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We study the influence of motion on the visibility of flicker distortions in naturalistic
videos. A series of human subjective studies were executed to understand how motion
silences the visibility of flicker distortions as a function of object motion, flicker frequency,
and video quality. We found that flicker visibility is strongly reduced when the speed of
coherent motion is large, and the effect is pronounced when video quality is poor. Based
on this finding, we propose a model of flicker visibility on naturalistic videos. The target-
related activation levels in the excitatory layer of neurons were estimated for a displayed
video using a spatiotemporal backward masking model, and then the flicker visibility is
predicted based on a learned model of neural flicker adaptation processes. Experimental
results show that the prediction of flicker visibility using the proposed model correlates
well with human perception of flicker distortions. We believe that sufficiently fast and
coherent motion silences the perception of flicker distortions on naturalistic videos in
agreement with a recently observed “motion silencing” effect on synthetic stimuli. We
envision that the proposed model could be applied to develop perceptual video quality
assessment algorithms that can predict “silenced” temporal distortions and account for
them when computing quality judgments.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

The global volume of digital videos is exponentially gro
wing and taking up an increasingly dominant percentage of
Internet traffic. The world's mobile video traffic was 53
percent of Internet traffic in 2013 and is expected to increase
to more than two-thirds by 2018 [1]. Video streaming
services such as Netflix, Hulu, and YouTube proliferate and
live online video services including Skype and Googleþ
Hangouts are expanding rapidly as well [2]. As consumer
demand increases, fast, reliable, and accurate methods for
evaluating video quality are also important for satisfying
. Choi),
as.edu (A.C. Bovik).
users' Quality of Experience [3]. Another driving force behind
the proliferation of user demand is the advancement of
technologies to produce better quality, higher resolution
videos such as High Definition (HD) and emerging 4K videos.

Generally, digital videos suffer not only from spatial
artifacts such as blocking, blurring, ringing, mosaic patterns,
and noise, but are also degraded by temporal distortions
including motion compensation mismatches, flicker, mos-
quito effects, ghosting, jerkiness, smearing, and so forth [4].
Since humans are the ultimate recipients of videos, technol-
ogies to monitor the quality of the received videos have been
focused on the design of objective video quality assessment
(VQA) methods. One important component in the design of
VQA models that remains poorly understood is the effect of
temporal visual masking on the visibility of temporal distor-
tions. Interestingly, the mere presence of spatial or temporal
distortions does not have to imply quality degradation
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since the visibility of distortions can be strongly reduced or
completely eliminated by visual masking [2].

Visual masking occurs when a stimulus, called the mask, is
superimposed on another stimulus, called the target. The
mask is typically of similar orientation, spatiotemporal fre-
quency, motion, or color to the target, causing the target to be
less visible [5]. For example, the detectability of a deviation
IþΔI from a patch luminance I is proportional to the ratio ΔI/I,
so a localized distortion ΔI is more likely visible in a dark
region than a bright one [6]. This is called luminance masking.
In contrast masking, local high-frequency energy in an image
reduces the visibility of other high-frequency features such as
noise [7]. Spatial visual masking is well-known and plays a
central role in the design of perceptual image quality models
[8,9], video compression [10], and watermarking [11].

Regarding temporal visual masking, psychophysical exp-
eriments of temporal masking have been performed using
light flashes [12], sine wave-gratings [13], and vernier stimuli
[14]. In video processing research, temporal masking was first
studied in the early days of analog TV. It was found that
human observers could not perceive a temporary reduction of
the spatial details in TV signals after scene changes [15]. Later,
temporal masking of distortions was studied in the context of
video compression. Netravali et al. [10] investigated the effects
of luminance transitions on the perception of quantization
noise. Girod [16] emphasized the theoretical significance of
spatial and temporal masking effects, while Johnston et al. [17]
created a non-linear quantizer using simple models of spatial
and temporal masking. Puri et al. [18] designed an adaptive
video coder using the predicted visibility of noise on flat areas,
textures, and edges. Haskell et al. [19] suggested that obser-
vers are more tolerant of distortions in moving images than in
stationary images due to a presumed difficulty of focusing on
details on moving objects. More recently, the just-noticeable
distortion (JND) has been applied to adaptive image coding
[20] and on the visibility of noise in videos [21]. While a
variety of ideas and algorithms have been proposed to account
for temporal masking, scene changes are sparse, and imple-
mentations to account for temporal masking in video com-
pression have been largely heuristic based on anecdotal
evidence. Although JND is related to the visibility of distor-
tions, the influence of object motion on the visibility of
distortions has not been explicitly analyzed in this context.

Flicker distortions, which are not well accounted for in
current VQA models, frequently appear near moving edges
and textures in interlaced videos and/or compressed videos,
producing annoying visual artifacts such as edge flicker,
interline flicker, and line crawling [22]. To mitigate flicker
defects, variations on the Kell factor [23], which perceptually
limits the bandwidth of a temporally sampled image to avoid
the visibility of irritating beat frequencies, have been devised,
while a variety of deinterlacing techniques [24] were pro-
posed to reduce flicker including temporal anti-alias filters,
interpolation, and motion-compensated up-conversion.
Flicker also can be observed in quantized or compressed
videos due to spatially localized temporal fluctuations of
luminance: for example, caused by blockiness over textures
or blockiness at the junction of blocks, called corner outliers.
Fan et al. [25] proposed a modified encoder with improved
intra-prediction of encoded sequences, while others devised
post-processing filters [26,27] to reduce flicker; however, in
these models masking effects were not accounted for.
Recently, Ni et al. [28] performed a subjective study to
understand the visibility of flicker as a function of flicker
amplitude and frequency, but not how it is affected bymotion.

Very recently, Suchow and Alvarez [29] demonstrated a
striking “motion silencing” illusion (the illusion may be
viewed at http://visionlab.harvard.edu/silencing/), in which
the salient temporal changes of objects in luminance, color,
size, and shape appear to stop when they move rapidly in
collective motion. Many types of illusions exist [30], including
some which are perceived phenomena that do not actually
exist, and others where a phenomena that might ordinarily be
seen are not because of modified conditions. Motion silencing
illusion is an example of the latter, i.e., suppressed or eli-
minated perception of an existing flicker signal due to motion.
This motion-induced failure to detect change not only sug-
gests the tight coupling of motion and object appearance, but
also reveals that motion can dramatically reduce the percep-
tion of salient changes in visual objects. Hence, understanding
the motion silencing phenomenon as a form of temporal
visual masking is important forwards deepening our under-
standing of the visibility of commonly-occurring temporal
flicker distortions. Our previous studies [31,32] showed that
motion silencing can be explained as a function of stimulus
velocity, flicker frequency, and spacing between objects by
using a spatiotemporal model of cortical simple cell respo-
nses. A consistent physiological and computational model
that detects motion silencing might be useful to probe related
motion perception effects, such as distortion visibility in
compressed videos. However, since the effect has thus far
only been studied on highly synthetic stimuli such as moving
dots, there is a significant need to understand the impact of
object motions on the visibility of temporal distortions in
real-world, naturalistic videos. Furthermore, developing a
visibility prediction model of temporal distortions is of great
interest as a possible path towards improving the perfor-
mance of VQA models.

Here, we study a new observed motion silencing phenom-
enon wherein flicker visibility is affected by the speed of
coherent object motion on naturalistic videos. We conducted
a series of human subjective studies to examine the influence
of object motion on flicker visibility. By presenting com-
pressed videos undergoing regular, periodic changes in quality
levels to 43 naïve subjects engaged in two tasks (“follow the
moving object” and “view freely”), we found the empirical
distributions of flicker visibility on tested videos and the effect
of motion on flicker visibility using a correlation analysis.
Based on this finding, we propose a model of flicker visibility
on naturalistic videos. The proposed model estimates target-
related activation levels in the excitatory layer of neurons
for displayed video frames (the target) against immediately
following frames (the mask) via a spatiotemporal backward
masking model [14,33], then applies flicker adaptation [34]
and accumulation [35,36] processes to predict flicker visibility.
The predicted results correlate well with human perception of
the visibility of flicker distortions. This paper builds upon our
earlier work describing on the visibility of flicker distortions
[37] and prediction of flicker visibility on naturalistic videos
[38].

The remainder of this paper is organized as follows. In
Section 2, we describe details of a human subjective study
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investigating motion silencing of flicker distortions on nat-
uralistic videos and perform an analysis of the subjective
opinion scores obtained from the study. Section 3 proposes
an algorithm of flicker visibility and evaluates the perfor-
mance of the algorithm on the executed human subjective
study results. Finally, general conclusions and discussions
are presented in Section 4.

2. Human subjective study of flicker distortions

2.1. Source videos

Source videos were obtained using a RED ONE digital
cinematographic camera. The 12-bit REDCODE (.r3d) RAW
data was captured from the MYSTERIUM sensor at a
resolution of 3K (3072�1728) at the frame rate of 30 fps
using the 42 MB/s option to ensure that the best possible
acquisition quality was recorded. The RED 50–150 mm and
18–50 mm T3 zoom lens were used. The source videos
were truncated to 10 s lengths and then downsampled to
resolution 720p (1280�720) or cropped to 1920�720 at
30 fps. The .r3d videos were converted into uncompressed
.yuv files by a combination of the “imresize” (option:
bicubic) function in MATLAB and Adobe Premiere CS5.
One video, “Tr,” was added from a database available from
the Technical University of Munich and followed the same
processing. A total of eight reference videos were selected.
Two videos were used for a training session, while six
Fig. 1. Example frames of the videos used in the study. The marked areas indic
videos were used for the actual test. The list below
describes each of the videos used in the human subjective
study.
1)
ate
Baseball Batter (Bb): Shot at Disch–Falk Field, Austin,
Texas on a sunny morning. A baseball player stands,
then runs fast after hitting a ball. The camera was fixed.
2)
 BMX bike rider (BMX): Shot at the Austin BMX and
skate park on a sunny afternoon. A BMX bike rider
continuously moves in a roughly semi-circular arc like a
pendulum. The object speed changes up and down fast.
The camera was fixed.
3)
 Lacrosse Players (La): Shot at The University of Texas at
Austin intramural fields on a sunny afternoon. Lacrosse
players stand, then run towards a goal after a referee
blows a whistle. This scene includes both static and
rapid motions. The camera was fixed.
4)
 Metro Rail (Mr): Shot at a MetroRail station, Howard,
Austin, Texas on a sunny morning. MetroRail starts
leaving the station as increasing speed gradually. The
camera was fixed.
5)
 Red Car (Rc): Shot in a road on a sunny afternoon. A red car
moves from right to left twice. The car moves slowly at first
but then faster, so this video includes abrupt object motion
with a scene change. The camera was fixed.
6)
 Tractor (Tr): Shot at a farm field on a sunny day. A tractor
turns left across the field. The object speed increases
steadily. The camera follows the tractor and zooms in.
moving objects, while arrows denote the paths of object movement.
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7)
Fig
cha
Highway (Hw): Shot at Highway 183, Austin, Texas on a
sunny afternoon. Cars move at different speeds and
directions. Some cars turn at a highway entrance. The
camera was fixed.
8)
 Zip Line (Zl): Shot at a Stunt Ranch, Austin, Texas on a
sunny morning. Children play on the ground, and a girl
is running across the playground. The camera was fixed.

Fig. 1 shows sample frames from the various video
sequences including diverse speeds of object motions. The
marked areas show the gaze target and moving objects,
while the blue arrows indicate the paths followed by the
moving objects.
2.2. Distortion simulation

We simulated flicker distortions by periodically alternating
subsequences of videos at different quality levels (amplitude) at
three flicker frequencies (duration) as illustrated in Fig. 2.
Flicker frequency means the number of quality level alterna-
tions per second. Specifically, the flicker is caused by changing
frames from a high to a low quantization parameter (QP)
setting and then back from low to high QP in an H.264
compression codec. Thus, the artifact is a “distortion flicker,”
rather than a brightness flicker. Each reference video was
encoded using the JM reference implementation of H.264
Advanced Video Codec (AVC) [39] at one of four fixed QP
values: QP26, QP32, QP38, and QP44. The perceptual video
quality was found to be well separated using these QP values,
corresponding to roughly excellent, good, poor, and bad,
respectively, from QP26 to QP44. Over each flicker period, the
QP alternated either fromQP44 to QP26, fromQP38 to QP26, or
fromQP32 to QP26 by inserting appropriate segments from the
four already compressed videos.We selected this form of flicker
as such rate changes are caused by adaptive rate control
algorithms. Thus, the appearance of the flicker distortion is
more realistic than, for example, simple luminance flicker.

Further, to investigate the effect of flicker frequency on
the visibility of flicker as a function of motion, videos with
variable-length QP durations (periods) were also constructed,
corresponding to time-varying flicker frequencies of 7.5, 5, and
3 Hz, all using a fixed alternating QP pair (QP38, QP26). Each
case is illustrated in Fig. 2(a) and (b). A transition from low to
high quality decides flicker magnitude. When the quality
difference is large (e.g., QP44, QP26), the flicker magnitude
is large, so flicker can be easily perceived. However, when the
quality difference is small (e.g., QP32, QP26), the flicker
magnitude is small, so flicker can be perceived less. We
explore how flicker visibility at each quality difference is
influenced by object motion speeds.
. 2. Schematic illustration of the flicker distortion simulation: (a) video qua
nges. Every 2, 3, and 5 frames were periodically alternated, corresponding t
2.3. Test methodology

We used a single-stimulus continuous quality evaluation
(SSCQE) [40] procedure with hidden reference to obtain
subjective percepts of flicker visibility for the different video
sequences. All subjects taking part in the study were
recruited from The University of Texas at Austin. A total of
43 students served as naïve subjects. All subjects were
between the ages of 20 and 35. Each was found to have
normal or corrected-to-normal vision in visual acuity (Snellen
Test) and color perception (Ishihara Test). We developed the
user interface for the study using MATLAB and the XGL
toolbox [41]. The XGL toolbox interfaced with an ATI Radeon
X300E graphics card in an Intel Xeons 2.93 Hz Dual CPU,
24 GB RAM Windows computer. All test sequences were
processed and stored as raw YUV 4:2:0 files. To avoid any
latency due to slow hard disk access of a large video file, each
entire video was loaded into memory before its presentation.
Subjects viewed videos on a 24″ screen Dell U2410 LCD
monitor (Dell, Round Rock, TX, USA) with a resolution of
1920�1080 at a 60 Hz refresh rate. The entire study was
conducted using the same monitor, and the video was played
at the center of the display. The remaining areas of the
display were black.

Before presenting a test video, an instruction frame was
displayed to visualize the pre-defined moving object con-
tained in each test video. The study interface is shown in
Fig. 3. A continuously calibrated rating slider bar with
Likert-like markings was shown at the right side of the
screen. The rating scale ranged from 0 to 100, where the
increments 0, 25, 50, 75, and 100 were marked as “Hardly,”
“Little,” “Medium,” “Highly,” and “Extremely” to indicate
the degree of perceived flicker visibility. The initial score
displayed on the rating bar was “Medium” at the begin-
ning of each video. During playback, the rating bar
disappeared except for a white score gauge along the bar
not to disturb video viewing.

An eye and head tracker (faceLAB 5, Seeing Machines)
was used to monitor each subject's gaze direction. The
subjects' heads were unrestrained. Gaze was calibrated by
using a 9 point calibration sequence before each experi-
ment, and was recorded at every 1/60 s into calibrated
display coordinates. The viewing distance was approxi-
mately 87 cm (three times of display height).

Each subject participated in two separate tasks; Task 1,
“follow the moving object” and Task 2, “view freely.”
Subjects performed Task 1 first and executed Task 2 after
sufficient rest (e.g., one day). In Task 1, subjects were
requested to fixate their eyes on the pre-defined moving
object throughout the duration of the video and to rate the
visibility of flicker on the object by moving the mouse up
lity level (amplitude) changes and (b) video frame duration (frequency)
o flicker frequencies of 7.5, 5, and 3 Hz, respectively.



Fig. 3. The subjective study interface displaying the instruction and the video to the subject.
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or down the scale continuously. In Task 2, subjects were
requested to view videos naturally. Each task lasted less
than 20 min, each of which consisted of 36 test videos
(6 hidden reference videos and 30 flicker distorted videos)
in randomized order. Prior to data collection, a short trai-
ning session preceded the actual study to familiarize the
subjects with the experimental procedure.

In addition, a lag response (the time difference between
the perception of flicker and the movement of a mouse to
rate the visibility) was measured for each session and for
each subject. Subjects were asked to move a mouse up
when a black dot on a white background flickered and to
move a mouse down when the dot did not flicker. The
black dot distinctively flickered for 2 or 3 s. Time duration
from the start of the dot flicker (or no-flicker) on the
screen to the mouse movement by the subject was
measured five times, and then those values were averaged.

2.4. Processing of the scores

The subject screening procedure was executed in Task 1
by monitoring whether the subject followed the pre-defined,
designated moving objects based on the recorded gaze
positions. Since no subjects were rejected from the study,
the scores from all subjects were used for the analysis.

To ensure appropriate time synchronization between the
frame at which the subject visually perceived the flicker and
the mechanical scoring of flicker visibility that was rated by
hand, the evaluated score was matched after shifting the
score signals by the average lag response time for each
subject. Let sijf denote the score assigned by subject i to video
j at frame number f, msijf be the visibility score of subject i to
video j at frame number f, and lag_i be the average lag
response of subject i. Then the visibility score is given by

msijf ¼ sijðf þ lag_iÞ: ð1Þ
The range of lag response times was 0.47–1.17 s (14–35
frames).

In order to unbias measured flicker visibility of each
flicker distorted video from its content, we calculated the
difference flicker visibility scores between the score that
the subject assigned to each reference video and the scores
assigned to the corresponding flicker distorted videos.
Specifically, let msij_reff denote the flicker visibility score
assigned by subject i to the reference no-flicker video
associated with the distorted video j after lag response
matching and, Mj be the total number of ratings received
for video j. The difference scores dsijf are computed as

dsijf ¼msijf �msij_ref f : ð2Þ
The final flicker visibility score is

f vsjf ¼
1
Mj

X
i

dsijf : ð3Þ

The flicker visibility scores range continuously from 0 to
100, where 0 means that the subject failed to, or hardly
perceived flicker on the moving object, while 100 means
that the subject perceived flicker clearly.

2.5. Analysis of subjective flicker visibility

2.5.1. Distributions of flicker visibility against object speed
The measured flicker visibility for each video was ana-

yzed against the speed of the pre-defined moving object.
Distribution of flicker visibility against object speed is shown
in Fig. 4 for the test videos in Task 1. Each column represents
different content from “Bb” to “Tr.” In each subplot in Fig. 4
(a), solid red, green, and blue lines indicate the average
distribution of flicker visibility for different QP alternation
pairs (QP44, QP26), (QP38, QP26), and (QP32, QP26), respec-
tively, at 5 Hz flicker frequency. The left vertical axis is the
flicker visibility score, and the horizontal axis is the frame
number. The dotted black line shows the average speed of
the moving object, which was computed on successive
frames using the optical flow algorithm in [42]. The magni-
tude of flow on the area of the pre-defined moving object
was then averaged. The magnitude of motion flow is
displayed on the right vertical axis (unit: pixel/frame). The
area of the moving object associated with each video frame
was segmented manually, then used to calculate object
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Fig. 4. Distributions of flicker visibility against object speed: (a) quality level changes at 5 Hz flicker frequency and (b) flicker frequencies at QP alternations
(QP38, QP26). Solid lines indicate flicker visibility, while dotted lines show motion velocity (pixel/frame). It can be observed that when motion is large, the
visibility of flicker distortion decreases, and this effect is more pronounced when the video quality is poor.
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motion as well as to monitor subjects' gaze whether they
followed the pre-defined object or not. We superposed the
object speed on flicker visibility scores for easy comparison
in Fig. 4.

Each subject spent at least 1.67 s (50 frames, which
include a judgment time and a lag response) up to 3 s in
order to rate the first flicker visibility after a test video began,
which explains why the flicker visibility scores begin at 0 in
Fig. 4. Since flicker visibility scores were shifted to compen-
sate for the manual response latency, the last 35 frames of
visibility scores for each video were not displayed. When
moving objects disappeared from a scene, no data for object
speed existed, so we omitted those intervals. Frame intervals
[51–208], [51–265], [51–265], [51–265], [51–209, 240–265],
and [51–265] were used for the analysis from “Bb” to “Tr.”

The experimental results show that the visibility of flicker
distortions was strongly reduced when object motion was
large or increased rapidly for all test video sequences. It
happened even when video quality was maintained at a
given QP level, or when the apparent quality worsened due
to blur as the speed of motion increased. The reduction of
flicker visibility on naturalistic videos was dependent on
both overall video quality (range of QP values) and on the
object speed. When video quality was high, flicker visibility
was low and less sensitive to motion, whereas when video
quality was poor, the motion silencing effect was large. In
addition, an abrupt increase of object speed (e.g., “Rc”) led to
a significant reduction of flicker visibility. On the other hand,
slow and gradual movement (e.g., “Tr”) influenced flicker
visibility very little. Although the subjects were able to hold
their gaze on the moving objects, less flicker was seen on
fast-moving objects.

The distribution of flicker visibility at different flicker
frequencies for a fixed QP alternation pair (QP38, QP26) is
shown in Fig. 4(b) against object speed. The solid red, green,
and blue lines show 7.5, 5, and 3 Hz flicker frequency,
respectively. The dotted black line indicates the object speed.
Similar to the result on quality level changes, the visibility of
flicker distortion decreased when object motion was large or
increased abruptly, while flicker visibility gradually reduced
when motion was small or increased steadily. Although
subjects generally perceived more flicker at high flicker
frequencies, the influence of flicker frequency was not as
large as was the effect of increased object motions.

2.5.2. Correlation analysis
We analyzed the relationship between flicker visibility

and object speed using Pearson's linear correlation coeffi-
cient (LCC) for the QP level changes and flicker frequen-
cies. Fig. 5 represents the result. Each column indicates
different content. In each subplot, the vertical axis is flicker
visibility, and the horizontal axis is the object speed. To
indicate object motion, frame numbers are rendered using
a standard color map from cool to hot. For example, for
“BMX,” frame 51 is blue, and frame 265 is red. LCC
between flicker visibility and object motion is displayed
above each subplot.

The magnitude of LCC on “Bb” is greater than 0.83, which
implies that object motion has a significant influence on
flicker visibility. Despite distinct negative correlation in each
sweep of the rider on “BMX” (e.g., QP alternation (QP38,
QP26)), the single correlation coefficient does not capture the
interaction between time (motion trajectory) and flicker
visibility. When we segmented each sweep with a peak-to-
peak speed of motion, the frame intervals were [51–76], [77–
150], [151–209], and [210–265], and LCC were �0.9727,
�0.6588, �0.9062, and �0.9305, respectively. Since the
object speed changed rapidly and repeatedly over a short
time span, the subjects could not rate scores using a mouse as
quickly as they perceived flicker. Results on “La” and “Mr”
clearly show that flicker visibility decreased as object speeds
increased, albeit the single LCC score does not represent
silencing. For “Rc” containing the QP alternation (QP32,
QP26), the LCC was �0.53 and the range of flicker visibility
is small, while for other cases, the LCC magnitude exceeded
0.8 over a wide range of flicker visibility. This suggests that
the reduction of flicker visibility is less significant when the
overall video quality is good. One interesting observation is
the positive correlation coefficient on “Tr” at the QP alterna-
tion (QP44, QP26). We speculate that when the object speed is
slow and changes gradually in a poor quality video, the
motion influence on flicker visibility is weaker. Cameramotion
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and zoom may modify the projected object speed unpredic-
tably. Regarding the results of flicker frequencies, the impact
of motion on flicker visibility was generally similar to the
results of QP level changes as can be seen in Fig. 5(b).

2.5.3. Gaze analysis
All subjects followed the pre-defined moving objects

during Task 1. Fig. 6 illustrates the average of accumulated
gazes from all subjects for each video. The gaze traces shown
in Fig. 6(a) indicate that subjects correctly followed the
moving object as instructed. The gaze traces in Task 2 shown
in Fig. 6(b) cover a wider range than those from Task 1. In Task
2, subjects usually started to watch videos at the center and
followed the main moving object most of the time. When
objects started to move, or when a new object appeared, or
when a large distortion occurred, the gazes were drawn
to these events. On high quality video sequences, subjects
tended to look primarily at the moving objects, and the
motion impact was similar to the result of Task 1.

For the analysis of the results in Task 2, we first found the
gaze positions on each frame, then computed the magnitude of
the optical flow corresponding to the gaze, and then associated
the speed of motion with the flicker visibility. Because gaze
movements occurred much more quickly than the rating of
flicker visibility using a mouse, it was difficult to analyze the
impact of motion using the samemethod as in Task 1. However,
we still noticed that the overall flicker visibility was more
greatly reduced when subjects followed fast moving objects
than slow motion.

3. Prediction of flicker visibility

3.1. Algorithm

Inspired by the preceding, we developed a method of
predicting target-related activation levels in an excitatory
layer of artificial neurons on displayed video frames (the
target) against immediately following frames (the mask)
via spatiotemporal backward masking. Next, the target-
related activation level is adjusted based on the flicker
intensity (magnitude). Finally, flicker accumulation and
adaptation processes are applied to predict flicker visibility
on naturalistic videos.

3.1.1. Target-related activation levels of neurons
Neurons at the retina collectively receive inputs from the

photoreceptors such as rods and cones, then produce center-
Fig. 6. The average of accumulated gazes from all subjects: (a) Task
surround, excitatory-inhibitory, on–off responses to local
cone or rod cell signals and their surrounding neighbors,
yielding a reduced-entropy residual signal [6]. Each receptive
field (RF) describing a neuron's response may be well mod-
eled as having an excitatory layer and an inhibitory layer. An
excitatory layer increases firing rates, while an inhibitory
layer suppresses the spontaneous firing of the cells. The two
layers interact in an antagonistic way, and thereby the over-
lap of RFs controls firing rates of neurons to increase spatial
resolution. These excitatory-inhibitory interactions can be
modeled using neural field equations [33].

We used Hermens et al.'s backward masking model [14] to
predict the firing rate of neurons, or target-related activation
levels, for the visibility of flicker distortions on naturalistic
videos. Since backwardmasking is themost dominant temporal
masking in naturalistic videos as suggested by interruption
theory [43] and scene change experiments [44], we adopted
Hermens et al.'s model. Broadly, the target-related activation
level is monotonically related to the percentage of correct
responses to neural stimuli. In our context, it represents the
visibility of a target frame (e.g., a current frame masked by
following frames). The target-related activation levels are com-
puted using interactions between and within excitatory and
inhibitory layers of neurons based on Wilson and Cowan's
neural network [14,33].

First, we assigned each current frame as a target frame
and each following two frames as masking frames, as
illustrated in Fig. 7. Since we were interested in the impact
of motion on the visibility of flicker distortions, we selected
the moving object (marked regions in Fig. 1) as a region of
interest (ROI) and ignored or zeroed other regions. A set of
partial differential equations describing the population
activities Ae and Ai were used following [14]:

τe
∂Aeðx; tÞ

∂t
¼ �Aeðx; tÞþhefweeðAenWeÞðx; tÞ

þwieðAinWiÞðx; tÞþ Iðx; tÞg: ð4� 1Þ

τi
∂Aiðx; tÞ

∂t
¼ �Aiðx; tÞþhifweiðAenWeÞðx; tÞ

þwiiðAinWiÞðx; tÞþ Iðx; tÞg: ð4� 2Þ

The parameters τe and τi are time constants; wee, wei,
wie, and wii are coupling strengths; subscripts e and i mean
excitatory and inhibitory layers; x is a two-dimensional
position vector in one of the neural layers; and t is time.
The symbol “n” denotes convolution. The functions he and
1, “follow the moving object” and (b) Task 2, “view freely.”
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hi are defined as

he;iðxÞ ¼
se;i Ux for x40
0 otherwise

�
ð5Þ

with neuronal gain constants se and si. The coupling
structures are

We;iðx�x0Þ ¼ 1
2πσ2

e;i

exp � x�x0j j
2σ2

e;i

 !
ð6Þ

for the excitatory and inhibitory interactions, and σe,i are
the widths of the interaction kernels. The input to both
populations is computed using

Iðx; tÞ ¼ ðSnVÞðx; tÞ ¼
Z 1

�1

Z 1

�1
Sðx0; tÞVðx�x0Þdx0 ð7Þ

on a video frame S, while the input kernel is

Vðx�x0Þ ¼ 1
2πσ2

E

exp � x�x0j j2
2σ2

E

 !
� 1
2πσ2

I

exp � x�x0j j2
2σ2

I

 !
;

ð8Þ
where σE and σI are the widths of the input kernel. We used
the values of the different constants as described in [15].
The spatial kernels of these equations are arranged so that
each cell receives recurring excitation from its spatial
neighbors and recurring inhibition from a larger set of cells
around the excitatory set of cells. Therefore, these equations
describe a network of neurons whose connections describe
the recurrent center-surround RF responses of each cell.

Finally, define the target activation level

T ¼
Z
x
Aeðx; r0ÞUST ðxÞdx; ð9Þ

where ST is the ROI of the target frame, and r0 is the
duration of the excitatory activity (110 ms) after the target
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Fig. 8. The target related activation levels: (a) Bb and (b) BMX in spa

Fig. 7. The target and masks on naturalistic video stimuli.
onset. We allowed the size of ST to vary with the video
content unlike Hermens et al.'s fixed constant target by
dividing (normalizing) it by the size of the ROI.

The target activation levels are shown in Fig. 8 for the “Bb”
and “BMX” test video sequences. One percent of the original T
was rendered. Although T effectively captures the suppressed
visibility of the target frame as a function of object motion, it
does not discriminate different flicker intensities. We interpret
this result to mean that T generally captures the temporal
variation of the visibility of distortions on the targets, but the
visibility of flicker distortions is apparently also dependent on
flicker intensity. For example, when the flicker intensity is
small, the visibility of the flicker distortions may vary within a
small range, while when the flicker intensity is large, flicker
visibility may fluctuate over a large range. Therefore, to
quantify the visibility of flicker distortions, we defined a target
and masks by controlling flicker intensity and object motions
on naturalistic videos, respectively, with shifting and scaling
factors, which were controlled based on quality level changes.
We observed only small variations of T when more mask
frames were added or when the readout time was varied in
the range [80,140] ms.
3.1.2. Prediction of initial flicker visibility
Physiologically, in terms of visual masking, the target

(flicker) in the test videos results from the intensity changes
caused by periodic alterations of QP in the H.264 video
compression (e.g., between QP44 and QP26), while the mask
(object motion) comes from luminance changes created by
natural object movements. Fig. 9 shows examples of the
target and mask for different object speeds in the “Bb” video
sequence. Fig. 9(a) shows frames containing different object
motions. Fig. 9(b) shows the target and masks. The target is
computed as the difference between the luminance frame of
QP44 and QP26 at the same frame number, while the masks
are computed as the frame differences of consecutive frames.
In Fig. 9(b), intensities within the ROI are inversely rendered
by magnifying the original intensities by a multiplicative
factor of 10 to enable visual comparisons. While the target
intensity is similar at different object motions, the intensities
of the masks are quite different. The inset boxes in Fig. 9(c)
and (d) show the object energies of frame differences when
the object motion is small. QP changes between (QP32,
QP26) and (QP44, QP26) caused different flicker intensities.
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Since the visibility of flicker distortions also depends on
flicker intensity, we shifted and scaled T as a function of
quality level changes corresponding to QP alternations. We
estimated the perceptual quality level changes using the
multi-scale structural similarity (MS-SSIM) index [45],
then applied the logarithm of the quality level changes
to compute a perceptual flicker quality factor [46]. Let
msssimjq denote the MS-SSIM index result on video j at QP
q (¼26, 32, 38, and 44), msssimijq be the MS-SSIM index
result on video j at frame number i and QP q, and N be the
total number of frames. The flicker quality factor, fijp, of
video j for a QP change between QP26 and QP p (¼32, 38
and 44) is then given by

msssimjq ¼
1
N

XN
i ¼ 1

mssimijq; ð10� 1Þ

f ijp ¼ logðmsssimj26�msssimjpÞ: ð10� 2Þ

Since video quality remains dependent on the video
content even when the QP is fixed, to unbias fi from content,
we converted fi to Z-scores, then mapped the Z-scores to
human flicker visibility scores, hfv, using a leave-one-out
cross validation protocol [47]. Each time we picked one video
from the six videos in Fig. 1, trained the necessary para-
meters on the other five videos, then predicted the initial
Fig. 9. The target (flicker) and the masks (object motion) in terms of visual mask
masks. Object energy of frame differences: (c) between QP32 and QP26 and (d)
flicker visibility as follows:

zf i_jp ¼
f ijp�μðf ijÞ
σðf ijÞ

; ð11� 1Þ

zhf v_jp ¼
hf vjp�μðhf vjÞ

σðhf vjÞ
; ð11� 2Þ

bzhf v_jp ¼ β2þ
β1�β2

1þe�ðzf i_jp �β3= β4j jÞ; ð11� 3Þ

bμðhf vjÞ ¼ α2þα1 � bzhf v_jp; ð11� 4Þ

bσ ðhf vjÞ ¼ 1
M
σðhf vfjgc Þ; j¼ 1; 2;…6; ð11� 5Þ

dhf vjp ¼ bzhf v_jp � bσ ðhf vjÞþ bμðhf vjÞ ð11� 6Þ
where zfi_jp and zhfv_jp are Z-scores for fijp and hfvjp; {μ(fij),
σ(fij)} and {μ(hfvj), σ(hfvj)} are {mean, standard deviation} at
video j for fijp and hfvjp, respectively; and the hat symbol
“\widehat” means predicted quantities. We predicted the
parameters β and α following [48] using a least squares fit
of μ(hfv) at {j}c, where j¼1, 2,…, 6, respectively. Eq. (11-3) is
a nonlinear regression on the zfi_jp using a logistic function
[48]. This well-accepted regression function works well
although we also tried other nonlinear regression models
which yielded similar results. Here σ̂(hfvj) is the mean of σ
(hfv) at {j}c. We used dhf vjp as the initial flicker visibility at
ing: (a) frames at different object motionsand (b) magnitude of target and
between QP44 and QP26 at the same object motion.



L.K. Choi et al. / Signal Processing: Image Communication 39 (2015) 328–341338
video j and QP p. Since we obtained the initial flicker
visibility from the 51th frame due to the lag responses
and judgment times in the human study, we used the value
of hfv at the 51th frame to predict the initial flicker visibility.
We shifted T to the values of dhf vjp in each video j at QP p.

Next, since the range of flicker visibility also depends
on the initial flicker visibility, we scaled the shifted T
values as follows:

Tss_jp ¼ ðdhf vjp=100Þ � ðT�T51Þþdhf vjp; ð12Þ

where Tss_jp is the shifted and scaled T at video j and QP p,
and T51 is T at the 51th frame. Tss_jp represents the initial
flicker visibility and a general visibility change pattern.

3.1.3. Flicker adaptation and accumulation
The sensitivity to flicker distortions in the Human Visual

System (HVS) is accumulated or attenuated after prolonged
exposure to flickering stimuli [34]. Due to the limited
dynamic range of a neuron, visual processing in the retina
efficiently adjusts or adapts visual stimuli. Specifically, when
a viewer is exposed to large flicker distortions for a longer
period of time (e.g., 100 ms), flicker visibility may be affected
by “visual persistence,” [35] whereby a visual stimulus is
retained for a period of time beyond the termination of
the stimulus. Conversely, when small flicker distortions are
prolonged, the HVS dynamically controls the flicker sensi-
tivity and allocates a finite range of neural signaling, so an
observer's flicker sensitivity may be attenuated [34]. Con-
ceptually similar accumulation and adaptation processes
may contribute to observed viewers' responses to time-
varying video quality as a “recency effect” [36] or “temporal
hysteresis” [49]. Here we extend these processes of flicker
accumulation and adaptation by accounting for the impact of
motion on flicker visibility.

We filtered Tss and object motion using a temporal
Gaussian weighting function [50] to remove noise, where
the Gaussian window duration was one second. We then
applied visual persistence and recency effects to adopt the
influence of flicker accumulation and adaptation as a function
of stimuli duration and object motion as described in Algo-
rithm 1. Let FVi represent the predicted flicker visibility at the
ith frame and mvth be a threshold velocity that leads to a
strong decrease in the visibility of flicker distortions. We used
the value mvth (¼10.1945) obtained from the human study
results described earlier. The value of mvth is computed as
the average of all measured thresholds in the test videos. The
results do not significantly differ when mvth varies over the
range [8,12] pixel/frame. The parameters t1, t2, and t3 are time
durations where mvirmvth, mviZmvth and mviZmvi�1, and
mviZmvth and mviomvi�1, respectively.

When mvirmvth, the flicker adaptation effect on flicker
visibility is large, while the influence of motion is small.
Since visual persistence changes almost linearly with log
stimulus duration at a given intensity, we suggest that FVi

may be accumulated or attenuated as a logarithmic func-
tion of time duration t1 from a base-level, Ti

ss, as follows:

FVi ¼ Ti
ssþγ logðt1Þ ð13Þ

where γ is a rate parameter of accumulation or attenuation,
where the value was set to �0.4356, 0.7599, and 3.3629
when the QP changes from 32, 38, 44, to 26 respectively.
We obtained the value of γ using a least squares fit to the
human experimental data.

When mviZmvth, both the object motion and adapta-
tion effect influence flicker visibility. To include the
impact of object motion on flicker visibility, we use
the measured difference of Tss between frames (e.g.,
Tiþ1
ss �Ti

ss) in order to estimate γ. To embrace the influ-
ence of adaptation effect on flicker visibility, we use the
memory effect: first, we define a memory component x(i)
at each instant frame i by averaging the difference of Tss
over the previous time duration t2 or t3. Second, we
construct a current flicker visibility change rate y(i) at
each frame instant i using the difference, Ti

ss�Ti�1
ss . We

then linearly combine the past memory component x(i)
and the current change rate y(i), thereby yielding an
overall visibility adaptation rate that seeks to explain
recency effects at frame i. In our tests, the linear factor
λ¼0.7. We observed that the results do not vary sig-
nificantly when λ is above 0.5, similar to [49]. Finally, FVi

is iteratively solved to ensure that the predicted flicker
visibility is smoothly varying.
Algorithm 1 Flicker visibility prediction algorithm

Inputs: N, mv, mvth, t1¼0, t2¼0, t3¼0, j¼0, γ, and Tss
1: for i¼51: N
2: if mvirmvth and j¼0
3: t1¼t1þ1, t2¼0, t3¼0

4: FVi¼Ti
ssþγ� log(t1), where γ¼[�0.4356, 0.7599, 3.3629]

5: else
6: if mviZmvth and mviZmvi�1

7: t2¼t2þ1, t1¼0, t3¼0, j¼1, k¼2
8: elseif mviZmvth and mviomvi�1

9: t3¼t3þ1, t1¼0, t2¼0, j¼1, k¼3
10: elseif mvirmvth and j¼1
11: t1¼t1þ1, t2¼0, t3¼0, j¼1, k¼1
12: end if

13: x(i)¼mean[(Ti� tk
ss ,…, Ti�1

ss )�(Ti� tk �1
ss ,…, Ti�2

ss )]

14: y(i)¼Ti
ss�Ti�1

ss

15: FVi¼FVi�1þ[λy(i)þ(1�λ)x(i)]� log(tk), λ¼0.7
16: end if
17: end for

3.2. Evaluation of algorithm performance

We evaluated the performance of the proposed algorithm
on 24 test videos, which contain the six reference videos and
the corresponding 18 flicker distorted videos that were
simulated by alternating QP pairs at (QP44, QP26), (QP38,
QP26), and (QP32, QP26). As mentioned earlier, this type of
flicker was used as it resembles distortions that can be
caused by video rate adaptation algorithms.

The predicted flicker visibility from the algorithm and
the 95% confidence interval (CI) of the measured flicker
visibility by humans are plotted in Fig. 10. Each colored
band indicates the 95% CI of the measured flicker visibility
at different QP alternations – (QP44, QP26) ( ), (QP38,
QP26) ( ), (QP32, QP26) ( ), and each solid line with
different markers represents the predicted flicker visibility
under the model at different QP alternations – (QP44,
QP26) ( ), (QP38, QP26) ( ), (QP32, QP26) ( ). We
compared the results in the frame intervals [51,208] for
“Bb” and [51,265] for the other videos since 1) observers
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Fig. 10. The predicted visibility of flicker distortions from the proposed model and the 95% CI of the measured visibility of flicker distortions from the
human experiments on test videos. Each colored band indicates the 95% CI of the measured flicker visibility at different QP alternations – (QP44, QP26)
( ), (QP38, QP26) ( ), (QP32, QP26) ( ), and each solid line with different markers represents the predicted flicker visibility from the model at
different QP alternations – (QP44, QP26) ( ), (QP38, QP26) ( ), (QP32, QP26) ( ), respectively. (a) Bb, (b) BMX, (c) La, (d) Mr, (e) Rc, and (f) Tr.

Table 1
Pearson's Linear Correlation Coefficient (LCC) between the predicted
visibility of flicker distortions from the proposed model and the mea-
sured visibility of flicker distortions from the human subjective study.

Bb BMX La Mr Rc Tr

QP44–QP26 0.9534 0.7815 0.6477 0.8712 0.9183 0.8952
QP38–QP26 0.9880 0.7523 0.8721 0.8515 0.9034 0.9156
QP32–QP26 0.9796 0.7959 0.8187 0.7773 0.7882 0.9267

Table 2
Spearman's Rank Ordered Correlation Coefficient (SROCC) between the
predicted visibility of flicker distortions from the proposed model and the
measured visibility of flicker distortions from the human
subjective study.

Bb BMX La Mr Rc Tr

QP44–QP26 0.7069 0.6656 0.0640 0.0620 0.9284 0.4922
QP38–QP26 0.8125 0.3775 0.1050 0.1440 0.5777 0.6103
QP32–QP26 0.9880 0.2028 0.7755 0.5445 0.6975 0.8840
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needed at least 50 frames (1.67 s) to rate the initial flicker
visibility after a test video begins; 2) when moving objects
disappeared, no motion data was obtained; and 3) the last
35 frames were shifted to account for a lag response. As
seen in Fig. 10, the proposed model can effectively predict
variations of the perceived visibility of flicker distortions as
reported by humans. When object motions were small,
the visibility of flicker distortions was mainly influenced
by flicker intensities (caused by QP alterations) and their
persistent durations. On the other hand, when object
motion was large, the visibility of flicker distortions was
strongly reduced.

One interesting observation on the model predictions is
that large jumps in flicker visibility on the videos “La” and
“Mr” were observed. These may have arisen from the drastic
changes of size of the moving objects. For example, the
occlusion of the player by the referee in the “La” video
sequence induced a flicker visibility score above 100 (around
frame 100 at the QP change between QP44 and QP26 in
Fig. 10c) in the model prediction, whereas the flicker
visibility scores ranged from 0 to 100 in the human experi-
ments following (3). The looming train in the “Mr” video
sequence (around frame 200 in Fig. 10d) influenced the
prediction of T and subsequently affected the prediction of
flicker visibility. Overall, the proposed algorithm successfully
captured the influence of object motion on the visibility of
flicker distortions.

Tables 1 and 2 show the performance of the prediction
method as assessed using the LCC and the Spearman's rank
ordered correlation coefficient (SROCC) between the pre-
dicted visibility of flicker distortions and the perceived
flicker visibility on the test videos after non-linear regres-
sion, as described in [51]. Similar to the results shown in
Fig. 5, the LCC and SROCC are lower on the “La,” “Mr” video
sequences than on the others. Although the results vary
depending on the video content and the QP alternation
range, the average of LCC value was 0.8573. As can be seen
in Fig. 10, Tables 1 and 2, the experimental results show
that the prediction of flicker visibility using the proposed
model correlates quite well with human perception of
flicker distortions.

3.3. Possible extensions

In this subsection, we discuss flicker visibility with respect
to blur and other related factors. Motion blur may influence
flicker visibility. As shown in the human psychophysical
experiments on naturalistic videos, when motion increased,
flicker visibility decreased. In general, motion also produces
blur due to rapid movement of objects or of the camera
during the recording of a single frame. Given that motion
introduces blur, does flicker masking occur below the thresh-
old of motion blur? Flicker masking and motion blur may be
considered as falling within the “window of visibility” of
Watson et al. [52]. When flicker and blur signals occur on
signals containing primarily low spatial and temporal fre-
quency, both might be visible, whereas on signals exhibiting
high spatial and temporal frequency, either signal might be
invisible. Temporal luminance changes on moving objects are
determined as a product of the flicker frequency and the
spatial frequency on the object. When the temporal
frequency of the signal is low enough, the HVS adequately
samples the luminance changes, so that the changing lumi-
nances can be seen. On the other hand, at higher stimulus
temporal frequencies under-sampling by the HVS may cause
reduced visibility of luminance changes [32]. Since motion
blur implies the loss of high spatial frequencies, motion blur
may also affect flicker masking. To better understand the
combined effect of motion blur on flicker masking, it would
be of interest to perform a subjective study extending the one
here. For example, it would be helpful to examine whether
observers notice any blur while tracking moving objects.

While we used a variety of natural videos in this work,
real content is very diverse. It is possible that some kinds of
content could adversely affect model predictions of human
percepts of flicker visibility, e.g., by conforming to the
experimentally obtained model parameters (e.g., mvth and
γ in Algorithm 1). It is possible that nighttime conditions,
variable weather, or unusual scenes (e.g., an Olympic ice-
skating event consisting mostly of ice views) could produce
less accurate predictions. Naturally, this work is just a start
on this problem and certainly further research on the flicker
visibility prediction problem is needed.

4. Conclusion

We analyzed the influence of object motion on the
visibility of flicker distortions on naturalistic videos and
developed a model of flicker visibility. The results of a
human subjective study revealed that flicker visibility
on natural videos strongly relies on the speed of object
motion, where less flicker was seen on fast-moving objects
although subjects held their gaze on the moving objects.
The influence of object motion on flicker visibility is more
pronounced when video quality is poor. Based on these
observations, we believe that sufficiently fast, coherent
motion silences the awareness of flicker distortions on
naturalistic videos.

In addition, we presented a model of flicker visibility on
naturalistic videos using spatiotemporal backward mask-
ing and neural adaptation processes. The experimental
results show that the proposed model accurately predicts
flicker visibility as perceived by humans. In the presence of
large coherent object motions, the predicted suppression
of flicker visibility on naturalistic videos is in agreement
with a recently observed “motion silencing” illusion.
Future work will involve connecting the visibility of flicker
distortions to perceptual VQA models that can predict
“silenced” temporal distortions.

Appendix A. Supporting information

Supplementary data associated with this article can be
found in the online version at http://dx.doi.org/10.1016/j.
image.2015.03.006.
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