
DCT STATISTICS MODEL-BASED BLIND IMAGE QUALITY ASSESSMENT

Michele A. Saad, Alan C. Bovik

The University of Texas at Austin
Department of Electrical and Computer Engineering

1 University Station C0803, Austin, TX 78712-0240, USA

Christophe Charrier

The University of Caen, Basse Normandie
Department of Electrical and Computer Engineering

Esplanade de la Paix, 14000 Caen, France

ABSTRACT
We propose an efficient, general-purpose, distortion-agnostic,
blind/no-reference image quality assessment (NR-IQA) algo-
rithm based on a natural scene statistics model of discrete
cosine transform (DCT) coefficients. The algorithm is com-
putationally appealing, given the availability of platforms
optimized for DCT computation. We propose a general-
ized parametric model of the extracted DCT coefficients.
The parameters of the model are utilized to predict image
quality scores. The resulting algorithm, which we name
BLIINDS-II, requires minimal training and adopts a simple
probabilistic model for score prediction. When tested on the
LIVE IQA database, BLIINDS-II is shown to correlate highly
with human visual perception of quality, at a level that is even
competitive with the powerful full-reference SSIM index.

Index Terms— No-reference image quality assessment,
discrete cosine transform, natural scene statistics, generalized
Gaussian density.

1. INTRODUCTION

The ubiquity of transmitted digital visual information (in the
form of images and video) in every economic sector, and the
broad range of applications that rely on it, such as PDAs, high
definition televisions, internet video streaming, and video on
demand, to name a few, necessitates means to evaluate the
visual quality of this information. The various stages of the
pipeline through which an image passes, introduce distortions
to the image or modify it in one way or another, starting from
its capture until its consumption by a viewer. The capture,
digitization, compression, storage, transmission, and display
processes all introduce modifications to the original image.
These modifications, also termed distortions or impairments,
may or may not be perceptually visible to the viewer. If they
are visible, quantifying how perceptually annoying they are is
an important process for improving Quality of Service (QoS)
in the applications listed above. Since human raters are gener-
ally unavailable or too expensive for these applications, there
is a significant need for objective IQA algorithms.

Only recently did full-reference image quality assessment
(FR-IQA) methods reach a satisfactory level of performance,

as demonstrated by high correlations with human subjective
judgements of visual quality. SSIM [1], MS-SSIM [2], VSNR
[3], and the VIF index [4] are examples of FR-IQA algo-
rithms, to name a few. These methods require the availability
of a reference signal against which to compare the test sig-
nal. In many applications, however, the reference signal is not
available to perform a comparison against. This strictly limits
the application domain of FR-IQA algorithms and points up
the need for reliable blind/NR-IQA algorithms. However, no
current NR-IQA algorithm exists that has been proven con-
sistently reliable in performance.

Presently, NR-IQA algorithms generally follow one of
three trends: 1) Distortion-specific approaches: These algo-
rithms quantify one or more distortions such as blockiness
[5], blur [6], or ringing [7] and score the image accordingly.
2) Training-based approaches: these train a model to predict
the image quality score based on a number of features ex-
tracted from the image [8], [9]. 3) Natural scene statistics
(NSS) approaches: these rely on the hypothesis that images
of the natural world (i.e. distortion free images) occupy a
small subspace in the space of all possible images and seek
to find a distance between the test image and the subspace of
natural images [10].

In this paper, we propose a framework that derives entirely
from a simple statistical model of local DCT coefficients. We
name our algorithm BLIINDS-II (BLind Image Integrity
Notator using DCT Statistics). The new BLIINDS-II index
greatly improves upon a preliminary algorithm (BLIINDS-I)
[11], which uses no statistical modeling and a different set of
sample DCT statistics. BLIINDS-I was a successful experi-
ment to determine whether DCT statistics could be used for
blind IQA. BLIINDS-II fully unfolds this possibility and pro-
vides a leap forward in both performance and in the use of an
elegant and general underlying statistical model. We derive
a generalized NSS-based model of local DCT coefficients,
and transform the model parameters into features used for
perceptual image quality score prediction. It is observed that
the statistics of the DCT features change as the image quality
changes. A generalized probabilistic model is obtained for
these features, and is used to make probabilistic predictions
of visual quality. We show that the method correlates highly
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with human subjective judgements of quality.
The rest of the paper is organized as follows. In Section

2, we provide an overview of the method. In Section 3, we
describe the model-based features. In Section 4, we describe
the generalized probabilistic prediction model. We present
the results in Section 5, and we conclude in Section 6.

2. OVERVIEW OF THE METHOD

The framework of the proposed approach is summarized in
Fig. 1. An image entering the IQA ”pipeline” is first sub-
jected to local 2-dimensional DCT-transform coefficient com-
putation. This stage of the pipeline consists of partitioning the
image into equally sized nxn blocks, henceforth referred to
as local image patches, and computing a local 2-dimensional
DCT transform on each of the blocks. The coefficient extrac-
tion is performed locally in the spatial domain in accordance
with the HVS’s property of local spatial visual processing (i.e.
in accordance with the fact that the HVS processes the visual
space locally) [12]. As will be seen, this nxn DCT decompo-
sition may be accomplished across scales. The second stage
of the pipeline applies a generalized Gaussian density model
to each block of DCT coefficients, as well as for specific par-
titions within each DCT block.

We next briefly describe the nxn DCT block partitions
that are used. In order to capture directional information from
the local image patches, the DCT block is partitioned direc-
tionally as shown in Fig. 2(a) into 3 oriented subregions.
A generalized Gaussian fit is obtained for each of the ori-
ented DCT-coefficient subregions. Another configuration for
the DCT block partition is shown in Fig. 2(b). The parti-
tion reflects 3 radial frequency subbands in the DCT block.
The upper, middle, and lower partitions correspond to the low
frequency, mid-frequency, and high frequency DCT subbands
respectively. A generalized Gaussian fit is obtained for each
of the subregions as well.

The third step of the pipeline computes functions of the
derived model parameters. These are the features used to pre-
dict image quality scores and are derived from the model pa-
rameters.

The fourth and final stage of the pipeline uses a simple
Bayesian model to predict a quality score for the image. The
Bayesian approach maximizes the probability that the image
has a certain quality score given the model-based features ex-
tracted from the image. The posterior probability that the im-
age has a certain quality score given the extracted features is
modeled as a multidimensional generalized Gaussian distri-
bution.

2.1. The Generalized Probabilistic Model

We model image features using a generalized Gaussian family
of distributions which encompasses a wide range of observed
behavior of distorted DCT coefficients.
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Fig. 1. High level overview of the BLIINDS-II framework
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Fig. 2. (a) DCT coefficients, 3 bands, (b) DCT coefficients along 3
orientations

The univariate generalized Gaussian density is given by

αe
−(β|x−µ|)γ

, (1)

where µ is the mean, β is the scale parameter, γ is the shape
parameter, and Γ denotes the gamma function given by

Γ(z) =
� ∞

0
t
z−1

e
−t

dt, (2)

and α and β are normalizing and scaling constants given by

α =
βγ

2Γ(1/γ)
, (3)

β =
1
σ

�
Γ(3/γ)
Γ(1/γ)

. (4)

This family of distributions includes the Gaussian distribution
(β = 2) and the Laplacian distribution (β = 1). As β → ∞
the distribution converges to a uniform distribution.

3. MODEL-BASED DCT DOMAIN NSS FEATURES

3.1. The Generalized Gaussian Model Shape Parameter

We deploy a generalized Gaussian model of the non-DC

DCT coefficients. In other words, we model the DCT coef-
ficients in an nxn block, omitting the DC coefficient. The
generalized Gaussian density in (1) is parametrized by mean
µ, scale parameter β, and shape parameter γ. The shape
parameter γ is used as a model-based feature. This feature is
computed over all blocks in the image.
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The overall shape parameter-based quality feature used is
found by computing the lowest 10th percentile average of the
local block shape scores (γ) across the image. The reason
for this pooling of the local histogram shape features, as op-
posed to simple averaging, is that percentile pooling has been
observed to result in high correlations with subjective percep-
tion of quality [13]. Percentile pooling is motivated by the
observation that the ”worst” distortions in an image dominate
subjective impressions. We choose 10% as a round number
to avoid the possibility of ”training”. In addition, we com-
pute the 100th percentile average (regular mean) of the local
γ scores across the image.

3.2. The Coefficient of Frequency Variation

The next feature is the coefficient of frequency variation fea-
ture:

ζ =
σ|X|

µ|X|
, (5)

The feature ζ is computed for all blocks in the image. The
highest 10th percentile average and the mean (100th per-
centile) of the local block scores across the image are then
computed. Both pooling results (10% and 100%) are used
as pooled features, since the difference between these is a
compact but rich form of information.

3.3. Energy Subband Ratio Measure

Image distortions often modify the local spectral signatures of
an image in unnatural ways. Towards measuring this, define
a local DCT energy-subband ratio measure. Moving along
diagonal lines on Fig. 2(b) from the top-left corner of the ma-
trix to the bottom-right corner, the DCT coefficients represent
higher radial spatial frequencies in the block. Consequently,
we define 3 frequency bands in the block, as depicted in Fig.
2(b). Let Ωn denote the set of coefficients belonging to band
n, where n = 1, 2, 3, (lower, middle, higher). Then define the
average energy in frequency band n as the model variance σ2

n

corresponding to band n:

En = σ
2
n. (6)

This is found by fitting the DCT data histogram in each band
to the generalized Gaussian density model (1), then using the
σ2

n value from the fit. We then compute the ratio of the differ-
ence between the average energy in frequency band n and the
average energy up to frequency band n, over the sum of these
two quantities:

Rn =
|En − 1

n−1

�
j<n Ej |

En + 1
n−1

�
j<n Ej

(7)

This feature is computed for all blocks in the image. We com-
pute the highest 10th percentile average and the 100th per-
centile average (regular mean) of the local block scores across
all the image.

3.4. Orientation Model-Based Feature

Image distortions often modify local orientation energy in
an unnatural manner. To capture directional information in
the image that may correlate with changes in human subjec-
tive impressions of quality, we model block DCT coefficients
along 3 orientations as shown in Fig. 2(a) below. The 3
shaded areas represent the DCT coefficients along 3 orien-
tations. A generalized Gaussian model is fit to each shaded
region in the block, and γ and ζ are obtained from the model
histogram fits for each orientation. We then compute the vari-
ance of ζ along the 3 orientations. The variance of ζ across
the 3 orientations from all the blocks in the image is then aver-
aged (highest 10th percentile and 100th percentile) to obtain
two numbers per image.

4. PREDICTION MODEL

We have found that a simple probabilistic predictive model is
quite adequate for training the features used in BLIINDS-II.
The efficacy of this simple predictor points up the power
of the NSS-based features we have defined. Let Xi =
[x1, x2, ...xm] be the vector of features extracted from the
image, where i is the index of the image being assessed, and
m is the number of features extracted (in our case m = 10 per
scale). Additionally, let DMOSi be the subjective DMOS

associated with the image i. We model the distribution of the
pair (Xi, DMOSi).

The probabilistic model is trained on a subset of the LIVE
IQA Database, which includes DMOS scores, to determine
the parameters of the probabilistic model by distribution fit-
ting. A multivariate generalized Gaussian model is used to
model the data. Parameter estimation of the model only re-
quires the mean and covariance of the empirical data from
the training set. The probabilistic model P (X,DMOS) is
designed by distribution fitting to the empirical data of the
training set. The training and test sets are completely content
independent, in the sense that no two images of the same
scene are present in both sets. The probabilistic model is
then used to perform prediction by maximizing the quan-
tity P (DMOSi|Xi). This is equivalent to maximizing the
joint distribution of X and DMOS, P (X,DMOS) since
P (X,DMOS) = P (DMOS|X)p(X).

5. EXPERIMENTS AND RESULTS

It is well understood that images are naturally multiscale [4],
[14], and that the early visual system involves decomposi-
tions over scales [12]. Towards this end, we implement the
BLIINDS-II concept over multiple scales. Specifically, the
feature extraction is repeated after lowpass filtering the image
and subsampling it by a factor of 2. Prior to downsampling,
the image is filtered by the rotationally symmetric discrete
3x3 Gaussian filter kernel. This defines a multiscale feature

2011 18th IEEE International Conference on Image Processing

3156



LIVE Subset BLIINDS-II BIQI SSIM PSNR
JPEG2000 0.9506 0.7995 0.9496 0.8658
JPEG 0.9411 0.8914 0.9664 0.8889
White Noise 0.9783 0.9510 0.9644 0.9791
GBlur 0.9435 0.8463 0.9315 0.7887
Fast Fading 0.9268 0.7067 0.9415 0.8986
ALL 0.9202 0.8190 0.9225 0.8669

Table 1. Median SROCC correlations for 1000 iterations of train
and test sets (subjective DMOS vs predicted DMOS)

extraction approach, which enables BLIINDS-II to deal with
changes in the image resolution, with distance from the im-
age display to the observer, and with variations in the acuity
of the observer’s visual system.

BLIINDS-II was rigorously tested on the LIVE IQA
Database [15] which contains 29 reference images, each
impaired by many levels of 5 distortion types: JPEG2000,
JPEG, white noise, Gaussian blur, and fast-fading channel
distortions (simulated by JPEG2000 compression followed
by channel bit errors.). The total number of distorted images
(excluding the 29 reference images) is 779 images. Multiple
train-test sequences were run. In each, the image database
was subdivided into distinct training and test sets (completely
content-separate). In each train-test sequence, 80% of the
LIVE IQA Database content was chosen for training, and the
remaining 20% for testing. Specifically, each training set con-
tained images derived from 23 reference images, while each
test set contained the images derived from the remaining 6 ref-
erence images. 1000 randomly chosen training and test sets
were obtained and the prediction of the quality scores was run
over the 1000 iterations. The code for BLIINDS-II is avail-
able at http://live.ece.utexas.edu/research/
quality/BLIINDS release.zip.

The Spearman rank-order correlation coefficient (SROCC)
between predicted DMOS and subjective DMOS is reported
in Table 1 for BLIINDS-II (at 3 scales), BIQI [16] (a recent
NR-IQA method), and the full-reference SSIM and PSNR.

6. CONCLUSION

We have proposed a model-based, general (non-distortion
specific) approach to NR-IQA using a minimal number of
features extracted entirely from the DCT-domain which is
also computationally convenient. We have shown that the
new BLIINDS-II algorithm can be easily trained and it em-
ploys a simple probabilistic model for prediction. The method
correlates highly with human visual perception of quality, and
outperforms the full-reference PSNR measure and the recent
no-reference BIQI index, and approaches the performance of
the full-reference SSIM index.
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