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Pansharpening and Hypersharpening
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Abstract— WorldView 3 (WV-3) is the first commercially
deployed super-spectral, very high-resolution (HR) satellite. How-
ever, the resolution of the short-wave infrared (SWIR) bands
is much lower than that of the other bands. In this letter, we
describe four different approaches, which are combinations of
pansharpening and hypersharpening methods, to generate HR
SWIR images. Since there are no ground truth HR SWIR
images, we also propose a new picture quality predictor to
assess hypersharpening performance, without the need for ref-
erence images. We describe extensive experiments using actual
WV-3 images that demonstrate that some approaches can yield
better performance than others, as measured by the proposed
blind image quality assessment model of hypersharpened SWIR
images.

Index Terms— Hypersharpening, image quality, multispec-
tral, pansharpening, short-wave infrared (SWIR), superspec-
tral, very high resolution (VHR), visible near infrared (VNIR),
WorldView 3 (WV-3).

I. INTRODUCTION

IT IS well known that images containing more spectral
bands allow for better discrimination power than images

with fewer bands. For example, a red–green–blue (RGB)
image enables much better discrimination capability than gray-
level images.

WorldView 3 (WV-3) data include 16 bands, excluding
the panchromatic band, at different resolutions (see Table I).
However, when collectively analyzing or fusing this data,
it would be ideal to generate 16 aligned very high-
resolution (HR) images. Although many algorithms [1]–[16]
have been proposed that fuse images from different bands,
this field is still evolving with new algorithms introduced
frequently.

In Section II, we describe four simple approaches for gener-
ating HR WV-3 short-wave infrared (SWIR) images. As part of
each approach, any of a number of pansharpening algorithms
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TABLE I

WV-3 DATA SET INFORMATION IN THIS PAPER

Fig. 1. Parallel one-step approach to generating HR VNIR and SWIR bands.

may be deployed. We also describe a necessary instrument to
evaluate hypersharpened SWIR images, in the form of a new
blind image quality assessment (IQA) algorithm, in Section III.
This is an important contribution, since existing no-reference
quality prediction schemes for pansharpened images [1] are
only applicable to scenarios where the pan band overlaps
the multispectral bands. The new quality prediction model is
applicable to scenarios especially when the pan band does not
overlap with the SWIR bands. Section IV describes how actual
images were used to compare the performances of the various
algorithms. Finally, concluding remarks and future research
directions are given in Section V.

II. FUSION APPROACHES

Some of the key WV-3 parameters are summarized
in Table I. We consider four simple but effective
fusion/pansharpening approaches that can be applied directly
to WV-3 images. These approaches involve a combination of
pansharpening and hypersharpening [17] paradigms because
the HR visible near infrared (VNIR) bands are generated by
pansharpening and the HR SWIR bands are generated by
hypersharpening, which is the fusion of VNIR bands with
lower resolution (LR) SWIR bands.

A. Approach 1: Parallel One-Step Fusion
As shown in Fig. 1, the “parallel one-step” approach

involves two parallel modules. This may be viewed as an
existing, standard approach to pansharpening, wherein an HR
pan band is used to enhance the other, LR bands. Module 1
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Fig. 2. Sequential fusion of pan, VNIR, and SWIR bands.

Fig. 3. Sequential-parallel fusion of pan, VNIR, and SWIR bands.

fuses the pan band with the eight VNIR bands, thereby
generating eight HR VNIR bands having equal resolutions
of 0.31 m. Module 2 fuses the pan band with the eight LR
SWIR bands, generating eight HR SWIR bands having the
same 0.31-m resolution. The outputs of Modules 1 and 2 are
merged to form an HR 16-band image cube. The two modules
can be executed in parallel.

B. Approach 2: Sequential Fusion

Fig. 2 shows a sequential pansharpening method. First, the
pan band and the eight LR VNIR bands are fused to generate
eight HR VNIR bands, having 0.31-m resolution. Then, the
eight pansharpened VNIR bands are fused with the eight LR
SWIR bands to generate eight hypersharpened SWIR bands
of resolutions also 0.31 m. Finally, the HR bands are merged
into a single 16-band image cube.

C. Approach 3: Sequential-Parallel Fusion

Fig. 3 depicts a sequential-parallel fusion approach. In this
system, there are two parallel paths. The first path has only
one step, whereby the pan band and the eight VNIR bands
are fused, yielding eight pansharpened bands having 0.31-m
resolution. The second path requires two steps. Step 1 involves
fusing eight VNIR and eight SWIR bands to generate eight
hypersharpened SWIR bands of 1.2-m resolution. Step 2 of
the second path involves fusing the pan band with the outputs
of step 1 to generate HR SWIR bands of 0.31-m resolution.
Finally, the outputs of the two paths are merged to form a
16-band HR image cube of 0.31-m resolution.

D. Approach 4: Parallel-Sequential Fusion

Finally, Fig. 4 illustrates a parallel-sequential fusion
approach. Module 1 implements fusion of the pan band with
the eight VNIR bands, while Module 2 fuses the eight VNIR
with eight SWIR bands. Both modules can be executed in
parallel. Module 3 then fuses the outputs of Modules 1 and 2
to generate eight HR SWIR bands. Lastly, the outputs of
Module 1 and Module 3 are merged to form a 16-band HR
image cube.

It should be noted that, in all the previously mentioned
approaches, an optional guided filter, with the pan band serving
as the reference image, could be applied to the output image
of each individual module to further improve the performance.

Fig. 4. Parallel-sequential fusion approach to generating HR VNIR and
SWIR bands.

III. BLIND IMAGE QUALITY ASSESSMENT

Section II described four different approaches to generating
HR SWIR images. Since there are no ground truth SWIR
images, it is difficult to assess which method delivers the
best performance, without some objective assessment models
that are widely used, e.g., in digital television and digital
cameras [18]. One possible approach is to apply the Wald’s
protocol [7]. However, for the WV-3 images (size of SWIR
is 100 × 100), we do not have HR SWIR images at the
pan resolution (2400 × 2400), which could be downsampled
to LR images for the purpose of using the Wald’s proto-
col. Fortunately, recent years have seen the advent of power-
ful no-reference IQA models and algorithms. In the remote
sensed image field, some algorithms have been developed
for assessing the quality of color/gray images [19], [20] and
multispectral images [1], [22], where the pan band overlaps
with the LR multispectral bands. For example, the model
in [22] is called quality with no reference (QNR). However,
to the best of our knowledge, there are no blind IQA tools
suitable for analyzing SWIR images when the pan band does
not overlap with the SWIR bands, which is the case for
WV-3 images and many other hyperspectral sensors.

It is well known that there are both spectral and spatial
distortions that arise as a consequence of the pansharpening
process [1], [22]. Here, we propose a new approach that
combines two complementary quality measurements, respec-
tively, of spectral and spatial distortions. The new model
is the product of a spectral distortion measurement and a
spatial distortion measurement. We call this new model the
generalized QNR (GQNR). We describe this model in the
following sections.

A. Spectral Distortion Metric

As described in [1], the spectral distortion measure with no
reference is defined as

Dλ = p

√√√√ 1
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) . Note that σI J is a weighted

local measurement of the sample covariance of I and J , and
Ī and J̄ are the means of I and J, respectively. Here, MS
and MSPS denote original LR images and pansharpened mul-
tispectral images, respectively, and no ground truth reference
images are needed. This model is an adaptation of the well-
known universal quality index [20], which in turn is a version
of the Emmy-award winning structural similarity model [21].
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Fig. 5. Pan image used in our experiment.

This index, Q(I ,J ) [20], which delivers values in the range
[0,1], measures the degree of correlation/similarity between
two images, while di, j captures the level of consistency
between the original MS bands and the pansharpened bands.
Hence, Dλ characterizes the spectral closeness between the
pansharpened bands and the original MS bands. A small value
of Dλ means that the spectral distortion is small.

B. Spatial Distortion Metric Based on NIQE

A “completely blind” IQA model was recently devel-
oped [19] that only makes use of measurable deviations from
expected statistical regularities that are observed on high-
quality natural images, without the need for training on human
rated distorted images, or indeed on any exposure to distorted
images at all. This model, called the natural image quality
evaluator (NIQE) [19], is based on the construction of a
“quality aware” collection of statistical features based on a
simple and successful space domain natural scene statistic
model. These features are derived on a corpus of natural,
undistorted images.

To assess the quality of pansharpened SWIR images, we first
constructed a corpus of high-quality SWIR images, then
extracted NIQE features from them to create an SWIR-specific
NIQE model, as described in [19]. In application, NIQE is
applied to each pansharpened band, yielding a score for that
band. The average of all the scores across bands, denoted
DS , is taken as the prediction of the spatial quality of a
pansharpened SWIR image cube having N bands. A small
value of DS means that the spatial quality is good.

C. Proposed Metric for Pansharpened SWIR Images

The QNR model in [1] and [22] cannot be applied in our
application, because the pan band does not overlap with the
SWIR bands in WV-3 images. Hence, we created the new
metric, defined as the product of Dλ and DS : Dλs = Dλ · Ds .
The use of product rule has two advantages. One is that it
is fair to each metric. Another one is that it can handle high
dynamic ranges. A small value of Dλs implies that the overall
quality is better. Since the new quality model is independent
of the requirement of overlap between the pan band and the
SWIR bands or the availability of any reference bands, we call
our new model the GQNR.

TABLE II

OBJECTIVE QUALITY SCORES ON PANSHARPENED VNIR IMAGES

Fig. 6. Zoomed-in views of the results of different pansharpening algorithms
applied on VNIR bands.

IV. EXPERIMENTAL RESULTS

Next, we present detailed evaluation results on actual
WV-3 images obtained from digital globe. One objective
is to compare the performance of the four pansharpening
approaches. The other objective is to see whether the proposed
image quality metric described in Section III makes accurate
quality predictions.

A. Pansharpened VNIR Bands

Among the four approaches described in Section II,
the generation of the VNIR bands is the same. That is,
we always use the pan band to pansharpen the eight VNIR
bands. Ten pansharpening algorithms were compared: prin-
cipal component analysis (PCA) [2], guided filter PCA [3],
Gram Schmidt (GS) [4], GS adaptive [5], modulation trans-
fer function generalized laplacian pyramid (MTF-GLP) [6],
MTF-GLP with high-pass modulation [7], MTF-GLP with
contextual-based decision [1], smoothing filter-based intensity
modulation [8], bicubic interpolation [9], and hybrid color
mapping (HCM) [10]–[16]. The list is a representative, if
not exhaustive, set of competitive pansharpening algorithms.
Fig. 5 shows the pan image used in our experiment. Since
the pan band overlaps with the VNIR bands, scores generated
using QNR [1] can be applied, with results summarized
in Table II. The ranks are determined based on the values
of QNR. We also show a small section of each pansharpened
image to allow visual comparison of performance. In Fig. 6,
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TABLE III

PERFORMANCE RESULTS FOR APPROACH 1

TABLE IV

PERFORMANCE RESULTS FOR APPROACH 2

the 5, 3, 2 bands were used to form an RGB image. From
Table II and Fig. 6, it may be seen that the GS algorithm
delivered the best performance.

B. Fused SWIR Images

The HR SWIR images were generated using the four
aforementioned approaches where all ten of the pansharpening
algorithms were used. The fusion of VNIR and SWIR is done
depending on the algorithms. For all the algorithms except
HCM, we created a “pan” band by taking the average of all the
VNIR bands. For the HCM, we directly used the eight VNIR
bands to sharpen the SWIR images. To objectively investigate
which approach yields the best results, we applied the GQNR
model described in Section III to the hypersharpened SWIR
images. Here, QNR was not applicable because the pan band
does not overlap with the SWIR bands.

Although NIQE is a blind assessment algorithm, it still
requires a process of training on good quality images.
We therefore built a training set of nearly 200 original
VNIR and pan images deemed to be of high visual quality;
no pansharpened or hypersharpened images were included.
During the training, the window size and sharpness threshold
parameters in NIQE were chosen to be 96 with no window
overlap and 0.3, respectively. After the NIQE model has been
trained, the model may be applied to generate DS scores.
It should be noted that the window sizes are design parameters,
which may be application dependent, and can differ in training
and testing. During testing, we used a window size of 256 with
an overlap of 64. ForDλ, there is no need for training.

Based on preliminary assessments, we observed that
the GQNR scores agree well with subjective evaluations.
Tables III–VI summarize the performance metrics generated
using the four approaches. The first column shows the names
of the various algorithms; the second to fourth columns show

TABLE V

PERFORMANCE RESULTS FOR APPROACH 3

TABLE VI

PERFORMANCE RESULTS FOR APPROACH 4

the Dλ, DS , and GQNR results, respectively; the fifth column
shows the rank of each method based on the GQNR score; the
sixth column shows the rank of each method among all the
methods for each of the four approaches; and the last column
shows the computational time required for each method.

From Table III, one can see that PCA yielded the lowest
GQNR score and hence the best rank (highlighted in bold
and with a “∗”). However, the overall rank of PCA was
only 11 among all the methods among the four approaches.

One can see from Table IV that the best rank of
Approach 2, 17, is lower than that of Approach 1, 11. Table V
shows that the HCM method yielded the lowest GQNR score
and was also the best among all approaches. By comparing
the various scores and ranks in Table VI, it may be seen that
Approach 4 delivered slightly inferior performance than that
of Approach 3.

Since the best rank only takes into account the performance
of a single method in an approach, it is also important
to analyze the performance of all methods across the four
approaches. Even when one compares the performance of a
respective method from Approaches 1 and 2 to Approaches 3
and 4, there is a general trend of improved performance, with
a few exceptions.

The computational complexity of the four approaches
is quite comparable. Although one would expect
Approaches 3 and 4 to have significantly longer computational
times due to additional processing blocks, these additional
blocks are executed very quickly. Note that these
computational times do not take into account the VNIR
pansharpening blocks, since all approaches employed the GS
method for this step.

For subjective visualization, we used the first three bands
of the fused SWIR image cube to generate a false color
image. A zoomed-in view of a small section of each image is
shown in Fig. 7, which only shows the GS results from each
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Fig. 7. Zoomed-in views of a small section of the pansharpened SWIR image
cube. Only the GS results from the four approaches are shown.

approach. It can be seen that Approaches 3 and 4 gave similar
visual performance while Approaches 1 and 2 were slightly
inferior, as many fine details (see details inside the red circles
in Fig. 7) were faint.

The above visual inspection corroborates well with
the GQNR scores. Looking at the overall ranks of GS
in Tables III–VI, GS of Approach 1 (rank 34) and GS of
Approach 2 (rank 29) were both lower than the GS scores
in Approach 3 (rank 6) and Approach 4 (rank 6). This is
because the GQNR scores for GS in Approach 1 (2.059)
and Approaches 2 (1.134) were worse than those of GS in
Approach 3 (0.274) and Approach 4 (0.274). Although the
DS scores in Approaches 2–4 are comparable, the spectral
distortion Dλ for Approaches 3 and 4 was much smaller. This
example also highlights the value of using GQNR, which
combines the distortion measures in both the spectral and
spatial domains.

V. CONCLUSION

Four ways of generating HR SWIR images in WV-3
images were studied. Using a powerful quality assess-
ment model, it was found that the standard approach to
pansharpening Approach 1 did not perform well. Two
approaches (Approaches 3 and 4) performed much better than
Approaches 1 and 2. The new objective IQA tool without
reference for fused SWIR images was used as the basis
of comparison. We believe that this new performance met-
ric (GQNR) is the first that can blindly assess pansharpened
image quality where the pan band does not overlap with
the SWIR bands. Our preliminary experiments show that the
fusion approaches and algorithms are promising. Our future
research plans include more experiments to validate the pro-
posed pansharpening ideas on the same class as well as other
classes of satellite data, including Landsat and Hyperion, and
additional systematic testing and development of IQA models
for fused SWIR images where pan bands do not overlap with
SWIR bands. We also plan to apply the best fused HR SWIR
image generation methods to applications such as vegetation
mapping, border monitoring, and surveillance.
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