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Abstract—Univariate models of the Natural Scene Statistics
(NSS) of perceived digital pictures have been deployed in a wide
variety of image and video processing applications. However,
much less effort has been made towards understanding, modeling,
and using bivariate image NSS. Towards filling this gap, Su et al.
developed a closed form correlation model of oriented bandpass
natural images applicable to adjacent pixels. We later extended
this model to account for pixels separated by larger spatial
distance. Here, we expand our previous work further to model the
bivariate responses of bandpass spatial filters covering a wider
range of bandwidths. Furthermore, we study the relationship
between the parameters of the closed form correlation model
and image spectral models.

Index Terms—Natural Scene Statistics; Bivariate Correlation
Models; Bandpass Natural Images; 1/f Noise Models.

INTRODUCTION

Understanding the perception of visual images has proven to
be highly useful when designing image and video processing
algorithms. By combining visual models with dual models of
univariate Natural Scene Statistics (NSS), tremendous success
has been obtained [1] on tasks as image interpolation [2],
texture modeling [3], [4], full reference and blind image/video
quality prediction (e.g. and MOVIE) [5], [6], and image
defocus algorithms [7]. Very recent bivariate NSS models
have proven quite difficult for improving color depth and
range modeling [8] and stereopair quality evaluation [9].
Deepening our understanding of the statistical relationships
between neighboring pixels in NSS is a desirable goal.

The main objectives of this work are 1) to extend our previ-
ous work [10] across more scales and distances, 2) to uncover
the relationship behind the parameters of the correlation model
as a function of scale and 3) to understand the relationship
between the classical 1/f image model [11] and the latter
parameters. The paper is organized as follows: in Section I,
we review relevant concepts from the literature regarding 1/f
processes and past work on bivariate natural scene statistics,
in Section II we briefly present our model, in Section III we
study the relationship between our extended model 1/f model
[11] and lastly validate our model in Section IV.

I. PREVIOUS WORK AND ESTABLISHED OBSERVATIONS

We begin by reviewing the 1/f noise process model and its
connection to our correlation model.

A. 1/f Image Model

Models of 1/f nonstationary random processes have been
applied to noise in vacuum tubes [12], biological evolution
[13], animal populations [14] , the development of economic
systems [15], and personal growth and development [16].

The wide range of applicability of the 1/f model is explained
by a deep law of nature that applies to nonequilibirum systems.
Using the tools of linear system analysis, Keshner [11] derived
a 1D nonstationary autocorrelation function 1/f process model.

Regarding images, Carlson et al. [17] noted that although
natural scenes have immense diversity, the amplitude spectra
of images follow the 1/f model. Field et al. [1] and Tolhurst
et. al. [18] later confirmed this observation. In the temporal
domain, the autocorrelation of 1/f processes follows a long
tailed form inversely proportional to a power of time. Here
we study the correlations of bandpass filtered images over
different spatial separations. Our interest in this is heightened
by a desire to understand how these correlations may relate
to the bivariate behavior of bandpass neurons in cortical area
V1 [1], [19], [20], [21], [22]. The basis behind this formidable
encoding schema is that the receptive fields of area V1 simple
cells are well modeled as localized, oriented, bandpass filters
making sparse spatial representations of natural visual stimuli
possible [21].

B. Bivariate NSS Models

Here we review early work on bivariate natural scene
statistics and summarize recent open-form and closed-form
bivariate NSS models.

The coefficients of orthonormal wavelet coefficients of
natural images tend to be decorrelated [23] and to exhibit intra
and inter scales dependencies [24]. This can be modelled using
a circularly symmetric bivariate distribution to account for the
spatial dependencies between image wavelet coefficients and
their parents (at coarser scale locations); as in Sendur et al.’s
model [25].

The latter observations were exploited in Portilla and Si-
moncelli [26], who tackled the problem of natural image
texture modeling by imposing a set of parametric constraints
on pairs of complex wavelet coefficients at adjacent spatial lo-
cations, orientations and scales within a non-Gaussian Markov
Random Field context. Their method of selecting statistical
constraints relied on structural and statistical observations of
the early Human Visual System (HVS). Other open-form
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models include Po et al.’s model [27] which represents natural
images using a hidden Markov tree, a Gaussian mixture
model, and two dimensional contourlets to capture interloca-
tion, interscale, and interdirection dependencies; and Mumford
et al. [28] who proposed an infinitely divisible model of
generic image statistics by segmenting the environment into
objects cast against an ergodic field, containing regions with
little information (e.g. blue sky). However this model does
not capture the 2D dependencies between (bandpass) image
luminances.

The first attempt to create a closed form bivariate correlation
model was described in [29], which modeled the responses of
adjacent oriented bandpass natural image pixels. This model
proved useful in two applications; color depth and range mod-
eling [8] and stereopair quality evaluation [9]. This model of
“perceptually transformed” bandpass and normalized images
could supply powerful priors for a more extensive set of
visual processing problems. In [10], we broadened this model
to account for non-adjacent distances, while also exploring
simplifications of the model. However, we did not explore the
effect of scale on the model.

II. THE MODEL

Next we unveil the processing steps used in our model,
while relating each step to relevant processing stages in visual
cortex. Image processing was accomplished on the 29 high
quality pristine images from the LIVE IQA database [30]. The
followed stages are summarized in Fig.1.

Fig. 1. Flow Chart of the Model

A. Steerable Filters

We only study NSS modeling of bandpass luminance im-
ages although chromatic NSS models are also of high interest.
We use steerable filters [31] as a simple and easily manipulated
model of bandpass simple cells in primary visual cortex. A

steerable filter at a given frequency tuning orientation θ1 is
defined by:

F (θ1) = cos(θ1)Fx + sin(θ1)Fy (1)

where Fx and Fy are the gradient components of the two di-
mensional bivariate gaussian function, where Fx and Fy have
unit energy. Image decompositions using steerable filters yield
decorrelated representations over scale and orientation which
resemble spatial cortical responses. Altering the variance σ of
the bivariate gaussian function (differentiated to obtain Fx and
Fy) accounts for the multi-scale decomposition computed by
simple cells in area V1. In [29], the variance σ spanned values
ranging between 1 to 4.

We deployed many more scales, by varying σ between 1
and 15. The (half-peak) octave bandwidth of the steerable
filter (1) is about 2.6 octaves. We computed responses on all
images over 15 frequency tuning orientations θ1 ranging over
[0, π/15, 2π/15, ..., π].

B. Divisive Normalization

Divisive normalization was applied on all the steerable filter
responses. This step models the nonlinear adaptive gain control
of V1 neuronal responses in visual cortex [19]. This process
also gaussianizes and further decorrelates the image data [32],
[23]. The divisive normalization model used here is:

u(xi, yi) =
w(xi, yi)√

s+
∑
j g(xj , yj)w(xj , yj)

2
(2)

where (xi, yi) are spatial coordinates, w are the wavelet
coefficients, u are the coefficients obtained after divisive
normalization, and s = 10−4 is a semi saturation constant.
The weighted sum is computed over a spatial neighborhood
of pixels in the same sub-band indexed by j (assuming a
window of dimensions 3 × 3 hence j = 9). The Gaussian
weighting function, g(xi, yi), is circularly symmetric and has
unit volume.

C. Modeling the Correlation Function

We will start by giving the intuition behind computing
the correlation function. We computed the bivariate joint
distribution of our model and used a multivariate Bivariate
Generalized Gaussian Distribution (BGGD) to model it:

p(x;M, α, β) =
1

|M| 12
gα,β(x

TM−1x) (3)

where x ∈ R2, M is an 2 × 2 scatter matrix, α and β
are scale and shape parameters respectively, and gα,β(.) is
the density generator. In order to understand the behavior
of the scatter matrix, we computed the correlation function
between a window of the image and a shifted version of it.
The distance between the two shifted windows will be denoted
by d while the angle between them will be denoted by θ2.
The correlation function model exhibits a periodic behavior
in the relative angle θ2 − θ1, where θ1 and θ2 are the sub-
band tuning and spatial orientations respectively. The spatial
orientation is θ2 = arctan(

δy
δx
) where δx and δy are the row
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and column differences between coordinates of the responses
after divisive normalization. Similarly to [10], δx and δy span
absolute integer distances between 1 and 10, although sub-
pixel distances are of interest. The tuning orientation θ1 is
the frequency tuning orientation of the steerable filter. We
deployed 15 sub-band orientations {0, π15 ,

2π
15 , ..., ,

14π
15 } rad

when building our model.
The correlation is modeled as:

ρ(d, σ) = A(d, σ)cos(2(θ2 − θ1)) + c(d, σ) (4)

where A > 0 is the amplitude, c is an offset, d is the spatial
separation between the target pixels and σ is the steerable filter
variance.

This modeling process was performed on all the 100 pristine
images for each θ1, θ2 and scale. Model fits were applied on
the average correlation values of the 100 images from the two
databases. We used non-linear regression to find the best fit.

By examining the correlation coefficient plots we observe
that the maximal correlation P = max(ρ) is obtained when
θ2 − θ1 is equal to 0, as in Fig. 2. Generally, the maximal
correlation falls as the relative distance between the bandpass
samples increases. This is depicted in Fig. 2.

Fig. 2. ρ versus the relative orientation at θ2 = π/2, for d = 1 and σ = 1

III. RELATION OF THE MODEL TO THE 1/f PROCESSES

The correlation function of 1/f processes follows a long
tailed distribution [11] as a function of time. We would like
to understand this relationship for images: we consider the
correlation function, ρ as a function of spatial separation. Here,
we define the peak as P = max(ρ) = A + c, therefore for
convenience we will rewrite (3) as:

ρ(d, σ) = A(d, σ)cos(2(θ2 − θ1)) + [P (d, σ)−A(d, σ)] (5)

Looking at P (d), the value decreases from P (0) = 1 as
the spatial separation increases; which is natural because one
should expect less correlation between pixels as the spatial
separation increases. We decided to model the peak in the
form of K

d
a0

b0+K
, which is similar to the model arrived at in

[11] but using a different way of stabilizing near d = 0. For
θ2 = π/2, P is expressed as:

P (d, σ) =
3

( d
a0(σ)

)b0(σ) + 3
(6)

The value K = 3 in the denominator guarantees the stability
of the system when d approaches 0 while giving a good fit to
the empirical data. This results in the presence of the term 3 in
the nominator so that the peak value does not exceed 1 because
the correlation cannot exceed a value of 1. The parameters a0
and b0 exhibit a nearly ideal linear behavior against scale:

a0 = 0.777σ + 0.487 (7)

b0 = −0.059σ + 2.514 (8)

We model A as the difference of two functions of the form
(6) scaled differently. For θ2 = π/2, the following good fit is
obtained:

A(d, σ) =
3

( d
a1(σ)

)b1(σ) + 3
− 3

( d
a2(σ)

)b2(σ) + 3
(9)

Similarly to a0 and b0, a1, b1, a2 and b2 depict a linear
behavior:

a1 = 1.907σ + 0.511 (10)

b1 = 0.048σ + 3.464 (11)

a2 = 0.923σ + 0.440 (12)

b2 = −0.090σ + 2.417 (13)

We fitted P and A using a two steps nonlinear regression.
First, we fitted P and A to (6) and (8) respectively. Then we
fixed the values a0, a1 and a2 and reused (6) and (8) to find
the values for b0, b1 and b2.

Fig. 3 presents examples of the peak and amplitude versus
the spatial separation, d, for multiple values of σ at θ2 = π/2.

IV. VALIDATION OF THE MODELS OF P AND A

We validated the models of P and A by taking the Mean
Squared Error (MSE) and Mean Absolute Error (MAE) be-
tween P obtained by fitting the data and the estimated P
using (6). We repeated the same operations for A and (9).
The results for a few scales are summarized in Table I.

TABLE I
MSE AND MAE OF A AND P

MSE of A MAE of A MSE of P MAE of P
σ = 1 1.223E-04 8.553E-03 8.679E-04 2.519E-02
σ = 2 2.962E-05 4.185E-03 7.682E-04 2.083E-02
σ = 3 3.215E-06 1.560E-03 9.823E-05 8.182E-03
σ = 4 1.781E-07 3.043E-04 4.598E-05 5.601E-03
σ = 5 3.992E-08 1.501E-04 3.374E-05 5.003E-03
σ = 6 2.063E-08 8.568E-05 1.735E-05 3.482E-03
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Fig. 3. P and A versus d for θ2 = π/2 for σ = 2, 4 and 6

CONCLUSION AND FUTURE WORK

In this paper, we extended the work in [10] over more scales
and presented how the correlation of pixels in natural images
at different spatial separations follow an intuitive functional
form. One advantage of our model is its simplicity. In the fu-
ture, we will extend this model to all possible spatial angles or
θ2 values, study how the model varies for different modalities
of images such as infrared and HDR images, as the bivariate
NSS of these two types of images have not been explored yet,
and use the model as a building block in image/video quality
assessment metrics and in texture modeling.
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