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Tasking on Natural Statistics of Infrared Images
Todd Richard Goodall, Alan Conrad Bovik, Fellow, IEEE, and Nicholas G. Paulter Jr., Fellow, IEEE

Abstract— Natural scene statistics (NSSs) provide powerful,
perceptually relevant tools that have been successfully used for
image quality analysis of visible light images. Since NSS capture
statistical regularities that arise from the physical world, they
are relevant to long wave infrared (LWIR) images, which differ
from visible light images mainly by the wavelengths captured
at the imaging sensors. We show that NSS models of bandpass
LWIR images are similar to those of visible light images, but with
different parameterizations. Using this difference, we exploit the
power of NSS to successfully distinguish between LWIR images
and visible light images. In addition, we study distortions unique
to LWIR and find directional models useful for detecting the
halo effect, simple bandpass models useful for detecting hotspots,
and combinations of these models useful for measuring the
degree of non-uniformity present in many LWIR images. For
local distortion identification and measurement, we also describe
a method for generating distortion maps using NSS features.
To facilitate our evaluation, we analyze the NSS of LWIR images
under pristine and distorted conditions, using four databases,
each captured with a different IR camera. Predicting human
performance for assessing distortion and quality in LWIR images
is critical for task efficacy. We find that NSS features improve
human targeting task performance prediction. Furthermore, we
conducted a human study on the perceptual quality of noise-
and blur-distorted LWIR images and create a new blind image
quality predictor for IR images.

Index Terms— NSS, LWIR, “Halo effect,” hotspot, NU, TTP.

I. INTRODUCTION

LONG WAVELENGTH Infrared (LWIR) images
have many uses in industry, military, medicine,

and science. Non-destructive testing uses thermal imagers for
detecting defect locations in manufactured materials, thereby
allowing for better quality control [1]. Unmanned Airborne
Vehicles (UAV) and security cameras often couple a thermal
imager with a visible light (VL) camera to enhance night
vision for scouting and to improve automatic threat detection
over large distances [2]. Firefighters carry handheld imagers
while scouting for critical burn points in burning buildings
and possible thermal hazards [3]–[5]. Thermographers use
high-resolution thermal imagers for detecting inflammation,
irregular blood-flow, and tumors [6].
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A broad theme of this paper is the development and practical
application of Natural Scene Statistic (NSS) models of LWIR
images. NSS models describe statistical regularities that are
observed on images taken of the natural world.1 Examples
of NSS of visible light images include the 1

f behavior of the
amplitude spectrum [7], [8], the sparse coding characteristic of
visual cortical filters in response to natural image stimuli [9],
and the Gaussianity exhibited by visual signals following
band-pass filter and adaptive gain control operations [10].
Early cortical processing in higher mammalian visual systems
appears to have adapted to these natural statistics [7], and
much research into biological visual functioning has been
guided by the “efficient coding” hypothesis, which assumes
that visual neurons have adapted to efficiently encode natural
visual stimuli [11], [12].

Given their widespread use and application, LWIR images
have been well studied. Mooney characterized sources of
spatial noise [13] and the effect of noise on minimum
resolvable temperature differences (MTD) as a function
of frequency [14]. Lopez-Alonso further characterized
spatial noise in IR images by using Principle Components
Analysis (PCA) to separate spatial and temporal noise from a
sequence of frames [15]. This led Pezoa and Medina to model
the non-uniformity (NU) noise common in LWIR images
expressed in the frequency domain [16] as distinct from
independent spatial noise. Using this NU model, Pérez et al.
measured and compared the efficacy of several non-uniformity
correction (NUC) algorithms [17] and developed methods
for extracting the structure of the underlying fixed-pattern
noise [18].

Although NSS have proven to be highly successful tools
in applications on visible light images, the development and
use of similar models has not been nearly as widespread on
LWIR images. Morris et al. compared LWIR image statistics
with natural visible light image statistics, and found that
the spectral power of LWIR images is more “heavy-tailed”
and that LWIR wavelet histograms are generally peakier,
likely due to the characteristic spatial smoothness of infrared
images. Kaser [19] and Goodall and Bovik [20] modeled
the fit of the BRISQUE [21] and NIQE [22] image quality
models to LWIR images showing that these visible light
models fit reasonably well to LWIR image data. However,
as we show later, the statistics of visible-light and LWIR
are predictably different. To measure NU, noise, blur, and
changes in brightness, Amon et al. developed four Image
Quality Indicators (IQIs) [4], [5]. To measure NU in LWIR
images, Hayat et al. introduced a Roughness Index computed

1In essence, captured photographically, of any real-world scenes, including
both man-made and naturally occurring objects.
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Fig. 1. Example artifacts of distorted LWIR images. (a) Non-uniformity. (b) “Halo effect”. (c) Hotspots.

using discrete spatial derivatives [23]. An improved index,
the Effective Roughness Index [24], measures this roughness
index using a high-pass image. To our knowledge, we have
described the extent of previous work in modeling or utilizing
NSS on LWIR images.

LWIR images are certainly ’natural’ in the sense that we use
the term, and understanding and modeling the NSS of LWIR
images has the potential to drive the development of new
applications. These applications include identifying distortions
present in any given LWIR image, enhancing images to reduce
the degree of distortion, and for producing more accurate
and reproducible comparisons of the performance of thermal
imagers. Since the final receiver of LWIR images is often
the human observer, human tasks can be improved by incor-
porating NSS that capture the response of the human visual
system. Important distortions that we study here include non-
uniformity (NU) noise, ferro-electric “Halo effects,” sensor
noise, JPEG artifacts, blurring, and hotspots.

A. Characteristics of LWIR Imagers and Images

Thermal imagers have a spectral sensitivity in the 7 μm to
14 μm wavelength band. Thermal imagers are sensitive to the
radiation emitted by objects in the scene and the background
radiation reflected by those objects. The relationship between
the irradiation collected at the sensor and the temperatures of
imaged materials is nontrivial. For example, the material and
surface properties of an object alter its emissivity. Similarly,
the reflective properties of an object will vary the amount of
background radiation reflected by the object and subsequently
collected by the imager. All this variability can lead to errors
in the measurement of an object’s temperature.

Although both cooled and uncooled thermal imagers exist,
uncooled imagers are the most widely adopted and are the ones
considered herein. Also known as Focal Plane Array (FPA)
imagers, they are designed to use either an array of resistors
(called a microbolometer) or an array of ferro-electric ceramic
transistors. The microbolometer works by measuring changes
in resistance corresponding to changes in temperature. The
ferro-electric technology operates by measuring a temper-
ature differential across a pyro-electric material, which is
refreshed by a constantly spinning wheel, called the “chopper.”
As a result of the “chopper,” the images obtained by these
detectors exhibit additional or more severe artifacts such as
the “Halo effect,” which is lowering their adoption in the
market. Unlike cooled detectors, the typical design of uncooled

imagers does not allow adjustment of their sensor integration
time, thus they usually capture images at a lower frame rate
than cooled imagers. Overall, the main advantage of uncooled
imagers over their cooled counterparts is their lower power
consumption, cheaper components, and size [25], [26].

Non-uniformity (NU) noise, as exemplified in the image
in Fig. 1(a), is a distortion specific to LWIR images. NU is
an additive fixed-pattern noise, which appears as a grid-
like or striping pattern. These patterns result from manufac-
turing defects, dark current, and segmented sensor capture
areas [15], [16], [27].

The “Halo effect,” depicted in Fig. 1(b), is another distor-
tion, which occurs mostly in thermal cameras equipped with
ferro-electric sensors. This effect causes the region surround-
ing a bright object to grow darker and it causes the region
around dark objects to grow lighter [25], [28]. This effect
can be caused by both the physical operation of cameras
containing ferro-electric sensors and by the back-reflection
of IR illumination sources. The “chopper” that modulates
the signal for ferro-electric detectors fails to entirely shield
incoming infrared light, which leads to overcompensation
when subtracting the differential response from the average
signal, thereby producing a halo. Reflective materials situated
next to highly emissive materials within the scene have also
been shown to produce a similar effect [29].

LWIR images commonly contain hot-spot areas exhibiting
only small variations in image intensity, that arise from
highly emissive objects that stand out from the background as
in Fig. 1(c). In general, LWIR images contain many smooth
surfaces as a result of temperature diffusion. Hot-spots are less
a distortion than a symptom of the environment, but they still
produce interesting statistical regularities worthy of study.

Other unique degradations of LWIR images not covered
herein include radiometric distortions, geometric distortions,
noise from reflective materials, and the history effect.
Radiometric distortion refers to non-linear mapping of thermal
energy to pixel values in an image, which may destroy relevant
sensitivity information. Geometric distortions occur when the
sensors in the FPA are mis-aligned, causing blur. As discussed
previously, materials imaged with an infrared camera are often
assumed to be only emissive, but they can also be reflective
causing false inferences. Lastly, heat in the LWIR band can
fluctuate faster than frame rate, which can be difficult to
detect given the physical limits of infrared sensors. Geometric
distortions are specific to individual imagers, radiometric
distortions appear during the capture process, reflective noise
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Fig. 2. Example images from 4 LWIR databases. (a) NIST. (b) KASER. (c) MORRIS. (d) OSU.

TABLE I

CAMERAS ASSOCIATED WITH THE 4 LWIR DATABASES

measurements require knowledge of the captured objects,
and the history effect is a time-varying distortion. These
distortions and accompanying side information are not
currently available for study thus they are not included here.

The same distortions that occur in visible light images can
of course also occur in LWIR images. For example, blur
may arise from camera destabilization, especially in handheld
devices, non-optimal lens focus moving the depth of field away
from the object of interest, or object motion. Sensor noise may
be induced by light sensitivity based on the integration times of
the sensors. Over and under-exposure can occur as a function
of exposure time, or from quantization or local saturation.
JPEG distortion such as blocking artifacts and blurring can
also be present, since most thermal cameras utilize the JPEG
compression format.

B. LWIR Image Sources

Our study of the NSS of LWIR images has benefited
from the availability of four separate IR image databases that
we denote as NIST [30], KASER [19], MORRIS [31], and
OSU [32]. Example images from each database are provided
in Fig. 2. The NIST database includes 180 images from
indoor office and home environments, where each image
contains multiple hot objects. The KASER database includes
37 images from outdoor environments, each captured using
unknown camera models and suffering various distortions
including non-uniformity (NU), blur, and noise. The MORRIS
database contains a total of 288 indoor and outdoor images of
urban environments including cars, pedestrians, and buildings.
Finally, the OSU database contains a total of 262 images
captured by a surveillance camera monitoring pathway inter-
sections on the Ohio State University campus. Gathering a
diverse set of images from a diversity of cameras allows
for better generalization and characterization of the NSS of
LWIR images.

The general characteristics of the uncooled thermal cam-
eras associated with each database are listed in Table I.

The KASER database contains pristine images and images
contaminated with mixtures of unknown distortions, making
them less suitable than NIST or MORRIS for natural scene
analysis. The images obtained from the camera type in OSU
required processing by an additional non-linearity (using a log
transform) in order that the NSS followed the same regularities
as images captured from the microbolometers. The capture
method used by the OSU imager obtains pixel values that
follow a non-linear function of luminance, like power. Since
this non-linear function is unknown, we use OSU separately
from our NSS modeling analysis.

All images were linearly mapped to the range 0 to 1
for comparability and ease of applying artificial distortions
consistently. This does not change the image statistics beyond
normalizing them to this range.

C. Distortion Models

We next describe the generative noise models used to create
distorted LWIR images. Pezoa and Medina developed a model
of non-uniformity that can be used to artificially distort pristine
images [16]. Based on a spectral analysis of NU, they proposed
the model

| Ĩ (u, v)| = Buexp

(
− (u − u0)

2

2σ 2
u

)

+ Bvexp

(
− (v − v0)

2

2σ 2
v

)

� Ĩ (u, v) ∼ U[−π, π]
where Ĩ is the Fourier Transform representation of the noise
image, Bu = Bv = 5.2, σu = σv = 2.5, and where U[a, b]
denotes the uniform distribution on [a, b]. The severity of
NU can be controlled by scaling the dynamic range using a
standard deviation parameter σNU.

Three levels of distortion each from JPEG, Additive White
Noise (AWN), non-uniformity, and blur were applied to the
NIST and MORRIS databases. These two databases were
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Fig. 3. Images in 3(a), 3(b), 3(c), and 3(d) depict the third (most severe) distortion level for NU, blur, AWN, and JPEG. Figures 3(e) and 3(f) depict patches
selected for hotspots and halos.

Fig. 4. MSCN histograms of 468 ROIs, one ROI extracted from each image in the NIST and MORRIS LWIR image databases. The ROIs were 64 pixels by
64 pixels and nominally centered in the image. The left-most figure depicts the scale-invariant behavior of the MSCN statistics of non-distorted images. The
remaining three figures depict increasing distortion levels at the first scale. The terms org, NU, AWN, blur, JPEG, hotspot, and halo refer to pristine images,
images with NU distortion, images with AWN distortion, images with blur distortion, images compressed with JPEG, hotspot image patches, and halo image
patches, respectively.

chosen since the images were the least visually distorted.
JPEG images were generated at the 100, 90, and 80 percent
quality settings corresponding to distortion levels 1, 2, and 3
producing average respective bit rates of 3.6, 1.0, and
0.5 bpp. Levels 1, 2, and 3 of additive Gaussian white
noise and non-uniformity were generated using σAWN =
{0.0025, 0.01375, 0.025} and σNU = {0.0025, 0.01375, 0.025}
(recall the gray-scale range is [0, 1]). Levels 1, 2, and 3 of
blur were generated using a Gaussian blur kernel with scale
parameters σb = {1, 2, 3}. The third (most severe) distortion
levels for JPEG, AWN, NU, and blur are depicted in Fig. 3.

Two additional distortions, hotspots and the “Halo effect,”
were cropped by hand. The “Halo effect” occurs naturally
in the images in the OSU database. Davis’s method [33],
which is based on background subtraction and morphological
techniques, was used to isolate moving objects (often people)
in the images. Since not all objects extracted using this
method exhibited the “Halo effect,” patches with a clear visible
“Halo effect” were isolated by hand. A total of 188 example
patches were thus selected from the OSU database for use
here. Hotspots were isolated by hand from the NIST and
MORRIS databases. A total of 135 hotspot patches includ-
ing people, environmental hazards, and other miscellaneous
objects were extracted. Since these two distortions were not
were not generated, these distortions only provide 1 distortion
level. Example patches for hotspot and “Halo effect” distor-
tions are shown in Fig. 3.

II. NSS OF LWIR IMAGES

A. Processing Model

In a pioneering deep study of the statistics of visible light
images, Ruderman observed that applying a local bandpass

filter combined with a non-linear operation to a natural image
has a decorrelating and Gaussianizing effect [10]. Given that
highly successful Image Quality Assessment (IQA) models
have used this property to measure distortions in visible
light images, we analyze this Gaussianizing property further
for LWIR images. Given an input luminance image, I , its
Mean-Subtracted Contrast Normalized (MSCN) coefficients
are defined by

Î (i, j) = I (i, j) − μ(i, j)

σ (i, j) + C

over spatial indices with i ∈ 1, 2 . . . M , j ∈ 1, 2 . . . N , where
M and N are the image height and width, respectively, C is a
constant that prevents instabilities when the denominator tends
toward zero. The factors μ and σ are weighted estimates of
the local luminance mean and standard deviation given by

μ(i, j) =
K∑

k=−K

L∑
l=−L

wk,l Ik,l (i, j)

and

σ(i, j) =
√√√√ K∑

k=−K

L∑
l=−L

wk,l (Ik,l (i, j) − μ(i, j))2

where w = {
wk,l |k = −K , · · · , K , l = −L, · · · , L

}
is a

2D circularly-symmetric weighting function sampled out to
3 standard deviations and normalized to unit volume.

Histograms of these MSCN coefficients for natural LWIR
images appear similar (Gaussian) to those of visible light
images, as shown in Fig. 4. To compute these histograms with
minimal distortions, coefficients were pooled by selecting one
centrally located region of interest (ROI) of size 64×64 from
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Fig. 5. Paired product histograms of 468 ROIs, one ROI extracted from each of the images in the NIST and MORRIS databases. The ROIs were 64 pixels
by 64 pixels and nominally centered in the image. The left-most column depicts the scale-invariant behavior, and the remaining 3 columns depict increasing
distortion levels at the first scale. See [34] for the complete comparison.

468 images taken from the NIST and MORRIS databases.
These histograms demonstrate that undistorted LWIR images
are statistically regular.

The three distortion levels for JPEG, AWN, NU, and blur as
produced in Sec. I-C undergo this same MSCN transformation
and center ROI selection for fair comparison in Fig. 4.
The hand-cropped hotspot and halo distortions are included
as Level 1 distortions. Non-uniformity and additive white
Gaussian noise perturb the regularity observed in pristine
ROIs, producing wider histograms, since they unnaturally
increase the overall variation of images. By contrast, JPEG
and blur create an artificial high degree of image correlation,
producing thinner histograms. The hotspot artifacts produce
asymmetry in the histogram, while the “Halo effect” histogram
is wider, having an apparent skew.

In the Blind/Referenceless Image Spatial QUality
Evaluator (BRISQUE) model [21], neighboring MSCN
coefficients are multiplied to produce paired product coef-
ficients. Four directional coefficient products are computed
at each coordinate (i, j)

H(i, j) = Î (i, j) Î (i, j + 1)

V(i, j) = Î (i, j) Î (i + 1, j)

D1(i, j) = Î (i, j) Î (i + 1, j + 1)

D2(i, j) = Î (i, j) Î (i + 1, j − 1).

The paired products are included for analyzing the directional
behavior of both the statistical regularity and perturbations
thereof for LWIR images.

Histograms of these paired product coefficients were
produced following the same procedure used for the MSCN
images. Fig. 5 depicts the H and D1 paired product
histograms. These distortion-free histograms are similar
across three scales, as also observed for visible light images.
NU and AWN distortions produce relatively wider histograms,
while blur and JPEG produce thinner histograms, similar

to the trends observed in the MSCN histograms. Hotspots
produce thinner histograms and halo artifacts produce wider
histograms. A more complete comparison of these histograms
can be found in [34].

In an interesting extension of BRISQUE called the
Derivative Statistics-based QUality Evaluator (DESIQUE)
model [35], the MSCN histograms are supplemented by seven
log-derivative coefficients computed by differencing the loga-
rithms of the magnitudes of neighboring MSCN coefficients.
The goal of these coefficients is to provide higher sensitivity
to high frequency noise. The following function is defined

J (i, j) = log
(∣∣∣ Î (i, j)

∣∣∣ + K
)

where K is a stabilizing constant, and the log-derivative
coefficients are computed as

PD1(i, j) = J (i, j + 1) − J (i, j)

PD2(i, j) = J (i + 1, j) − J (i, j)

PD3(i, j) = J (i + 1, j + 1) − J (i, j)

PD4(i, j) = J (i + 1, j − 1) − J (i, j)

PD5(i, j) = J (i − 1, j) − J (i + 1, j)

− J (i, j − 1) − J (i, j + 1)

PD6(i, j) = J (i, j) + J (i + 1, j + 1)

− J (i, j + 1) − J (i + 1, j)

PD7(i, j) = J (i − 1, j − 1) + J (i + 1, j + 1)

− J (i − 1, j + 1) − J (i + 1, j − 1)

Following the described ROI extraction procedure for
both pristine and distorted images, histograms of these
Log-Derivative coefficients are plotted in Fig. 6. These
histograms seem to indicate less differentiation among NU,
AWN, and halo distortions, but good sensitivity to JPEG and
blur distortions, when compared to MSCN and paired product
histograms. Again, see [34] for a more complete comparison
of these log-derivative histograms.
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Fig. 6. Paired Log-Derivative histograms of 468 ROIs, one ROI extracted from each of the images in the NIST and MORRIS databases. The ROIs were
64 pixels by 64 pixels and nominally centered in the image. The left-most column depicts the scale-invariant behavior, and the remaining 3 columns depict
increasing distortion levels at the first scale. See [34] for the complete comparison.

Fig. 7. Steerable Pyramid histograms of 468 ROIs, one ROI extracted from each of the images in the NIST and MORRIS databases. The ROIs were
64 pixels by 64 pixels and nominally centered in the image. Only 3 orientations are shown, but all provide useful and distinct information. The left-most
column depicts differences in standard deviation across scale. The remaining three columns indicate a qualitative change in histogram shape for changes in
distortion level. See [34] for the complete comparison.

Since the MSCN, paired product, and paired log-derivative
coefficients operate on normalized high-pass images, they
do not directly, explicitly describe band-pass characteristics.
A perceptual model that captures these band-pass characteris-
tics is the divisively normalized steerable pyramid decompo-
sition, which mimics perceptual neurons in the early stages of
the human visual pathway, capturing information over multiple
orientations and scales [36]–[38].

Using the same pooled ROI extraction procedure,
histograms produced from normalized steerable pyramid coef-
ficients are plotted in Fig. 7. Each band is denoted dθ

α where
α denotes the scale and θ ∈ {0°, 30°, 60°, 90°, 120°, 150°}.
The pristine coefficients depict different histogram widths for
each scale, corresponding to the different relative energies

for high, mid, and low frequency bands. Analyzing distortion
behavior, NU has a distinctively large standard deviation in the
horizontal and vertical subbands, d0

1 and d90
1 , which follows

from the striping behavior of NU. All other distortions
appear to be invariant to orientation, but distinct when
compared to the natural image histograms. See [34] for a full
comparison of the divisively normalized steerable pyramid
histograms.

B. Feature Models

A parametric General Gaussian Distribution (GGD) [39]
has been used to model the MSCN, Paired Log-Derivative,
and steerable pyramid subband coefficients. The associated
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TABLE II

FEATURE SUMMARY FOR MSCN ( f ), PAIRWISE PRODUCTS ( pp), PAIRED LOG-DERIVATIVES ( pd ),
AND STEERABLE PYRAMID SUBBANDS (sp) FOR THE FIRST SCALE

GGD probability density function is

f (x; α, σ 2) = α

2β�(1/α)
ex p

(
−

( |x |
β

)α)
where

� (x) =
∞∫

0

sx−1e−sds.

An Asymmetric Gaussian Distribution (AGGD) [40]
has been used to effectively model to the paired product
coefficients. The pdf is

f (x; v, σ 2
l , σ 2

r ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v

(βl + βr ) �( 1
v )

ex p

(
−

(−x

βl

)v)
x < 0

v

(βl + βr ) �( 1
v )

ex p

(
−

(
x

βr

)v)
x ≥ 0

where βl and βr are given by

βl = σl

√√√√�
( 1

v

)
�

( 3
v

)
and

βr = σr

√√√√�
( 1

v

)
�

( 3
v

)
respectively.

The parameters (α, σ 2) of the GGD model fit can be esti-
mated using the technique described in [39]. The parameters
(v, σ 2

l , σ 2
r ) of the AGGD model fits can be estimated using

the moment matching technique described in [40]. Another
parameter, η, given by

η = (βr − βl)
�

( 2
v

)
�

( 1
v

)

is computed for each product image using the estimates of the
other parameters. Therefore, the best-fit model of each set of
paired product coefficients yields 4 features (η, v, σ 2

l , σ 2
r ).

Since the hotspot images exhibit asymmetric histograms,
negative and positive MSCN coefficients were measured
separately. Negative and positive coefficients correspond
to the left and right halves of the histograms. Therefore,
four parameters (αl , σ 2

l , αr , and σ 2
r ) were extracted from

the MSCN coefficients. The differences in value between
the left and right halves, αr − αl and σr − σl , are used
to capture the asymmetry. A overview of the MSCN ( f ),
paired product ( pp), paired log-derivative ( pd), and steerable
pyramid subband (sp) features is provided in Table II.

To visualize the clustering of the features over three scales,
the features for each distortion class were projected into
a 2D space using Principle Component Analysis (PCA) as
depicted in Fig. 8. The distorted images appear to cluster in
this projection, reasonably preserving their class groupings.

A boxplot comparing the features in Table II between
pristine LWIR images and pristine visible light images is
provided in Fig. 9. A total of 29 pristine visible light images
were obtained from the LIVE Image Quality Assessment
Database [41]–[43]. The MSCN shape parameter, f1, is not
significantly different between visible and LWIR images when
using 95 percent confidence intervals. Comparing f3, we can
infer that LWIR images provide more symmetrically shaped
MSCN histograms with 95 percent confidence.

The mean parameter, η, for each of the paired product fea-
tures differs between LWIR and visible light images. Addition-
ally most of the standard deviation parameters, σl and σr , differ
between the modalities. Most shape parameters for paired
products do not appear to differ between LWIR and visible
light images. By contrast, most of the shapes and standard
deviation parameters for pd and sp are significantly different
from visible light images. Individual parameter differences are
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Fig. 8. A total of 46 features over 3 scales yields 138 features per image,
projected here into 2D space using PCA. Despite the total explained variance
ratio being 0.734, distorted images cluster away from the natural images.
Hotspots were not included due to how far they projected. Here, org refers to
pristine images.

Fig. 9. Box plot comparison of features between natural LWIR and natural
visible light images. The notches indicate 95 percent confidence intervals
about the median. These plots show that while the generic NSS models for
visible light and LWIR images are similar, their specific parameterized models
differ.

expected to exist given the number of features being compared;
however, a difference certainly exists between the two groups,
as further explored in Sec. III-A. Note that these differences
may be due to either differences between imager technologies
or the differences between the physics of visible light and
IR fluctuations in a scene.

C. NIST Descriptors

Previous work by the National Institute for Standards and
Technology (NIST) has produced four Image Quality Indi-
cators (IQIs) [3]–[5], which are described as brightness (B),
contrast (C), spatial resolution (SR), and non-uniformity (N̂U)
defined as follows:

• B is the average of the luminosity intensities:

B = 1

M N

∑
i∈N

∑
j∈M

I (i, j)

• C is defined as RMS contrast:

C =
√√√√ 1

M N

∑
i∈N

∑
j∈M

(I (i, j) − B)2

• SR (cycles/pixel) is computed by

SR =
∫ fc

0
(MT Fcurve(u) − NEM) du

where MT Fcurve(u) is the modulation transfer function
defined by the Butterworth filter

H̃ (u) = 1/

(
1 +

(
u

Wn

)4
)

of order 2. The cutoff frequency is

fc = Wn [(1 − NEM) /NEM]0.25

where NEM = 0.02861 is the Noise Equivalent
Modulation.

• N̂U is given by N̂U = μ/σ = B/C, the SNR of the
image.

As currently defined, the SR statistic, which depends
directly on the parameter Wn , is not implementable. This
dependency on Wn assumes that any loss of spatial resolution
can be modeled based on the response of a Butterworth filter.
According to Morris et al. [31], the log of the radial averaged
spectral power of LWIR images can be well described as
following a GGD probability law. Unfortunately, this fit does
not generalize when distortions are present in an image, thus
a 10th order polynomial approximation was used to yield
a much better fit to the radial magnitude of the frequency
spectrum. Overall, the IQIs provide a total of 13 features
that are extracted from each image. Unlike the other features,
the IQI features are not model based, but rather are sample
statistics.

III. TASKING ON NSS

In this section, we study the practical usefulness of the
LWIR NSS and IQI features just described for solving six
different visual LWIR tasks. First, in Sec. III-A, we use the
NSS to discriminate between visible light and IR images.
Second, in Sec. III-B, we use these features to develop a
measure of NU on LWIR images. Third, in Sec. III-C, we
devise a method to determine presence of the “Halo effect.”
In the fourth task in Sec. III-D, we utilize NSS to automatically
predict LWIR Targeting Task Performance (TTP) of human
experts. Fifth, in Sec. III-E, we describe a human study that
obtained subjective quality scores on LWIR images, and show
that the NSS features are highly predictive of subjective image
quality. Lastly, in Sec. III-F, we show how NSS features
can be used to create localized distortion maps that can aid
the identification of local distortions such as hotspots and
occurrences of the “Halo effect.”
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TABLE III

ACCURACY OF THE VISIBLE-IR DISCERNER FOR
1000 TRAIN/TEST ITERATIONS

A. Discriminating IR From Visible Light Images

The Visible-IR Image Discerner (VIID) can be used to
effectively distinguish IR from visible light images using only
NSS. For this test, only pristine visible light and pristine
infrared images are used to provide a direct discrimination
between modalities. As shown in NIQE, the NSS covariance
structure converges for pristine images using only a few
images. Previous analysis using NIQE on IR images [20]
shows a similar convergence for IR images. The degree to
which these NSS covariance structures differ between IR and
visible light images is unclear, thus a test was devised to find
whether natural IR images can be discriminated from a corpus
of both IR and visible light images.

A total of 108 pristine visible light images were obtained
from the reference images contained in the CSIQ [44],
LIVE [41], DRIQ [45], VCL@FER [46] databases.
A corresponding 108 IR images were obtained from MORRIS
and NIST by random selection. A total of 1000 randomized
train/test sets were evaluated, with each set containing
80 visible light training images, 80 infrared training images,
28 visible light test images, and 28 IR test images. For
each set, a classifier was trained only on the 160 training
images and used to label the IR and visible light test images.
Thus, hit rates for visible light and IR images were recorded
for each set. We use a random forest classifier [47] and a
classifier based on the Mahalanobis distance measure [48].

The Mahalanobis distance, given by

D(x; μ,	) =
√

(x − μ)T 	−1 (x − μ)

is computed using D(x; μVL,	VL) on visible light images
and D(x; μIR,	IR) on infrared images. The means and
covariance matrices μVL, 	VL and μIR, 	IR were computed
using the visible light and IR training images respectively.
A Mahalanobis classifier is developed to discriminate between
VL and IR using

L = arg min {D(x; μVL,	VL), D(x; μIR,	IR)}
such that L = 0 and L = 1 correspond to visible light and
infrared images respectively.

The mean hit rates (accuracy) from the 1000 train/test sets
are reported in Table III. The results of the Mahalanobis-based
classifier show that the natural IR and natural VL feature
spaces are indeed distinct. In addition, the random forest
classifier was used to produce a top-20 feature importance
map as depicted in Fig. 10. The paired product group pp
has a higher importance than group f , given that f does not
appear in the top 20 ranked feature list. The vertical paired

Fig. 10. Top 20 important features used for the Visible-IR discernation task.
The importances were averaged over 1000 train/test iterations, shown here
with 95% confidence intervals.

product at the finest scale (scale 1) is significantly more impor-
tant than the features corresponding to the other directions,
H, D1, and D2 at scales 2 and 3. Using the transposes of the
visible light images as input in the above tests confirms that
this phenomenon is intrinsic to the visible light images, i.e.,
infrared images appear to exhibit fewer prominent horizontal
edges, lines or structures than visible light images, which is
related to the overall smoothness observed in infrared images.

B. Measuring NU

In NUC algorithms, producing a no-reference estimate of
the NU in an image is essential [17]. Such an estimate of
NU can be used as both an input into a correction algorithm
and as a performance measure for that correction algorithm.
State-of-the-art methods for estimating the magnitude of NU
include the Roughness index, Effective Roughness Index, and
SNR. LWIR images commonly contain both fixed pattern
noise and additive white noise, and the level of both types of
noise should be reliably estimated.

The most common method for estimating NU is the spatial
SNR of the image defined as μ/σ where σ and μ are
the standard deviation and mean pixel intensities within a
user-defined area. Another common and popular method, the
Roughness [23] index, is

Ro(I ) = ‖h1 ∗ I‖1 + ‖h2 ∗ I‖1

‖I‖1

where h1 is the 1D differencing filter with impulse response
[1,−1], h2 = h1

T , and ‖ · ‖1 is the L1 norm. The Effective
Roughness [24] index is

ERo(I ) = Ro(g ∗ I )
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where g is a high-pass filter, with the additional modification
that the L2 norm is used in place of the L1 norm.

Two weaknesses of current NU estimation approaches are
their inability to capture spatial structure and their reliance
on the assumption of grid-like patterns of fixed-pattern noise,
which, in reality, can instead be striping [17]. Additionally,
these approaches generally assume that NU is the only distor-
tion within the image. Often, other noise is present that can
seriously hinder the effectiveness of estimating NU.

A new approach that we have devised to measure NU
utilizes the proposed NSS features listed in Table II. To com-
pare against existing NU estimation techniques, we degraded
the images in the MORRIS and NIST databases each
with non-unifomity and additive white noise. The standard
deviations of the non-uniformity and additive white noise
are produced by sampling σNU ∈ U[0.025, 0.0025] and
σAWN ∈ U[0.025, 0.0025] respectively. Three categories of
degradations were produced, those with just NU distor-
tions (set 1), those with AWN distortions (set 2), and those
with combined NU and AWN distortions (set 3). The two types
of noise are thus independently embedded into the source
image for each of the three sets.

Using these three sets of degraded images, we compared the
predictive performance of each NU metric. A Support Vector
Regressor (SVR) was used to learn features for estimating
σNU in sets 1 and 3 and for estimating σAWN in sets 2 and 3.
Each set was tested and trained independent of the other sets.
Each set was split into non-overlapping subsets: 80 percent
for training, and 20 percent for testing. The Spearman Rank
Correlation Coefficient (SRCC) was used as a measure of
non-linear monotonicity between the actual and predicted
values, and (Pearson’s) linear correlation coefficient (LCC)
was used as a measure of linear correlation between actual
and predicted values. Random 80/20 splits were produced and
scored 1000 times, and the median SRCCs and LCCs are fully
tabulated in [34].

The results show that the NSS feature groups, f , pp,
pd , and sp, produced better predictors of AWN and NU as
compared to Ro, ERo, and the IQIs for each of the three
sets. Combinations among these NSS feature groups do not
increase predictor accuracy significantly. The f group has
lower correlation when compared to the other feature groups
that contain a sense of directionality. It is important to note that
the IQIs have almost no correlation with σNU, especially for
set 3. Additionally, these IQIs were a comparatively mediocre
predictor of σAWN on sets 2 and 3.

Individual features can be found that correlate highly with
horizontal striping NU and vertical striping NU separately.
The sp group features show significant correlation with direc-
tionality, with vertical striping effects being highly correlated
with the d0

1 subband standard deviation, and horizontal striping
effects being highly correlated with the d90

1 subband stan-
dard deviation. The paired product features indicate a similar
oriented correlation, the horizontal paired product σr , pp4,
correlates highly with vertical striping, and the vertical paired
product σr , pp8, correlates highly with horizontal striping.
This feature-level correlation with the magnitude σNU of
striping is useful not only for detecting the presence of

Fig. 11. ROC indicating the ability of NR algorithms to sort patches as
either containing halos or as non-halo patches. Curves computed from 1000
train/test iterations using 415 total patches from the OSU dataset without
content overlap. The 0.75, 0.5, and 0.25 thresholds are indicated for reference.

a striping artifact, but also for measuring how much striping
is present.

C. Discriminating the “Halo Effect”

The authors of [28] developed a person detector that used
the statistical gradients of estimated halos to enhance the
detection task. To our knowledge, no methods exist for detect-
ing halo artifacts in LWIR images.

To study how well the “Halo effect” can be discriminated
using our feature models, two sets of image patches (with
and without halos) were constructed using a mixture of
background subtraction and manual selection, as described
in Sec. I-C, followed by manual classification. Most of the
image patches were of size 110×110. A total of 415 image
patches were contained in both sets, with 227 image patches
being halo-free, and 188 patches containing halos.

AWN and NU distortions were applied to each patch in
both sets to reduce the dependence on the correlation between
“Halo effect” and the level of other common noise distortions.
Each of these 415 image patches thus contained two artificial
distortions in addition to the halo effect distortions. The
distortion magnitudes σNU, σAWN ∈ U[0.0025, 0.025] were
randomly sampled and used as the variance of the white noise
and non-uniformity distortions for each patch. The intervals for
this uniform distribution were selected to scale the distortion
from a just-noticeable to a significant difference.

Given these two distorted sets, those containing halos
and those without, we devised a binary classification task.
We split the dataset into two non-overlapping subsets:
80 percent for training and 20 percent for testing. A Support
Vector Classifier (SVC) was used to map the features between
two classes. Random 80/20 splits were produced and classified
with associated class probability estimates 1000 times. The
ground truth and classifier probabilities per feature group are
appended each iteration with replacement.

Receiver Operating Characteristic (ROC) curves for
the binary classification task using the proposed feature
groups and the IQIs are shown in Fig. 11. These curves
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TABLE IV

AREAS UNDER THE ROC CURVES IN FIG. 11

are computed on the aforementioned appended ground truth
and probability pairs. The areas under the ROC curves are
reported in Table IV. The proposed sp feature group and
combinations of sp with the NSS feature groups achieved
highest performance. The IQIs achieved low performance
for this discrimination task. Speculatively, both directionality
and band-specific tuning are important when detecting the
“Halo effect,” which follows from the general asymmetry and
inhibitory-type behavior of this artifact.

D. TTP of Firefighters and Hazards

Researchers at NIST conducted a study involving
firefighters whose task was two-fold [4]. First, given an
LWIR image, the expert determined whether a hazard was
present. Second, if a hazard was present, the expert was asked
to identify the location of the hazard. This study was broken
up into two phases. The phase 1 study used 4500 images.
These images were created by degrading 180 pristine images.
Five different levels of degradation corresponding to each IQI
were generated and 25 sets of the four IQIs were used (for
a total of 100 unique arrangements of the five values of each
of the four IQIs). These 25 sets were deemed sufficient to
represent the defined IQI space (54). Phase 2 used 55 sets of
the four IQIs (for a total of 9900 images). The larger number
of sets served also to extend the range of IQIs to include more
extreme values. Note that the IQIs in this study were used as
distortion-generating settings, allowing for direct measurement
of distortion with TTP.

In this study, the experts were given a stimulus image, and
tasked to either identify the location of the environmental
hazard by clicking on it, or by indicating that there is no
distortion. To better isolate detectability, we converted the
dataset into patches centered about the hazards. Images
with no hazards were discarded. Next, only the scores of
observers that attempted to identify the location of the present
environmental hazard were kept. Hits and misses were
measured depending on whether the cursor click was near the
hazard. The probability of hit was computed over all observers.
By modifying the dataset in this way, SRCC and LCC
correlations between target quality and target detectability
could be more directly measured.

Using the probability of hit, the NSS quality features,
and the IQIs, we used an SVR to estimate TTP. As a
way of comparing the features, the median SRCC and LCC
coefficients are reported in Table V over 1000 iterations.

TABLE V

MEDIAN SRCC AND LCC BETWEEN ACTUAL AND
PREDICTED TTP FROM 1000 ITERATIONS

Fig. 12. Example stimulus.

Combinations of features provide the best estimators of TTP,
with the combination of all natural features providing the
highest correlations for TTP. Note that the IQIs in Table V
use the 13 features, while the degradations to the images
provided in the study made modifications based on the original
4 parameters.

E. Blind Image Quality Assessment of LWIR Images

We conducted a lengthy and sizeable human study, the
results of which we used to assess how well NSS-based
blind image quality prediction models designed for LWIR
images correlate with subjective quality scores. A collection of
28 indoor and outdoor images were selected from the NIST
and KASER databases as “pristine” images. Artificial blur
and additive white gaussian noise distortions were applied
to the pristine images. Three levels of blur, three levels of
noise, and combinations of blur and noise produced a total of
252 distorted images.

The subject test procedure was written using Matlab and the
PsychToolbox [49], [50]. Each subject was first presented with
a training session in which 10 images were shown before the
main testing session, to give them an understanding of how
to score images. Two testing sessions were performed with
each session containing a unique set of 126 images. Subjects
were presented with a single stimulus image for 10 seconds as
depicted in Fig. 12. At the end of the 10 seconds, a continuous
sliding quality bar with the labels “Bad”, “Poor”, “Fair”,
“Good”, or “Excellent” was presented, as shown in Fig. 13.

Each image was scored by 24 subjects with each score
discretized to integers on [0, 100]. In order to account for
differences in image content, we computed the Difference
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Fig. 13. Sliding Quality Bar.

Mean Opinion Scores (DMOS). Let si j k be the opinion score
given by subject i , on image j during session k = {1, 2}. Then
the difference score for subject i , image j , and session k is
given by

di jk = si jre f k − si j k , si jre f k �= si j k ,

where si jre f k is the score given to the (hidden) pristine image
corresponding to the distorted one. The difference scores from
each session were then converted to Z-scores:

zi j k = di jk − μik

σik

where

μik = 1

Nik

Nik∑
j=1

di jk

and

σik =

√√√√√ 1

Nik − 1

Nik∑
j=1

(di jk − μik)2

and where Nik is the number of test images seen by subject i
in session k.

The subject rejection procedure specified in the ITU-R
BT 500.11 recommendation is useful for discarding scores
from unreliable subjects. Z-scores are considered normally
distributed if their kurtosis falls between the values of 2 and 4.
The recommendation is to reject if more than 5 percent of
the Z-scores lie outside two standard deviations of the mean.
Using this procedure, all except one subject was found to be
acceptable. The one outlier chose the same value of 50 for all
images. Thus only one subject was rejected [50], [51].

After the subject rejection procedure, the values of zi j k fell
into the range [−3, 3]. A linear rescaling was used to remap
the scores onto [0, 100] using

z′
i j = 100(zi j + 3)

6
Finally the Difference Mean Opinion Score (DMOS) of each

image was computed as the mean of the M = 24 rescaled
Z-scores:

DMOS j = 1

M

M∑
i=1

z′
i j .

A plot of the histogram of the DMOS scores is shown
in Fig. 14, indicating a reasonably broad distribution of the
DMOS scores.

Table VI shows the Spearman’s Rank Correlation
Coefficient (SRCC) and (Pearson’s) linear correlation
coefficient (LCC) between subjective scores and model

Fig. 14. Histogram of DMOS scores.

TABLE VI

MEDIAN SRCC AND LCC BETWEEN DMOS AND PREDICTED

DMOS MEASURED OVER 1000 ITERATIONS

predictions for NR feature groups. The results were computed
using 1000 iterations of randomly sampled training and
testing groups. As in the previous experiments, 80 percent of
the data was used for training and the remainder for testing.
Care was taken to not overlap training and testing on the
same content in any iteration since such an overlap could
inflate performance results by training on the content rather
than distortion. An SVR was used to fit the NSS feature
parameters to the DMOS scores.

We observe that the sp group of features provided the
highest correlation with the human subjective scores, being
only a slight improvement over the BRISQUE model, f + pp.
Combining feature groups with sp produces worse correlation
indicating possible overfitting of the training set. For these
blur and AWN distortions, the directional feature groups
provided the highest correlation with DMOS scores. The IQIs
and NU distortion-based models provided comparatively low
correlation. The proposed perceptual models provide excellent
prediction of human opinion scores.

F. Local Distortion Maps

Image maps that highlight locally distorted regions can
be useful not only for detecting the presence and location
of particular distortions such as hotspots or halos, but also
for detecting any unknown (combination of) distortions. It is
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Fig. 15. Heatmaps represent probabilities computed at a particular spatial location using an SVM classifier trained on two classes. Class 1 represents natural
IR images and Class 2 represents one of NU, AWN, Blur, JPEG, Hotspot, or Halo. Six SVM classifiers are trained to produce these six heatmaps. Brighter
regions represent higher probabilities. Each heatmap has been contrast stretched for visibility. (a) Source Image with “Halo effect”. (b) Heatmaps. (c) Source
Image with hotspots. (d) Heatmaps.

possible to automatically find local distorted regions of LWIR
images using NSS-based features.

A distortion map can be generated using a sliding window
to capture ROIs from the image being analyzed. We used a
96×96 sliding square window scanned along the image in
12 pixel step increments (strides). Thus each captured ROI
overlapped with 87.5 percent of the last ROI in sequence.
Each ROI was classified using multiple probabilistic SVCs,
one per distortion type, to determine the probability that the
ROI was distorted by a particular distortion. The probabilities
of distortion were gathered and mapped into an image that
highlights distorted areas. Example distortion maps are shown
in Fig. 15. Some distortion maps, such as on JPEG distorted
images appear in Fig. 15 to provide false positives, but this is
an artifact of displaying full-contrast stretched low probability
values. For detecting unknown distortions, one could use
a localized variant of the method in VIID (as described
in Sec. III-A), since the NSS of natural IR images are highly
predictable.

IV. CONCLUSION AND FUTURE WORK

LWIR images possess statistical regularities similar to
those of visible light images. Furthermore, the NSS of LWIR
images are distinct from the NSS of visible light images, as
shown through both statistical analysis and the aforementioned
VIID classifier. These powerful NSS descriptors provide an

accurate global distortion level estimate, as demonstrated in
the cases of non-uniformity and white noise. Again, these
descriptors are perceptually driven, and thus correlate well
with human task performance and human subjective test
results. Lastly, they can be used to build a local distortion
detector, which can aid further work in designing image
enhancement and compression methods. Each of these
described tasks is improved by the addition of NSS features.

Extensions to this work may include study of geomet-
ric distortions, infrared reflections, and radiometric distor-
tions. Such a study may prove to be fruitful for industry
given the manufacturing limitations associated with producing
LWIR imagers.

The NSS of LWIR videos are also of great interest. The
LWIR videos used in surveillance could be modeled and
studied to improve compression techniques, object detection
algorithms, and overall video quality. The common visible
light video compression formats including H.264/MPEG4
could be studied in light of thermal sensitivity requirements.
Thermal variance, which is separate from and poorly
represented by models of motion, would be worthy of
analysis as well.
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