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1. Introduction 
Video traffic is exponentially increasing over wireless 
networks due to proliferating video technology and the 
growing desire for anytime, anywhere access to video 
content. Cisco predicts that two-thirds of the world’s 
mobile data traffic will be video by 2017 [1]. This 
imposes significant challenges for managing video 
traffic efficiently to ensure an acceptable quality of 
experience (QoE) for the end user. Since network 
throughput based video adaptation without considering 
user’s QoE could lead to either a bad video service or 
unnecessary bandwidth waste, QoE management under 
cost constraints is the key to satisfying consumers and 
monetizing services [2]. 
 
One of the most challenging problems that needs to be 
addressed to enable video QoE management is the lack 
of automatic video quality assessment (VQA) tools that 
estimate perceptual video quality across multiple 
devices [2]. Researchers have performed various 
subjective studies to understand essential factors that 
impact video quality by analyzing compression or 
transmission artifacts [3], and by exploring dynamic 
time varying distortions [4]. Furthermore, some VQA 
models have been developed based on content 
complexity [5] [6]. In spite of these contributions, user 
QoE estimation across multiple devices and content 
characteristics, however, remains poorly understood. 
 
Towards achieving high QoE across the compute 
continuum, we present recent efforts on automatically 
estimating QoE via a content and device-based 
mapping algorithm. In addition, we investigate 
temporal masking effects and describe a new dynamic 
system model of time varying subjective quality that 
captures temporal aspects of QoE. Finally, we introduce 
potential applications of video QoE metrics, such as 
quality driven dynamic adaptive streaming over HTTP 
(DASH) and quality-optimized transcoding services. 
 
2. Improving VQA model for better QoE 
VQA models can be generally divided into three broad 
categories: full-reference (FR), reduced-reference (RR), 
and no-reference (NR). Some representative high 
performing algorithms include: MultiScale-Structural 
SIMilarity index (MS-SSIM) [7] which quantizes 
“perceptual fidelity” of image structure; Video Quality 
Metric (VQM) [5] which uses easily computed visual 
features; Motion-based Video Integrity Evaluation 

(MOVIE) [8] which uses a model of extra-cortical 
motion processing; Video Reduced Reference spatio-
temporal Entropic Differencing (V-RRED) [9] which 
exploits a temporal natural video statistics model; and 
Video BLIINDS [10] which uses a spatio-temporal 
model of DCT coefficient statistics and a motion 
coherence model.   
   
The success of the above VQA metrics suggests that 
disruptions of natural scene statistics (NSS) can be used 
to detect irregularities in distorted videos. Likewise, 
modeling perceptual process at the retina, primary 
visual cortex, and extra-striate cortical areas are crucial 
to understanding and predicting perceptual video 
quality [11].    
 
In addition, the quality of a given video may be 
perceived differently according to viewing distance or 
display size. Similarly, the visibility of local distortions 
can be masked by spatial textures or large coherent 
temporal motions of a video content. In this regard, 
modern VQA models might be improved by taking into 
account content and device characteristics. This raises 
the need to understand QoE for video streaming 
services across multiple devices, thereby to improve 
VQA models of QoE across the compute continuum.  
 
3. Achieving high QoE for the compute continuum 
 
How compression, content, and devices interact 
To investigate perceived video quality as a function of 
compression (bitrate and resolution), video 
characteristics (spatial detail and motion), and display 
device (display resolution and size), we executed an 
extensive subjective study and designed an automatic 
QoE estimator to predict subjective quality under these 
different impact factors [2]. 
 
Fourteen source videos with a wide range of spatial 
complexity and motion levels were used for the study. 
They are in a 4:2:0 format with a 1920 × 1080 
resolution. Most videos are 10~15 second long, except 
Aspen Leaves (4s). To obtain a desired range of video 
quality, the encoding bitrate and resolution sets for each 
video were chosen to widely range from 110kbps at 448 
× 252 to 6Mbps at 1920 × 1080 based on assumed 
realistic video content and display devices. 80 and 96 
compressed videos were displayed on a 42 inch HDTV 
and four mobile devices (TFT tablet, Amoled phone, 
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Retina tablet, and Retina phone), respectively, and 
about 30 participants were recruited for each device to 
rate the videos by recording opinion score using the 
single-stimulus continuous quality evaluation (SSCQE) 
[12] method.  
 
MS-SSIM was used since it delivers excellent quality 
predictions and is faster than MOVIE or VQM. Figure 
1 shows the plots of MS-SSIM against MOS for each 
device along with the best least-squares linear fit. The 
Pearson linear correlation coefficient (LCC) between 
MS-SSIM and MOS is 0.7234 for all data points, while 
LCC using device-based mapping is 0.8539, 0.8740, 
0.7989, 0.8329, and 0.8169 for HDTV, TFT tablet, 
Amoled phone, Retina tablet, and Retina phone, 
respectively. Furthermore, device and content-specific 
mapping between MS-SSIM and MOS shows very high 
LCC (mean: ~ 0.98) as illustrated in Figure 2. To 
validate the proposed methods on a different VQA 
database (DB), we also analyzed the models using the 
TUM VQA DB [13]. LCC between MS-SSIM and 
MOS using the device and content-specific mapping for 
TUM VQA DB shows similar results (mean: ~0.98, 
standard deviation: 0.016). Results indicate that human 
perception of video quality is strongly impacted by 
device and content characteristics, suggesting that 
device and content-based mapping could greatly 
improve the prediction accuracy of video quality 
prediction models.  
 
We then designed a MOS estimator to predict 
perceptual quality based on MS-SSIM, a content 
analyzer (spatial detail (S), motion level (M)), a device 
detector (display type (D), and resolution (R)) [3]. The 
predicted MOS is calculated as, 
          e_MOS = α × MS-SSIM + β               (1) 
where α and β are functions of the four impact factors S, 
M, D, and R above. Using the proposed predictor and 
estimated values of α and β, LCC between the 
estimated MOS and actual MOS is 0.9861. Future work 
includes building a regression model to calculate α and 
β based on the impact factors and extending the video 
data set to better validate the designed predictor. 
 
Temporal masking and time varying quality  
The visibility of temporal distortions influences video 
QoE. Salient local changes in luminance, hue, shape or 
size become undetectable in the presence of large 
coherent object motions [14]. This “motion silencing” 
implies that large coherent motion can dramatically 
alter the visibility of visual changes/distortions in video. 
To understand why it happens and how it affects QoE, 
we have developed a spatio-temporal flicker detector 
model based on a model of cortical simple cell 
responses [15]. It accurately captures the observers’ 

perception of motion silencing as a function of object 
motion and local changes. In addition, we have 
investigated the impact of coherent object motion on 
the visibility of flicker distortions in naturalistic videos. 
The result of a human experiment involving 43 subjects 
revealed that the visibility of flicker distortions strongly 
depends on the speed of coherent motion. We found 
that less flicker was seen on fast-moving objects even if 
observers held their gaze on the moving objects [16]. 
Results indicate that large coherent motion near gaze 
points masks or ‘silences’ the perception of temporal 
flicker distortions in naturalistic videos, in agreement 
with a recently observed motion silencing effect [14]. 
 
Time varying video quality has a definite impact on 
human judgment of QoE. Although recently developed 
HTTP-based video streaming technology enables 
flexible rate adaptation in varying channel conditions, 
the prediction of a user’s QoE when viewing a rate 
adaptive HTTP video stream is not well understood. To 
solve this problem, Chao et al. have proposed a 
dynamic system model for predicting the time varying 
subjective quality (TVSQ) of rate adaptive videos [17]. 
The model first captures perceptual relevant spatio-
temporal features of the video by measuring short time 
subjective quality using a high-performance RR VQA 

Figure 2 Device and content-based MS-SSIM and MOS 
mapping 
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Figure 1 Device-based MS-SSIM and MOS 
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model called V-RRED [9], and then employs a 
Hammerstein-Wiener model to estimate the hysteresis 
effects in human behavioral responses. To validate the 
model, a video database including 250 second long time 
varying distortions was constructed and TVSQ was 
measured via a subjective study. Experimental results 
show that the proposed model reliably tracks the TVSQ 
of video sequences exhibiting time-varying level of 
video quality. The predicted TVSQ could be used to 
guide online rate-adaptation strategies towards 
maximizing the QoE of video streaming services.    
 
Application of video QoE models 
Recently developed QoE models open up opportunities 
to improve cooperation between different ecosystem 
players in end-to-end video delivery systems, and to 
deliver high QoE using the least amount of network 
resources. We have shown that in an adaptive streaming 
system, DASH clients can utilize quality information to 
improve streaming efficiency [18]. The quality-driven 
rate adaptation algorithm jointly optimizes video 
quality, bitrate consumption, and buffer level to 
minimize quality fluctuations and inefficient usage of 
bandwidth, thus achieving better QoE than bitrate-
based approaches [18]. Another usage of the QoE 
model is to allow transcoding services to determine the 
proper transcoding quality on a content-aware and 
device-aware fashion. The QoE metric helps the 
transcoder to achieve the desired QoE without over 
consuming bandwidth. Furthermore, content-specific 
and device-specific video quality information may 
facilitate service providers to design more advanced 
multi-user resource allocation strategies to optimize 
overall network utilization and ensure a good QoE for 
each end user.  
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