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Abstract—Extensive research has been conducted relating the natural
scene statistics of luminance and depth; however, very little work has
been done on analyzing the statistical relationships between depth and
chromatic information. In this paper, we examine and derive statistical
models between disparity and both luminance and chrominance informa-
tion by transforming natural images into the more perceptually relevant
CIELAB color space. To demonstrate the effectiveness of these models,
we further exploit them with application to Bayesian stereo algorithms.
The simulation results show that incorporating the derived statistical
models augments the performance of Bayesian stereo algorithms. In ad-
dition, these results also support psychophysical evidence that chromatic
information can improve binocular visual processing.
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I. INTRODUCTION

Natural scene statistics (NSS) are important factors both towards
understanding the evolution of the human vision system and for
designing image processing algorithms [1], [2]. Extensive research
has been conducted to explore the link between NSS and neural
processing of visual stimuli [3], [4]. With the increasing popularity of
3D image and video content, the statistics between 3D depth and 2D
color image data in natural scenes are of high interest. However, very
little work has been done due to the limited access to high quality
databases of color images and associated ground-truth range maps.

Potetz et al. [5] constructed a database of co-registered 2D color
images and range maps, and discovered that there is a correlation
between range and intensity of luminance in natural scenes. In [6],
Yang et al. explored the statistical relationships between luminance
and disparity in the wavelet domain, and applied the derived models
to a Bayesian stereo algorithm. In addition, it has been suggested
that the perception of color and depth are related [7], and chromatic
information can be useful in solving stereo correspondence problems
[8]. Su et al. [9] constructed a large co-registered database of high-
quality 2D color images and high-resolution ground-truth range maps
(1280x720), and explored the statistical relationships between the
band-pass responses of luminance/chrominance and range gradients
in natural scenes.

In this paper, we examine the statistical relationships between
disparity and luminance/chrominance information in natural scenes,
and derive statistical models for their joint distributions. We also
exploit the derived statistical descriptions of disparity and lumi-
nance/chrominance by applying them to the Bayesian stereo problem.
The simulation results show that the Bayesian stereo algorithm
incorporating the proposed NSS models can improve upon a previous
NSS-based stereo algorithm using only luminance information. The
results also suggest that the statistics between color and range in
natural environments could be helpful in binocular visual processing
and depth perception of human vision system.

The rest of the paper is organized as follows. Section II briefly
describes the acquisition and pre-processing of the image and

range data. Then, the analysis and derivation of statistical mod-
els of the marginal and conditional distributions between lumi-
nance/chrominance and disparity are included in Section III. Next,
Section IV explains how to apply the derived statistical models of lu-
minance/chrominance and disparity to the Bayesian stereo algorithm,
followed by simulation results in Section V. Finally, Section VI gives
the conclusion.

II. DATA ACQUISITION AND PRE-PROCESSING

We obtained a dataset of 2D color images and co-registered
ground-truth range maps, then converted the range maps into disparity
maps. The large co-registered database of range and color images
(dubbed LIVE Color+3D Database) consists of 12 sets of high-
resolution color images and co-registered range maps [9], [10]. The
image and range data in the LIVE Color+3D Database were collected
using an advanced range scanner, RIEGL VZ-400, with a Nikon
D700 digital camera mounted on top of it [11]. Calibration was
performed using the scanner operation software, RIEGL RiSCAN
PRO, to compensate for inevitable translational and rotational shifts
when mounting the camera onto the range scanner [12]. Then, to
obtain the aligned 2D range map with the 2D color image, the 3D
point clouds captured by the scanner were projected and transformed
into the 2D range map by applying the pinhole camera model with
lens distortion [13].

To convert ground-truth range maps into disparity maps, the
parallel-viewing model was used. Figure 1 shows the geometry of
the parallel-viewing model, where two scanners mounted with digital
cameras were set to capture the natural scene in parallel. Based on
this geometry, the disparity value is derived:
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where dp is disparity, fc is the focal length of the camera, dio is the
inter-ocular distance, and R is the ground-truth range value.

Since we want to learn and explore the statistical relationships
between luminance/chrominance and disparity and how these statis-
tics might be implicated in visual processing, some pre-processing
was performed on both the 2D color images and the converted 2D
disparity maps. All color images were transformed into the more
perceptually relevant CIELAB color space with one luminance (L*)
and two chrominance (a* and b*) components. The images were
then passed through 2D Gabor filter bank with multi-scales and
orientations as a model of the reception fields of the simple cells
in V1 areas of human vision systems [14]. Both the luminance
and chrominance components of the transformed color images and
the converted disparity maps were filtered by the 2D Gabor filter
banks, and the analysis was performed on these filter responses. For
luminance and chrominance data, the 2D Gabor filter bank closely
models image decomposition in primary visual cortex, while for
disparity data, it can mimic the disparity modulation corresponding to
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Fig. 1. Geometry of the parallel-viewing model.

sensitivity to range in the human vision system [15], [16]. In general,
the complex 2D Gabor filters can be written in the form

G(x, y, σx,σy, ζx, ζy, θ)
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where R1 = x cos θ + y sin θ and R2 = −x sin θ + y cos θ, σx
and σy are the standard deviations of an elliptical Gaussian envelope
along x and y axes, ζx and ζy are the spatial center frequencies of
the complex sinusoidal grating, and θ is the orientation.

III. DATA ANALYSIS AND MODELING

Since we want to derive statistical models between disparity and
color image data, and further apply them to Bayesian stereo algo-
rithms, both the marginal distribution of disparity and the conditional
distribution of luminance/chrominance given disparity in natural
scenes are of the most interest to us. To capture demodulated signal
information, analysis was performed on the magnitude of the Gabor
responses expressed as the square root of the sum of the squared
complex quadrature pair of sine and cosine responses [15].

A. Marginal Distribution of Disparity

To examine the marginal distribution of disparity at different sub-
bands, the disparity responses at each sub-band were first collected
across all scenes in the database. Then, the marginal distribution of
disparity at one particular sub-band was obtained as the histogram
computed by binning the magnitude of all disparity responses at that
sub-band. Figure 2 shows the marginal distribution of the magnitude
of disparity responses at one sub-band. The red-dotted line represents
a Weibull distribution fit of the marginal distribution of disparity. We
can see that the exponential-like distribution of disparity can be well
fitted by the very general Weibull distribution,
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β
α
( x
α
)β−1e−( x

α
)β , x ≥ 0

0 , x < 0
(3)

where α and β represent the scale and shape parameters, respec-
tively, which includes the exponential distribution and the Rayleigh
distribution as special cases depending on the shape parameter. Note
that the marginal distribution of disparity at different sub-bands share
similar shapes, all well fitted by the Weibull distributions.

Fig. 2. The marginal distribution of disparity magnitude at one sub-band.

B. Conditional Distributions of Luminance/Chrominance given Dis-
parity

Similarly, the conditional distributions of luminance and chromi-
nance given disparity at different sub-bands are obtained by first
collecting both the luminance, chrominance, and disparity responses
at each sub-band across all scenes, then computing the histograms
for each sub-band. At one particular sub-band, the histograms for
the conditional distributions of luminance and chrominance given
disparity were computed by first binning the magnitude of disparity
responses, and then binning the magnitude of luminance/chrominance
responses within each bin of the disparity response. Figure 3 shows
the conditional distributions of all three luminance and chromi-
nance components, as well as their corresponding Weibull-fitted
distributions and parameters. Both the conditional distributions of
luminance and chrominance given disparity are well-fitted by the
Weibull distribution. For the conditional distribution of luminance
given disparity, the scale parameter of the fitted Weibull increases
monotonically and linearly as the magnitude of disparity response
increases, while the shape parameters remain constant across the
magnitudes of disparity responses. For the chrominance conditional
distribution, both the scale and shape parameters possess a nearly
linear relationship with the magnitude of disparity responses. These
Weibull models and their parameters can be applied to Bayesian
stereo algorithm, which is described in the next section.

IV. APPLICATION TO BAYESIAN STEREO ALGORITHMS

Given a pair of left and right images, a binocular stereo algorithm
is able to compute a disparity map from one image to the other.
The basic idea is to minimize some energy function which involves
the differences of several binocular cues between the left and right
images within an optimization framework [17]. The Bayesian stereo
algorithm adopts the likelihood (conditional distribution) and the prior
(marginal distribution) of natural scene statistics (NSS) within the
energy function to be minimized, thus forcing the solution towards
fitting the statistical relationships between luminance, chrominance,
and disparity data in natural scenes derived in Section III. Given a
pair of left and right images, Il and Ir , then to estimate the disparity
map, D, from the right to the left image, the canonical Bayesian
stereo formulation takes the form [18]

D = argmax
D′

P (D′|(Il, Ir))

= argmax
D′

P ((Il, Ir)|D′)P (D′) (4)



(a) Distribution of L* (b) Distribution of a* (c) Distribution of b*

(d) Weibull-fitting parameters of L* (e) Weibull-fitting parameters of a* (f) Weibull-fitting parameters of b*

Fig. 3. The conditional distributions of luminance (L*) and chrominance (a* and b*) Gabor magnitudes given disparity Gabor magnitude at one sub-band,
and their corresponding Weibull-fitting parameters.

where P (D′|(Il, Ir)) is the posterior probability to be maximized,
and P ((Il, Ir)|D′) and P (D′) are the likelihood and prior probabili-
ties, respectively. By taking logarithm of the product of the likelihood
and prior, the Bayesian formulation corresponds to minimization of
the energy function:

D = argmin
D′

Ep + λEs (5)

where Ep is the photometric energy derived from the likelihood
P ((Il, Ir)|D′), Es is the smoothness term derived from the prior
P (D′), and λ is the weighting constant. Note that Ep can take all
three luminance and chrominance components, L∗, a∗, and b∗, into
consideration, and can be written as

Ep =
∑
i,j

∑
k∈{L∗,a∗,b∗}

|Ilk (i, (j −D
′(i, j)))− Irk (i, j)| (6)

To incorporate the derived NSS models of the marginal and
conditional distributions, the Bayesian stereo formulation can be re-
written as

D = argmax
D′

P (D̃′|(Il, Ir), Ĩl)

= argmax
D′

P ((Il, Ir)|D̃′, Ĩl)P (Ĩl|D̃′)P (D̃′) (7)

= argmin
D′

Ep + λ(ENSSc + ENSSm) (8)

by taking logarithm of (7), where Ĩl and D̃′ are the magnitudes of
Gabor responses of Il and D′, respectively, Ep is the photometric
energy derived from P ((Il, Ir)|D̃′, Ĩl), ENSSc and ENSSm are the
energy terms related to the conditional and marginal distributions
derived from natural scene statistics, respectively, and λ is the
weighting constant.

Finally, since both the marginal distribution of disparity and
the conditional distributions of luminance and chrominance given
disparity can be modeled by the Weibull distribution, the complete
formulation of the proposed Bayesian stereo algorithm incorporating
the NSS models can be written as

D = argmin
D′

∑
i,j

 ∑
k∈{L∗,a∗,b∗}

(
Ep,k + ENSSc,k

)
+ λENSSm


(9)

where

Ep,k = |Ilk (i, (j −D
′(i, j)))− Irk (i, j)| (10)

ENSSc,k = (
Ĩlk (i, j)

αk
)βk (11)

ENSSm = (
D̃′(i, j)

αD̃′
)βD̃′ (12)

where αk and βk are the scale and shape parameters, respectively, of
the fitted Weibull distributions of luminance and chrominance Gabor
magnitudes conditioned on disparity Gabor magnitude, αD̃′ and βD̃′
are the scale and shape parameters of the fitted Weibull distribution
of disparity Gabor magnitude, respectively, and λ is the weighting
constant.

To solve the optimization of the proposed Bayesian stereo algo-
rithm, we use the simulated annealing algorithm utilizing the derived
energy function (9) [19].

V. SIMULATION RESULTS

To demonstrate the effectiveness of the derived statistical models
relating luminance/chrominance and disparity in natural scenes, we
compared the computed disparity maps using the Bayesian stereo
algorithm with different formulations and models, including the
canonical formulation using (5), the NSS model proposed in [6], and
the proposed Gabor-based NSS model using (9). In [6], the authors
derived the NSS model using only luminance information in the
wavelet domain, and incorporated only the conditional distribution of
luminance given disparity into the Bayesian stereo algorithm. Figure 4
shows the computed disparity maps of Tsukuba from the Middlebury
database [17]. We can see that the computed disparity map with
the proposed Gabor-based NSS model is very close to the ground-
truth disparity map, retaining more details than the one computed by
the canonical formulation, and better adherence to smooth regions
than the one computed by the previous NSS model. In addition,
Table I gives a numerical comparison in terms of bad-pixel rate
between the computed disparity maps and the ground-truth disparity
maps for all four test image pairs available from the Middlebury
database. The numerical results support the visual comparison, where
the Bayesian stereo algorithm with the proposed Gabor-based NSS
model outperforms the other two methods.
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Fig. 4. The simulation results of Tsukuba from the Middlebury database, including the original stereo image pair, the ground-truth disparity map, and the
computed disparity maps using the Bayesian stereo algorithm with different formulations and models.

TABLE I
BAD-PIXEL RATE (%)

Canonical NSS Model Proposed
Formulation in [6] Gabor-based NSS Model

Tsukuba 4.8 4.7 3.3
Venus 9.8 3.7 1.2
Cones 29.5 8.3 8.1
Teddy 43.5 12.7 12.3

VI. CONCLUSION

We examined the marginal distribution of disparity and the con-
ditional distributions of luminance/chrominance information given
disparity in natural scenes. We modeled both the marginal and
conditional distributions as Weibull probability density function.
To demonstrate the efficacy of the statistical models, we deployed
the probability distributions as energy priors in a Bayesian stereo
algorithm. The simulation results show that the Bayesian stereo
algorithm incorporating the proposed color+disparity NSS model
outperforms the canonical formulation and the previous NSS model.
The derived statistical models relating luminance/chrominance and
disparity information in natural scenes not only improve the accuracy
of the Bayesian stereo algorithm, but also yield insight into how 3D
structures in the environment might be recovered from color image
data. More importantly, these statistical models and simulation results
bolster the psychophysical evidence that chromatic information can
be useful in 3D visual processing. Future research in the stereo image
and video processing fields may also benefit from statistical models
relating color and disparity in natural scenes.
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