
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb48
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb48
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb49
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb49
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb49
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb50
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb51
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb51
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb51
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb51
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb51
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb53
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb53
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb53
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb53
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb53
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb54
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb54
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb54
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb54
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb54
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb55
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb55
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb55
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb56
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb57
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb57
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb57
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb57
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb57
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb58
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb58
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb58
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb58
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb58
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb59
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb59
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb59
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb59
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb59
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb60
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb60
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb60
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb60
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb60
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb61
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb61
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb61
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb61
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb61
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb62
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb62
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb62
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb63
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb63
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb63
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb63
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb63
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb64
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb64
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb64
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb64
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb64
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb65
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb65
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb65
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb66
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb66
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb66
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb66
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb66
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb67
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb67
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb67
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb67
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb67
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb68
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb68
http://refhub.elsevier.com/S0923-5965(18)30371-0/sb68

	Generalized Gaussian scale mixtures: A model for wavelet coefficients of natural images
	Introduction
	Modeling wavelet coefficients 
	Gaussian scale mixtures
	Generalized Gaussian scale mixtures
	The multivariate generalized Gaussian distribution
	Generalized Gaussian scale mixtures


	Applications of the GGSM model 
	Modeling the statistics of distorted images 
	Distortion-identification
	No-reference image quality assessment

	Conclusion and future work 
	References


