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ABSTRACT

Color and depth play important roles in natural scenes and in vision,
and their perception is related. Extensive work has been conducted
on studying the luminance statistics of natural scenes; however, there
is very little work done on analyzing the statistics between lumi-
nance and range in natural scenes, not to mention color and range.
In this paper, we present the LIVE Color+3D Database, which con-
tains 12 sets of color images with corresponding ground truth range
maps in a high-definition resolution of 1280x720. We examined the
statistical distribution of range gradients conditioned on the Gabor
responses of the color images, as well as the variations of statistical
measures of range gradients with changes in the Gabor responses.
The analysis results show that the distributions of range gradients
conditioned on the Gabor responses have very similar exponential
shapes for both luminance and chrominance channels. Moreover,
we also found that the depth difference between neighboring pixels
increases as the corresponding magnitudes of the Gabor responses
rise.

Index Terms— Natural scene statistics, color, Gabor filters

1. INTRODUCTION

The evolution of human vision systems involves different factors
and driving forces, such as natural scene statistics, computational
resources in the human brain, and visual tasks humans need to per-
form [1]. Color and depth play important roles in natural scenes
and in vision, and their perception is related [2]. Towards obtaining
a better understanding of the statistical relationship between color
and range, we studied the joint statistics of color and range using a
co-registered database of images [3].

Extensive work has been conducted on studying the luminance
statistics of natural scenes [4]. The statistics of natural images are
found to exhibit non-Gaussian behavior, and can be represented and
modeled by using multi-scale wavelet bases, such as Gaussian scale
mixtures [5]. These statistical models have been successfully applied
to different image and video applications, such as image de-noising
and restoration [6]. Color is one of the most important visual cues in
the natural images used by the human vision system to extract more
complicated and higher level of information. As with other local
image properties such as textures and edges, color can also infer
large-scale shape information to help solve visual tasks [7].

However, there is very little work done on analyzing the statis-
tics between luminance and range in natural scenes, not to mention
color and range. One major reason for the lack of studies on range
statistics has been the dearth of ground truth range data. In this pa-
per, we present the LIVE Color+3D Database [3], in which 12 sets
of color images with corresponding ground truth range maps of res-
olution 1280x720 were collected using an advanced RIEGL-VZ400
laser scanner mounted with a Nikon D700 digital camera [8]. To bet-
ter approximate color perception in human vision systems, all color

images in RGB were transformed into the more perceptually rele-
vant CIELAB color space. We use CIELAB since it is optimized
for quantifying perceptual color difference and it better corresponds
with human color perception than does the perceptually nonuniform
RGB space [9]. Moreover, to emulate how visual neurons respond to
visual stimuli, the luminance and chrominance components in nat-
ural images were decomposed using Gabor filter banks of diverse
different scales and orientations.

The rest of this paper is organized as follows. Section 2 explains
the process of acquiring the co-registered LIVE Color+3D Database.
The details of analyzing color and range data are described in Sec-
tion 3, followed by the results in Section 4. Finally, Section 5 gives
a discussion.

2. DATA ACQUISITION

The image and range data used in this paper were collected using an
advanced range scanner, RIEGL VZ-400, with a Nikon D700 digital
camera mounted on top of it [8]. Since there are inevitable trans-
lational and rotational shifts when mounting the camera onto the
range scanner, calibration is performed before data acquisition. The
mounting calibration is done manually using the RIEGL RiSCAN
PRO software, which is designed for scanner operation and data pro-
cessing [10]. Next, to acquire the image and range data in natural
scenes, the device obtains distances by lidar reflection and wave-
form analysis as it rotates, and then the digital camera takes an op-
tical photograph with the same field of view. The acquired range
data are exported from the range scanner as point clouds with three-
dimensional coordinates and range values, while the image data are
stored in the digital camera. Finally, to obtain the aligned 2D range
map with the 2D image, the 3D point clouds are projected and trans-
formed into the 2D range map by applying the pinhole camera model
with lens distortion [11].

The natural scenes where the image and range data were col-
lected include the campus at The University of Texas at Austin, and
the Texas State Capitol. Figure 1 shows two examples of the natural
scenes with aligned 2D range maps and 2D images.

3. DATA ANALYSIS

3.1. Pre-processing

Before analyzing the range and color data, some pre-processing must
be performed. First, all color images are transformed into the more
perceptually relevant CIELAB color space. Then, the luminance and
chrominance components are filtered by Gabor filter banks with dif-
ferent scales and orientations to emulate how visual neurons respond
to visual stimuli. The Gabor filter bank is adopted to extract features
from the luminance and chrominance channels because it closely
models image decompositions in primary visual cortex [12]. In gen-
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(a) Scene 1

(b) Scene 2

Fig. 1. Two examples of the natural scenes, 2D images on the left
and aligned 2D range maps on the right.

eral, the complex 2-D Gabor filter is defined as
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where R1 = x cos θ + y sin θ and R2 = −x sin θ + y cos θ, σx

and σy are the standard deviations of an elliptical Gaussian envelope
along x and y axes, ζx and ζy are the spatial center frequencies of
the complex sinusoidal grating, and θ is the orientation.

Since physiological evidence shows that vision neurons in pri-
mary visual cortex usually have an elliptical Gaussian envelope with
an aspect ratio of 1.5-2.0, with propagating direction along the short
axis of the elliptical Gaussian envelope, the 2-D Gabor filters take
the form
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where γ = σy/σx is the aspect ratio of the elliptical Gaussian en-
velope, σ = σx, and ω =

�
ζ2x + ζ2y is the radial center frequency.

To adopt a suitable set of Gabor filter banks which can cover most of
the frequency domain, the two parameters of the elliptical Gaussian
envelope need to be chosen properly, including the aspect ratio, γ,
and the standard deviation, σ [13].

Since the simple and complex cells in primary visual cortex have
receptive fields at different scales, we utilize a multi-scale set of Ga-
bor filter banks with different spatial frequencies and orientations.
Six spatial frequencies, 0.84, 1.37, 2.22, 3.61, 5.87, and 9.53, with
the unit of cycles/degree are used, and four different sinusoidal grat-
ing orientations are chosen for each spatial frequency: horizontal (0
degree), diagonal-45 (45 degree), vertical (90 degree), and diagonal-
135 (135 degree) [14].

3.2. Conditional distributions and statistics

The perception of three-dimensional geometry occurs as a cyclo-
pean 3D image in the brain [15]; however, the human vision sys-
tem is able to sense depth from a single static image. This capabil-
ity implies that statistical relationships may exist between the lumi-
nance/chrominance information in two-dimensional images and the
three-dimensional range information in the natural environments. In

Table 1. Pearson’s chi-square value for the fitted exponential distri-
butions

L* a* b*
χ2 5.9652 5.7511 7.0583

addition, the depth information acquired by the human vision sys-
tem is more relative than absolute, which means that we know which
objects are further and which are closer, but we are not sure about
the exact distance of each object from us. Therefore, to explore the
statistical relationship between color and range, we examined the
conditional distribution of the magnitude of range gradients over the
magnitude of Gabor responses to the three CIELAB color channels,
L*, a*, and b*.

4. RESULTS

Figure 2 shows the conditional distribution of the magnitude of range
gradients on the magnitude of image Gabor responses for L*, a*, and
b* channels at the sub-band with frequency = 5.87 (cycle/degree)
and orientation = horizontal (0 degree). We can see that for both
luminance and chrominance channels, the conditional distributions
are quite similar. Also shown in Figure 2 are the fitted Weibull dis-
tributions represented by the dotted lines, and we can see that these
conditional distributions are well fitted by the Weibull functions. Ta-
ble 1 shows the corresponding Pearsons chi-square values to test the
goodness-of-fit for the fitted Weibull distributions. The chi-square
values for all three channels are much smaller than the upper 5%
cutoff value of the chi-square distribution, χ2

(.05) = 101.88 with de-
gree of freedom = 80, which means that by more than chance these
conditional distributions are drawn from the fitted Weibull distribu-
tions. Note that the conditional distributions remain Weibull-shaped
at other Gabor response values and similar results exist for all fre-
quencies and orientations.

Figure 3 (a) shows the conditional distribution of magnitude of
range gradients as a function of magnitude of image Gabor responses
for L* channel and Figure 3 (b) plots the corresponding shape and
scale parameters of the fitted Weibull distributions. We can see that
given different values of Gabor responses, the conditional distribu-
tion of range gradients has the same shape which can be well fitted
by the Weibull function. In addition, the conditional distribution
has heavier tails with larger Gabor responses, which can be demon-
strated by the monotonically decreasing shape parameters as a func-
tion of Gabor responses shown in Figure 3 (b). Note that the same
findings exist for chromatic channels which are not shown here due
to the limited space.

Finally, Figure 4 plots the mean magnitude of range gradients
as functions of magnitude of Gabor responses for luminance and
chrominance channels. The three panels in both Figure 4 (a) and
(b) show the responses of horizontal Gabors at three different spa-
tial frequencies. For the luminance channel, the gradient of range
increases monotonically with small Gabor responses and seems to
get saturated with larger Gabor responses at all frequencies. On the
other hand, the gradient of range increases monotonically with Ga-
bor responses at all frequencies for the chromatic channels, which
implies that the chrominance information can also possibly be uti-
lized in depth perception.
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Weibull (scale = 0.038 , shape = 0.736)

Fig. 2. The conditional distribution of the magnitude of range gra-
dients on the magnitude of image Gabor responses for the three
CIELAB color channels, at frequency = 5.87 (cycle/degree) and ori-
entation = horizontal (0 degree). From top to bottom: L*, a*, and
b*. The dotted line represents the fitted Weibull distribution.

5. DISCUSSION

In this paper, we have examined the conditional distributions relating
the luminance or chrominance information with range gradients. Of
more relevance to perception and image processing, the distributions
of range gradients conditioned on the Gabor responses, whether lu-
minance or chrominance, have very similar Weibull shapes. We have
also examined the variations of statistical measures, e.g. mean, of
range gradients with variations in the Gabor responses. Most im-
portantly, we found that the depth difference between neighboring
pixels increases as the corresponding magnitudes of the Gabor re-
sponses rise. Therefore, the way these range distributions vary with
the Gabor responses indicates that the visual system could, in princi-
ple, use these conditional statistics to help recover depth information
from the environment. Moreover, these statistical relationships not
only yield insight into how 3D structure in the environment might be
recovered from image data, but may also be applied to various im-
age and video engineering applications, e.g. image de-noising and
restoration, quality assessment of 3D images and video, and stereo
correspondence algorithms [16]. In our on-going research, we are
finding that the inclusion of chrominance cues can augment the per-
formance of Bayesian stereo algorithms, in agreement with similar
conclusions regarding human stereopsis and early stereo algorithms
[2, 17, 18].
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Fig. 3. (a) The conditional distribution of magnitude of range gradi-
ents as a function of magnitude of image Gabor responses, and (b)
the corresponding shape and scale parameters of the fitted Weibull
distributions for L* channel at frequency = 5.87 (cycle/degree) and
orientation = horizontal (0 degree).
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