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Application-Driven No-Reference Quality
Assessment for Dermoscopy Images

With Multiple Distortions
Fengying Xie∗, Yanan Lu, Alan C. Bovik, Fellow, IEEE, Zhiguo Jiang, and Rusong Meng

Abstract—Goal: Dermoscopy images often suffer from blur
and uneven illumination distortions that occur during acquisi-
tion, which can adversely influence consequent automatic image
analysis results on potential lesion objects. The purpose of this
paper is to deploy an algorithm that can automatically assess the
quality of dermoscopy images. Such an algorithm could be used
to direct image recapture or correction. Methods: We describe an
application-driven no-reference image quality assessment (IQA)
model for dermoscopy images affected by possibly multiple distor-
tions. For this purpose, we created a multiple distortion dataset of
dermoscopy images impaired by varying degrees of blur and un-
even illumination. The basis of this model is two single distortion
IQA metrics that are sensitive to blur and uneven illumination,
respectively. The outputs of these two metrics are combined to pre-
dict the quality of multiply distorted dermoscopy images using a
fuzzy neural network. Unlike traditional IQA algorithms, which
use human subjective score as ground truth, here ground truth is
driven by the application, and generated according to the degree of
influence of the distortions on lesion analysis. Results: The exper-
imental results reveal that the proposed model delivers accurate
and stable quality prediction results for dermoscopy images im-
paired by multiple distortions. Conclusion: The proposed model is
effective for quality assessment of multiple distorted dermoscopy
images. Significance: An application-driven concept for IQA is in-
troduced, and at the same time, a solution framework for the IQA
of multiple distortions is proposed.

Index Terms—Application driven, dermoscopy image, image
quality assessment (IQA), multiple distortions, no reference (NR).

I. INTRODUCTION

D ERMOSCOPY is a noninvasive diagnostic technique
which is useful in diagnosis of many skin diseases [1].

In recent years, dermoscopy technology has been developing
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toward network platforms. In 2005, Iyatomi et al. built an
Internet-based remote diagnosis system [2], which permits or-
dinary people to upload dermoscopy image for analysis and
diagnosis of skin diseases. In 2010, a Handyscope [3] was de-
veloped, by which dermoscopy images can be captured using
a mobile phone. This development has enabled more nonclin-
ical physicians to capture and upload dermoscopy images into
remote diagnosis systems. Unfortunately, this process can eas-
ily lead to poor image quality (arising from, for example, hair,
blur, and uneven illumination), which can adversely influence
subsequent analysis. In [4] and [5], Rosado et al. pointed out
that the quality of dermoscopy images captured via mobile de-
vice is problematic, and proposed a blur evaluation method for
these types of images. This suggests that accurate image quality
assessment (IQA) algorithms would be of great value towards
assuring that the images being used for diagnosis or analysis
stage are of high quality.

Blur and uneven illumination are two common distortions of
dermoscopy images. It is a more complex problem to evaluate
the image quality when multiple distortions (more than one dis-
tortion type) occur, since the distortions can interact and modify
each other. However, recent work on dermoscopy image anal-
ysis has mainly focused on hair detection and removal, lesion
segmentation, and classification [6]–[10]. IQA of dermoscopy
images has thus far received little attention.

Over the past decade, numerous no-reference (NR) IQA
models have been proposed for different purposes. These can
be roughly divided into two groups: 1) models developed
for specific image distortion types and 2) general-purpose or
nondistortion-specific (sometimes called agnostic) models. IQA
models developed for a single specific distortion type such as
blur [11], JPEG [12], JPEG2000 [13], or noise [14] generally
fail in the presence of other distortions. General-purpose IQA
algorithms [15]–[18] are effective for assessing many types of
single distortions. However, existing algorithms do not address
two problems. First, almost all IQA algorithms have been de-
signed to predict human judgments of perceived quality. How-
ever, in applications, high visual quality may not equate to high
application value. For example, in medical image analysis, the
quality of images should be expressed in terms of benefit in
the sense that image analysis tasks be more efficient on images
having high “task quality.” Second, most of the distorted images
in publicly available IQA datasets such as TID [19], IVC [20],
A57 [21], LIVE II [22], and CSIQ [23] suffer from a single dis-
tortion type, although LIVE recently built a multiple distorted
(MD) image quality dataset [24]. None of the images in these
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databases are directed toward any visual analysis or specific
visual tasks, save the IQA task. Experiments indicate that state-
of-the-art IQA models performed more poorly on the LIVE MD
dataset than on single distortion datasets. The MD images are
a challenge for IQA, since both the individual and joint ef-
fects of these distortions on the image as well as the effects of
these distortions on each other must be considered [25]. In [26],
Gu et al. proposed a five-step metric for assessing the quality of
two types of MD images (blur followed by noise and blur fol-
lowed by JPEG). Their experiments showed good performance
on the LIVE MD dataset.

Here, we develop an application-driven NR IQA algorithm
for assessing the task-related quality of dermoscopy images suf-
fering from multiple distortions (blur and uneven illumination).
The algorithm is called assessment of dermoscopy images with
multiple distortions, or ADMD for short. Unlike traditional IQA
algorithms driven by human vision models, in the proposed al-
gorithm, ground truth is defined in terms of the influence of
distortions on the efficacy of lesion analysis algorithms applied
on dermoscopy images. An assessment model learned by a fuzzy
neural network is used to predict the overall quality of MD der-
moscopy images. The rest of this paper is organized as follows:
Section II describes the new dataset. Section III presents the
proposed IQA model and algorithm in detail. Experiments and
analysis are presented in Section IV, and Section V concludes
the paper.

II. DISTORTED DERMOSCOPY IMAGE DATABASE

A. Data Generation

Following the method of distorted image generation used by
other public IQA datasets [19]–[24], the distorted images were
created from reference dermoscopy images by applying blur
followed by uneven illumination to them. Dermoscopy images
usually suffer from vignetting, with black borders at the im-
age boundaries [27], [28]. Since reference dermoscopy images
should be undistorted, the vignetting and black border regions
in them were removed. Fig. 1 depicts a number of MD images.
The image at leftmost in the first row is the reference image.
By filtering the reference image using an approximately cir-
cular averaging filter of varying radii, four blur images were
generated, as shown in the first row. Then, by adding different
uneven illumination masks (shown in Fig. 2) to each of these
blur images, the next four rows of images with uneven illumi-
nation were generated, shown in the second to the fifth rows.
Therefore, there are five levels of each distortion. The distortion
severity increases from level 1 to level 4, whereas level 0 has no
introduced distortion of that type. In the overall dataset, there
are 18 representative reference images, each associated with
24 corresponding distorted images. Therefore, 450 images were
obtained, including the references. There are 25 different distor-
tion level/distortion combinations, each containing 18 images.

B. Image Quality Ground Truth

In the traditional IQA research, ground truth of true percep-
tual quality of distorted images is obtained via subjective ex-
periments. However, in automatic dermoscopy image analysis,

Fig. 1. Examples of MD dermoscopy images.

Fig. 2. Simulated uneven illumination masks. (a) Level 1. (b) Level 2. (c)
Level 3. (d) Level 4.

the image quality can significantly affect the accuracy of the
subsequent analysis in two regards: segmentation and classi-
fication. Therefore, instead of regarding human judgments as
ground truth, we have created a ground-truth database that ex-
presses image quality as a function of the degree of influence
on both segmentation and classification.

1) Index of Influence on Segmentation: Segmentation results
often change with increases of distortion level. Otsu’s threshold-
ing method [29] is simple and quick for calculation. Therefore,
we used the Otsu’s thresholding method to segment all of the
images in the dataset. The difference in the segmentation results
on the distorted image and its corresponding reference image is
determined using the “XOR metric” [30]. A small XOR met-
ric value indicates that the segmentation result of the distorted
image is close to that of its reference image, which ostensibly
means that the distortion is slight, whereas a large XOR metric
value likely indicates a serious distortion.

Assume that the distorted images can be indexed by groups,
where the images in each group have suffered the same degree
of both blur and uneven illumination distortions. Then, for the
ith group, the degree of influence of the composite of distortion
combinations and distortion levels on segmentation is defined
as the average value of the XOR metric values between the
segmented versions of those images and those of the aligned
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Fig. 3. Flowchart of the proposed algorithm ADMD.

reference images. The XOR metric used here is

gXORi =
1
Ni

Ni∑

j=1

XORij, i = 1, 2, . . . 25 (1)

where XORij is the XOR value between the segmentation of
the jth image in the ith group and that of its aligned reference,
and Ni is the number of images in the ith group. Here, of course,
we are summing XOR values as if they were algebraic, which is
a simple way of expressing and normalizing a counting process.
Here, Ni = 18.

2) Index of Influence on Classification: Image distortions
may change the results of classification algorithms on lesions.
If the lesion classification in the distorted image is different from
that of its aligned reference image, then the distortion influences
classification. Here, we use a classification method based on a
neural network [31] to automatically classify all of the images.
On the ith group, if ni is the number of images having a different
classification result with their aligned reference images, then
the degree of influence of the corresponding distortion on lesion
classification is defined as

ri =
ni

Ni
, i = 1, 2, . . . 25 (2)

where Ni is the same as in (1). The value of ri falls between 0
and 1. The larger the value of ri , the more serious the influence
on lesion classification.

3) Ground-Truth Image Quality: Finally, we linearly com-
bine gXORi and ri to form the overall ground-truth quality
index of the MD image

qi = L(α ∗ gXORi + (1 − α) ∗ ri), i = 1, 2, . . . 25

L(xi) =
1

max(xi) − min(xi)
(xi − min(xi)) (3)

where α is a weight parameter, set to 0.3 according to the
dermatologist’s experience in this paper; and L(·) remaps
qi, i = 1, 2 . . . 25 to fall in the range [0,1]. Generally, the smaller
the qivalue, the higher the task-affective image quality.

III. METHOD

Finding IQA models that can handle multiple distortions has
proven difficult and to date, there exists little research providing
a detailed analysis of the problem or that can guide one to a sat-
isfactory solution [25]. Here, we propose a quality assessment
framework that can handle images impaired by two coincident
distortions: blur and uneven illumination. Features that are sen-
sitive to these distortions are extracted and mapped to different
distortion levels. Then, a fuzzy neural network is used to model
the joint effect of blur and uneven illumination to enable predic-
tion of the overall image quality. Fig. 3 illustrates a flowchart of
the proposed method.

A. Blur Distortion Evaluation

Natural scene statistics (NSS) features are widely used in
many state-of-the-art IQA algorithms [17], [32], [33]. Many
NSS models are based on the empirical distributions of images
decomposed by a wavelet transform into multiple subbands.
The statistics of low–high (LH) and high–low (HL) subbands
are similar [17], so they can be calculated together. Here, an
input image is decomposed into four scales, hence, eight wavelet
subbands are obtained. For each subband, a simple magnitude
feature mk is calculated as

mk =
1

Mk × Nk

Mk∑

i=1

Nk∑

j=1

log2 |Ck (i, j)|k = 1, 2, . . . 8 (4)

where Ck (i, j) is the kth subband coefficient at (i, j), and Mk

and Nk represent the width and length of the kth subband,
respectively. Then, the wavelet feature vector can be written as

fm = [m1 ,m2 , · · ·m8 ]T . (5)

Fig. 4 shows the magnitude features of images having differ-
ent applied blur levels. Clearly, increases of the blur distortion
level yields sharp decreases in the magnitude feature, which is
highly indicative of the degree of blur distortion. Fig. 5 shows
the magnitude features of images exhibiting different uneven
illumination levels. These values lie very close to each other,
because the magnitude feature is hardly affected by uneven
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Fig. 4. Magnitude features of blur images, where red, green, blue, black, and
magenta lines represent blur levels 0 to 4, respectively, and each line is the
average result of ten distorted images.

Fig. 5. Magnitude features of uneven illumination images, where different
color lines represent different uneven illumination levels, and each line is the
average result of ten images. The curves heavily overlap each other.

illumination. This suggests that the magnitude feature may be
used to correctly estimate the blur degree even when there is
illumination distortion in the image.

The feature vector in (5) is mapped to blur distortion level
using a support vector regressor (SVR). An SVR is able to
handle high-dimensional data [34], and has been proved to be
highly effective for solving other IQA problems [33], [35], [36].
For more details about an SVR, see [33]–[36].

B. Uneven Illumination Evaluation

As compared with blur, research reports on assessing the
quality of images afflicted by uneven illumination are quite
rare. In order to evaluate the level of this type of distortion, we
decompose the distorted image into an illumination component
and a reflectance component using a model from variational
Retinex theory, and extract the illumination component via basis
function fitting. Then, the average gradient magnitude of the
illumination component (AGIC) is used to evaluate the level of
uneven illumination distortion [37]. Fig. 6 is an instance of the
extracted illumination component. AGIC can be calculated as

AGIC =
1

M × N

M∑

i=1

N∑

j=1

g(i, j)

g(i, j) =
max |h(i, j) − hk (i, j)|

h(i, j)
, k = 1, 2, . . . 8 (6)

where i ∈ {1, 2, · · ·M}, j ∈ {1, 2, · · ·N}, and h(i, j) and
hk (i, j) represent the average gray value of patch (i, j) and

Fig. 6. Examples of illumination component extraction. (a) Uneven illumina-
tion image. (b) Extracted illumination component.

Fig. 7. AGIC features of uneven illumination images, where red, green, blue,
black, and magenta lines represent uneven illumination levels ranging from level
0 to level 4 respectively. Each line is the average result of ten images.

its eight-connected neighbors on the illumination component,
respectively. The function g(i, j) is a simple approximation of
the gradient magnitude. For more details regarding the uneven
illumination extraction and evaluation method, please see [37].

In order to better characterize the uneven illumination, a mul-
tiscale version of AGIC was also developed and used. AGIC
was calculated over different patch sizes including 1 × 1 (un-
patched), 10 × 10, and 50 × 50 to form a feature vector

fAGIC = [AGIC1 ,AGIC10 ,AGIC50]T . (7)

Fig. 7 plots the AGIC features of images afflicted by different
uneven illumination levels. Clearly, increases of the illumina-
tion distortion level yield sharp increases in the AGIC feature,
hence, AGIC features are indicative of the degree of illumina-
tion distortion. Fig. 8 plots AGIC features of images having
different blur levels. They are tightly clustered indicating that
the AGIC feature is insensitive to blur distortion. Therefore,
the AGIC feature is suitable for uneven illumination evaluation
even if the image suffers from blur distortion. As with the blur
evaluation, an SVR is used to map AGIC feature to illumination
distortion levels.

C. Final Image Quality Prediction

The overall image quality score is predicted by combining
the predicted levels of blur and uneven illumination. In [26],
Gu et al. used a linear combination of single distortion quality
measures to obtain a final image quality. However, they did not
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Fig. 8. AGIC features of blur images, where different color lines represent
different blur levels. Each line is the average result of ten images. The curves
heavily overlap each other.

Fig. 9. Schematic diagram of the fuzzy neural network.

account for nonlinear relationships between the degree of the
single distortions and the final image quality [24], [25]. Here,
we deploy a fuzzy neural network to model the complex joint
effects of the two distortions on final quality score.

A fuzzy neural network [38] combines fuzzy logic with an
artificial neural network to create an inference system. It is a
powerful tool for handling uncertain, nonlinear, and other ill-
posed problems. Fig. 9 shows the schematic diagram of the
fuzzy neural network, which consists of five layers: input layer,
fuzzy layer, rule layer, normalization layer, and output layer. In
the proposed method, the two inputs descriptive of an image x1
and x2 are the blur and uneven illumination levels, respectively.
The output y represents the image quality score, which is the
ground truth in the training stage and the prediction in the test
stage. Here, the number of nodes in the five layers is 2–10–25–
25–1. In the training stage, the fuzzy neural network is trained on
the image’s single distortion levels and the quality ground truth
to obtain a quality prediction model. In the test stage, blur and
uneven illumination features are extracted from distorted images
and mapped to distortion levels. Then, using the distortion levels
as inputs, the quality score y is delivered.

IV. EXPERIMENTS AND ANALYSIS

In order to quantitatively validate the performance of the pro-
posed algorithm, experiments were conducted in regards to four
aspects using our dataset: 1) effectiveness of the single distor-
tion metrics; 2) effectiveness of the overall quality assessment

Fig. 10. Blur prediction.

Fig. 11. Uneven illumination prediction.

model; 3) sensitivity of the model in relation to the training set
size; and 4) performance for real distorted dermoscopy images.
The performances of competing IQA algorithms were compared
using two evaluation criteria: the Pearson linear correlation co-
efficient (LCC) and the Spearman rank-order correlation coeffi-
cient (SROCC). The LCC between the actual quality scores and
the algorithm predicted scores provides an evaluation of pre-
diction accuracy. The SROCC estimates the agreement between
the rank-ordered actual quality score and the rank-ordered algo-
rithm predictions and is a test of prediction monotonicity. The
closer the value of LCC and SROCC are to 1, the better the
performance of the algorithm is.

A. Effectiveness of the Single Distortion Metric

The accurateness of the single distortion assessment metrics
substantially determines the efficacy of the proposed method.
Each image group in our dataset was randomly divided into two
parts, one for training and the other for testing. The images tested
in this experiment included all distortion combinations. Figs. 10
and 11 show the single distortion prediction results. For each
actual blur level in Fig. 10, the images include different degrees
of uneven illumination ranging from level 0 to level 4, and the
blur prediction results of different blur levels may be observed to
be well separated. Thus, the proposed blur metric can effectively
evaluate blur degree when the image also suffers from uneven
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TABLE I
AVERAGE LCC AND SROCC OF THE SINGLE DISTORTION METRICS

Blur Uneven Illumination

LCC 0.9643 0.9838
SROCC 0.9534 0.9753

Fig. 12. Results of FSIM.

Fig. 13. Results of QAC.

illumination distortion. As with the blur metric, the proposed
uneven illumination metric is insensitive to blur distortion, and
can effectively evaluate uneven illumination degree even in the
presence of blur distortion. Table I gives the average LCC and
SROCC scores after repeating the training and testing process
1000 times. It can be seen that the proposed blur and uneven
illumination metric is in high agreement with the actual single
distortion level.

B. Effectiveness of the Overall Quality Assessment

The overall effectiveness of the proposed ADMD model was
evaluated on the database of MD dermoscopy images. A lin-
ear combination of blur and uneven illumination measures was
compared with the ADMD method. Several other IQA algo-
rithms, including the full reference method FSIM [39], and two
nondistortion-specific NR methods NIQE [16] and QAC [18]
were also used to compare with our method. Figs. 12–16 show
the quality prediction results of the five methods on our dataset,

Fig. 14. Results of NIQE.

Fig. 15. Results of linear combination.

Fig. 16. Results of ADMD.

while Table II shows the LCC and SROCC scores. Obviously,
FSIM, QAC, and NIQE all fail. The FSIM metric is designed
to simulate human judgments of image quality, while here the
ground truth of dermoscopy image quality is taken to be the
degree of influence of the distortion on lesion analysis. QAC
is based on FSIM, so they both fail. The failure of FSIM and
QAC highlights the idea that the goals of application-driven IQA
are different from those of the traditional IQA with regards to
both target and solution. NIQE is a method based on NSS fea-
tures. While NSS features are used to evaluate blur distortion in
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TABLE II
AVERAGE LCC AND SROCC OF THE COMPETING IQA METHODS

FSIM QAC NIQE Linear Combination Proposed ADMD

LCC 0.4774 0.1074 0.1520 0.8310 0.9740
SROCC 0.5623 0.1144 0.1083 0.8899 0.9544

TABLE III
LCC FOR DIFFERENT TRAINING SET SIZE

Ratio of Training Samples 60% 70% 80% 90%

Linear combination 0.8322 0.8304 0.8293 0.8299
Proposed ADMD 0.9731 0.9742 0.9752 0.9738

TABLE IV
SROCC FOR DIFFERENT TRAINING SET SIZE

Ratio of Training Samples 60% 70% 80% 90%

Linear combination 0.8901 0.8892 0.8883 0.8814
Proposed ADMD 0.9531 0.9547 0.9549 0.9524

ADMD. NIQE is also unsuccessful in this experiment, owing
to its inability to gauge uneven illumination. The linear combi-
nation of blur and uneven illumination metrics achieves a better
result than FSIM, QAC, and NIQE, but it does not compete
well with ADMD, which delivers the most accurate prediction
results among the five methods.

C. Sensitivity in Relation to Training Set Size

Many IQA algorithms heavily rely on the size of the training
set. Their performance often becomes worse when the number
of training samples decreases. In this experiment, the percentage
of samples used for training ranged from 60% to 90%, while the
percentage of test samples correspondingly ranged from 40%
to 10%. Repeating the training and test procedure 1000 times
yielded average LCC and SROCC scores for the linear combi-
nation method and for ADMD as shown in Tables III and IV.
The results of FSIM, QAC, and NIQE are not given here, since
they are not based on train-test processes; moreover, all of them
failed in the test application in Section IV-B. From Tables III and
IV, it can be seen that the proposed ADMD algorithm achieved
better LCC and SROCC scores under all divisions of training
samples. With LCC and SROCC greater than 0.95, the perfor-
mance of ADMD is quite stable. As a check, we also conducted
a complete cross-validation study ranging from twofold to ten-
fold, and found substantially the same results over all divisions
as we report here using random selection. For brevity, we only
report the latter results.

D. Performance for Real Distorted Dermoscopy Images

We collected 162 images suffering from real distortions, in-
cluding blur and uneven illumination, obtained under a variety
of capture conditions. In this section, the ground-truth quality

TABLE V
SINGLE DISTORTION METRICS FOR REAL DISTORTED DERMOSCOPY IMAGES

Blur Uneven Illumination

LCC 0.9254 0.9118
SROCC 0.9193 0.9060

TABLE VI
AVERAGE LCC AND SROCC FOR REAL DISTORTED DERMOSCOPY IMAGES

QAC NIQE Linear Combination Proposed ADMD

LCC 0.1996 0.1859 0.7639 0.8415
SROCC 0.2566 0.2167 0.8389 0.8592

is determined and the effectiveness of the proposed ADMD is
verified for real distorted dermoscopy images.

1) Ground-Truth Quality for Real Distorted Images: Unlike
simulated images, real distorted dermoscopy image do not have
associated reference images. Therefore, it is not possible to
calculate gXOR and r indexes as in (1) and (2), hence, ground
truth (3) is unavailable. As an alternative, a synthetic ground-
truth comparison was accomplished using simulated distorted
images, as follows.

Given a real distorted dermoscopy image, we found a simu-
lated distorted image from the simulated dataset, suffering from
similar degrees of blur and uneven illumination. The blur and
uneven illumination distortion levels of the simulated image
were considered as an approximation to the distortion levels of
the real image. Following Section II-B, when two images suf-
fer from similar blur and uneven illumination levels, they are
regarded as having similar quality ground truth. Therefore, the
ground-truth quality of the real distorted image is set to be the
same as that of the corresponding simulated image.

2) Correlation Analysis: The blur and uneven illumination
levels of each real distorted image are predicted using the meth-
ods described in Sections III-A and III-B. The prediction accu-
racy was evaluated using two correlation measures: LCC and
SROCC. The results are tabulated in Table V. It may be seen that
the single distortion indices proposed here are able to predict the
degree of blur and uneven illumination degree effectively. Ta-
ble VI compares four assessment methods with respect to over-
all quality assessment. The proposed ADMD model delivers the
most accurate prediction results among these methods. Com-
paring Table VI with Table II, the quality prediction accuracy
of ADMD on real distorted images is lower than on simulated
dermoscopy images, which is to be expected [40]. However,
the values LCC = 0.8415 and SROCC = 0.8592 obtained by
ADMD on the real distorted images are quite satisfactory.

3) Removal of Low-Quality Filtration: The performance of
ADMD on real distorted images can also be verified by assess-
ing the statistical accuracy of subsequent lesion analysis against
the quality predictions. The quality scores y on real distorted
images lie between 0 and 1, where a higher quality score in-
dicates worse image quality. When the quality y of an image
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Fig. 17. Segmentation accuracy using different quality thresholds. The num-
bers with arrows indicate the number of images remaining following application
of the threshold T .

was greater than a threshold T , the image was removed from
consideration. Therefore, only images of high quality (y < T )
were saved and used for the subsequent lesion analysis. We
used tenfold cross validation to obtain quality predictions on
the real images. Fig. 17 plots segmentation accuracy against the
quality threshold T . The segmentation accuracy is expressed
as the mean XOR value of the remaining images. A smaller
XOR indicates a higher segmentation accuracy. The relation-
ship in Fig. 17 is largely monotonic. The mean XOR value
decreases as the quality threshold is reduced. This suggests that
our application-driven IQA algorithm is quite useful for ensur-
ing the accuracy of lesion segmentation and is effective on real
distorted images. The classification accuracy is not given here
since very few malignant lesion samples were present in the
data.

V. CONCLUSION

An IQA process would be a highly desirable part of the pro-
cess of acquiring dermoscopy images to ensure that the images
being analyzed are not distorted. Toward this end, we intro-
duced a novel application-driven IQA model called ADMD for
analyzing the quality of MD dermoscopy images. In this algo-
rithm, two single distortions: blur and uneven illumination are
separately evaluated. Then, taking the two single distortion lev-
els as inputs, the overall image quality is predicted by a fuzzy
neural network. There are four main contributions made. The
first is a new application-driven IQA concept is proposed; the
second is a new dataset for MD dermoscopy images with blur
and uneven illumination that we created. The third contribution
is single distortion metrics for blur and uneven illumination that
are only sensitive to their corresponding distortion, while insen-
sitive to the other. The fourth and last contribution is an overall
dermoscopy image quality assessment framework based on a
fuzzy neural network. The overall framework effectively cap-
tures the highly nonlinear mutual effects of multiple distortions
and it provides an IQA solution framework that may prove use-
ful for assessing multiple distortions not only on dermoscopy
images but also on other types of images. A series of experi-
ments showed that the proposed algorithm is effective, stable,
and insensitive to training set size.

REFERENCES

[1] H. Kittler et al., “Diagnostic accuracy of dermoscopy,” Lancet. Oncol.,
vol. 3, no. 3, pp. 159–165, 2002.

[2] H. Iyatomi et al., “An internet-based melanoma diagnostic system-toward
the practical application,” in Proc. IEEE Symp. Comput. Intell. Bioinfor-
mat. Comput. Biol., 2005, pp. 1–4.

[3] Handyscope-mobile dermatoscope: Handyscope (2010). [Online]. Avail-
able: http://www.handyscope.net

[4] M. Vasconcelos and L. Rosado, “No-reference blur assessment of derma-
tological images acquired via mobile devices,” in Proc. Int. Conf. Image
Signal Process., 2014, pp. 350–357.

[5] L. Rosado et al., “From dermoscopy to mobile teledermatology,” in
Dermoscopy Image Analysis. Boca Raton, FL, USA: CRC Press, 2015,
pp. 385–418.

[6] F. Xie et al., “PDE-based unsupervised repair of hair-occluded informa-
tion in dermoscopy images of melanoma,” Comput. Med. Imag. Graph.,
vol. 33, no. 4, pp. 275–282, 2009.

[7] F. Xie and A. C. Bovik, “Automatic segmentation of dermoscopy im-
ages using self-generating neural networks seeded by genetic algorithm,”
Pattern Recog., vol. 46, no. 3, pp. 1012–1019, 2013.

[8] Y. He and F. Xie, “Automatic skin lesion segmentation based on texture
analysis and supervised learning,” in Proc. Asian Conf. Comput. Vis., 2012,
pp. 330–341.

[9] Q. Abbas et al., “Pattern classification of dermoscopy images: A percep-
tually uniform model,” Pattern Recog., vol. 46, no. 1, pp. 86–97, 2013.

[10] M. Sadeghi et al., “Global pattern analysis and classification of der-
moscopic images using textons,” in Proc. SPIE Med. Imag., vol. 8314,
pp. 83144X-1–83144X-6, 2012.

[11] P. Marziliano et al., “A no-reference perceptual blur metric,” in Proc. Int.
Conf. Image Process., 2002, pp. III–57–III-60.

[12] A. C. Bovik and S. Liu, “DCT-domain blind measurement of blocking
artifacts in DCT-coded images,” in Proc. IEEE Int. Conf. Acoust. Speech
Signal Process., 2001, pp. 1725–1728.

[13] H. R. Sheikh et al., “No-reference quality assessment using natural
scene statistics: JPEG2000,” IEEE Trans. Image Process., vol. 14, no. 11,
pp. 1918–1927, Nov. 2005.

[14] X. Kong et al., “A new image quality metric for image auto-denoising,”
in Proc. Int. Conf. Comput. Vis., 2013, pp. 2888–2895.

[15] A. K. Moorthy and A. C. Bovik, “A two-step framework for constructing
blind image quality indices,” IEEE Signal Process. Lett., vol. 17, no. 5,
pp. 513–516, May 2010.

[16] A. Mittal et al., “Making a ‘completely blind’ image quality analyzer,”
IEEE Signal Process. Lett., vol. 20, no. 3, pp. 209–212, Mar. 2013.

[17] L. He et al., “Sparse representation for blind image quality assessment,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2012, pp. 1146–1153.

[18] W. Xue et al., “Learning without human scores for blind image quality
assessment,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2013,
pp. 995–1002.

[19] N. Ponomarenko et al., “TID2008-A database for evaluation of full-
reference visual quality assessment metrics,” Adv. Modern Radioelectron.,
vol. 10, no. 4, pp. 30–45, 2009.

[20] Subjective quality assessment IVC database. (2005). [Online]. Available:
http://www.irccyn.ec-nantes.fr/ivcdb/

[21] A57 Database. [Online]. Available: http://foulard.ece.cornell.edu/
dmc27/vsnr/vsnr.html

[22] H. R. Sheikh et al. Live image quality assessment data set release
2. (2006). [Online]. Available: http://live.ece.utexas.edu/research/ qual-
ity/subjective.htm

[23] E. C. Larson and D. M. Chandler, “Most apparent distortion: Full-reference
image quality assessment and the role of strategy,” J. Electron. Imag.,
vol. 19, no. 1, pp. 011006-1–011006-21, 2010.

[24] D. Jayaraman et al., “Objective quality assessment of multiply distorted
images,” in Proc. Conf. Rec.46th Asilomar Conf. Signals Syst. Comput.,
2012, pp. 1693–1697.

[25] D. M. Chandler, “Seven challenges in image quality assessment:
Past, present, and future research,” ISRN Signal Process., vol. 2013,
pp. 905685-1–905685-53, 2013.

[26] K. Gu et al., “FISBLIM: A five-step blind metric for quality assessment
of multiply distorted images,” in Proc. IEEE Workshop Signal Process.
Syst., 2013, pp. 241–246.

[27] H. Wang et al., “Watershed segmentation of dermoscopy images using
a watershed technique,” Skin Res. Technol., vol. 16, no. 3, pp. 378–384,
2010.

[28] M. E. Celebi et al., “Lesion border detection in dermoscopy images,”
Comput. Med. Imag. Graph., vol. 33, no. 2, pp. 148–153, 2009.



1256 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 63, NO. 6, JUNE 2016

[29] N. Otsu, “A threshold selection method from gray-level histograms,”
Automatica, vol. 11, pp. 23–27, 1975.

[30] M. E. Celebi et al., “An improved objective evaluation measure for
border detection in dermoscopy images,” Skin Res. Technol., vol. 15, no. 4,
pp. 444–450, 2009.

[31] F. Xie, “Segmentation and recognition of dermoscopy melanoma images
based on computational intelligence,” Ph.D. thesis, Beihang University,
Beijing, China, May 2009.

[32] H. R. Sheikh et al., “An information fidelity criterion for image quality
assessment using natural scene statistics,” IEEE Trans. Image Process.,
vol. 14, no. 12, pp. 2117–2128, Dec. 2005.

[33] A. K. Moorthy and A. C. Bovik, “Blind image quality assessment: From
natural scene statistics to perceptual quality,” IEEE Trans. Image Process.,
vol. 20, no. 12, pp. 3350–3364, Dec. 2011.

[34] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,”
Stat. Comput., vol. 14, no. 3, pp. 199–222, 2004.

[35] A. Mittal et al., “No-reference image quality assessment in the spatial
domain,” IEEE Trans. Image Process., vol. 21, no. 12, pp. 4695–4708,
Dec. 2012.

[36] J. Wu et al., “Image quality assessment with degradation on spatial
structure,” IEEE Signal Process. Lett., vol. 21, no. 4, pp. 437–440,
Apr. 2014.

[37] Y. Lu et al., “No reference uneven illumination assessment for der-
moscopy images,” IEEE Signal Process. Lett., vol. 22, no. 5, pp. 534–538,
May 2015.

[38] C. T. Lin and C. S. G. Lee, “Neural-network-based fuzzy logic control and
decision system,” IEEE Trans. Comput., vol. 40, no. 12, pp. 1320–1336,
Dec. 1991.

[39] L. Zhang et al., “FSIM: A feature similarity index for image quality
assessment,” IEEE Trans. Image Process., vol. 20, no. 8, pp. 2378–2386,
Aug. 2011.

[40] M. A. Saad et al., “Objective consumer device photo quality evaluation,”
IEEE Signal Process. Lett., vol. 22, no. 10, pp. 1516–1520, Oct. 2015.

Fengying Xie received the Ph.D. degree in pattern
recognition and intelligent system from Beihang Uni-
versity, Beijing, China, in 2009.

She was a Visiting Scholar in the Laboratory for
Image and Video Engineering, University of Texas at
Austin, Austin, TX, USA, from 2010 to 2011. She
is currently a Professor in Image Processing Center,
School of Astronautics, Beihang University. Her re-
search interests include biomedical image and remote
sensing image processing, image quality assessment,
and image segmentation and classification.

Yanan Lu received the B.Eng. degree from Beihang
University, Beijing, China, in 2011, where she is cur-
rently working toward the Ph.D. degree majored in
pattern recognition and intelligent system.

Her research interests include biomedical image
processing and image quality assessment and restora-
tion.

Alan C. Bovik (S’80–M’81–SM’89–F’96) is the
Cockrell Family Regents Endowed Chair Professor
at The University of Texas at Austin, Austin, TX,
USA, where he is the Director of the Laboratory
for Image and Video Engineering, Department of
Electrical and Computer Engineering and the Insti-
tute for Neuroscience. His research interests include
image and video processing and visual perception.
He has published more than 750 technical articles
and holds four U.S. patents. His several books in-
clude the recent companion volumes The Essential

Guides to Image and Video Processing (San Diego, CA, USA: Academic Press,
2009).

Prof. Bovik has received numerous awards from the IEEE Signal Process-
ing Society: the Society Award (2013), the Best Paper Award (2009), the Best
Magazine Paper Award (2013), the Education Award (2007), the Technical
Achievement Award (2005), the Meritorious Service Award (1998), and the
young author Best Paper Award (coauthor, 2013). He also received Honorary
Membership in the Society for Imaging Science and Technology in 2013, the
SPIE Technology Achievement Award in 2012, and was named the IS&T/SPIE
Imaging Scientist of the Year in 2011. He is a Fellow of the Optical Society
of America and the Society of Photo-Optical and Instrumentation Engineers.
He cofounded and served as an Editor-in-Chief of the IEEE TRANSACTIONS

ON IMAGE PROCESSING from 1996 to 2002 and founded and served as the first
General Chairman of the IEEE International Conference on Image Processing,
Austin, in 1994.

Zhiguo Jiang received the B.Eng., M.S., and Ph.D.
degrees from the Beihang University, Beijing, China,
in 1987, 1990, and 2005, respectively.

He is currently a Professor in Image Processing
Center, School of Astronautics, Beihang University.
His research interests include medical image process-
ing, segmentation and classification, remotely sensed
image processing, and target detection, tracking, and
recognition.

Rusong Meng is a Deputy Chief Physician of the
General Hospital of the Air Force of PLA, Beijing,
China. His research interests include morphological
analysis of histiocytes, derma pathology, and the clin-
ical application of image analysis technology.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


