
TEMPORAL HYSTERESIS MODEL OF TIME VARYING SUBJECTIVE VIDEO QUALITY

Kalpana Seshadrinathan

Intel Labs
Intel Corporation, Santa Clara, CA.

Alan C. Bovik

Lab. for Image and Video Engg. (LIVE)
University of Texas at Austin.

ABSTRACT

Video quality assessment (QA) continues to be an important area
of research due to the overwhelming number of applications where
videos are delivered to humans. In particular, the problem of tem-
poral pooling of quality sores has received relatively little attention.
We observe a hysteresis effect in the subjective judgment of time-
varying video quality based on measured behavior in a subjective
study. Based on our analysis of the subjective data, we propose
a hysteresis temporal pooling strategy for QA algorithms. Apply-
ing this temporal strategy to pool scores from PSNR, SSIM [1] and
MOVIE [2] produces markedly improved subjective quality predic-
tion.

Index Terms— video quality, temporal pooling, MOVIE, qual-
ity assessment, LIVE Video Quality Database, hysteresis.

1. INTRODUCTION

Automated measurement of video quality has proven to be critical
with the rising popularity of video applications that target human
end users such as mobile video, video over the Internet, teleconfer-
encing and video on demand. Video quality assessment algorithms
(QA) attempt to measure the perceptual quality of a given video and
usually generate spatially and temporally localized quality estimates,
which are then combined to predict the overall quality of the video.
Considerable work has been done in developing QA algorithms for
video and several papers study pooling of spatially localized quality
scores to produce frame level quality indices. Study of human be-
haviour while providing time-varying quality scores has received rel-
atively little attention in the literature. Recency, forgiveness and neg-
ative peak duration neglect effects were reported based on data gath-
ered using a single stimulus continuous quality evaluation (SSCQE)
paradigm in [3] and a model that considers these effects was pro-
posed in [4]. Smoothness of subjective time-varying quality scores
was observed and modeled in [5]. A pooling method based on the
hypothesis that subjective time-varying quality scores are smooth,
asymmetric and saturating was proposed in [6].

Existing work is largely based on empirical observations of hu-
man perception of quality and do not directly attempt to study human
behaviour in assessing instantaneous video quality and aggregating
instantaneous quality to provide an overall impression of quality. We
present the results of a study where we studied the relation between
time-varying quality scores and the final quality score assigned by
human subjects to a video using a subjective study that records both
of these from human subjects. We have observed that there exists a
hysteresis effect in the subjective judgment of video quality, whereby
continuously recorded quality scores that trace a hight level of video
quality rapidly transition to tracing a low level of quality following
a distortion event, remaining there even after the event passes.

We reported the results of a human subjective study as the now
publicly available LIVE Video Quality Database, where human sub-
jects were asked to provide their quality judgment at the end of the
presentation of a video sequence [7]. As part of this study, we also
recorded time-varying quality scores from human subjects as the
video was played out and this aspect of the study has not been re-
ported yet. Based on our analysis of the subjective data, we pro-
pose a new hysteresis temporal pooling strategy for QA algorithms.
We find that applying this temporal strategy to pool scores from
such objective QA indices as PSNR, SSIM [1] and MOVIE [2] pro-
duces marked improvement as measured on the LIVE Video Quality
Database.

2. SUBJECTIVE EXPERIMENT

We recently conducted a subjective study to assess the time-varying
subjective quality of videos. The study deployed 10 uncompressed
reference videos of natural scenes that span a wide range of content.
All reference videos used in our study were progressively scanned,
768x432 pixels and in YUV 4:2:0 format. The frame rates of these
videos were 25fps (7 videos) or 50 fps (3 videos). 9 videos were
10 seconds long, while one was 8.68 seconds long. We generated
150 distorted videos from the references using four different distor-
tion types - MPEG-2 compression, H.264 compression, simulated
transmission of H.264 compressed bitstreams through error-prone IP
networks and through error-prone wireless networks. The distortion
types included in our study were fairly diverse and included spatially
and temporally uniform and transient distortions.

Each video in the LIVE Video Quality Database was assessed by
38 human subjects in a single stimulus study with hidden reference
removal. All the videos in our study were viewed by each subject,
which required one hour of the subject’s time. To minimize the ef-
fects of viewer fatigue, we conducted the study in two sessions of
thirty minutes each and the videos were played back to the subjects
in a randomized order. The interface was designed to ensure precise
playback of the video stimulus. The videos were viewed by the sub-
jects on a calibrated Cathode Ray Tube (CRT) monitor. The monitor
resolution was set to 100 Hz to avoid artifacts due to monitor flicker.

Each subject scored the quality of the video in two different
ways. First, during the presentation of each video, a sliding bar
scale for video quality was displayed on the screen. The quality
scale had five labels marked on it to help the subject. The left end
of the scale was marked “Bad” and the right end was marked “Ex-
cellent”. Three equally spaced labels between these were marked
“Poor”, “Fair” and “Good”, similar to the ITU-R Absolute Category
Rating (ACR) scale. The cursor was set at the center of the quality
scale at the beginning of playback of each video to avoid biasing the
subject’s quality percept. The subjects were asked to indicate the
quality of the video they were viewing in a time varying fashion as
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the video was played out by moving the mouse along the sliding bar.
This procedure is similar to the SSCQE paradigm. A screenshot of
the interface showing the video playback along with the quality scale
is shown in Figure 1(a). Secondly, at the end of the playback of the
video, a sliding bar scale for video quality was again displayed on
the screen with the cursor at the center of the scale. Subjects were
then asked to indicate the overall quality of the entire video that they
just completed viewing as shown in Figure 1(b). This discrete score
for each video was reported in the LIVE Video Quality Database and
we refer the reader to [7] for further details.

3. ANALYSIS OF SUBJECTIVE RESULTS

We present the results of the time varying element of the subjective
experiments in this section. We first studied the relationship between
the continuous time scores and the final score assigned to each video
by each subject. Let qijk denote the score assigned by subject i at the
end of the presentation of video j in session k = {1, 2}. Let fijk(t)
represent the continuous time scores obtained from subject i during
the playback of video j in session k = {1, 2}. The final scores
obtained from the subjects were processed in a manner similar to
that described in [7] to obtain Mean Opinion Scores (MOS) for each
video. The main difference from the analysis conducted in [7] is that
we did not compute difference scores, since our goal was to study the
temporal pooling strategies used by humans. Scores obtained from
each subject per session is first converted to Z-scores per session.
The Z-scores were then converted to MOS scores by averaging them
across subjects after subject rejection [7]:
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where Nik is the number of test videos seen by subject i in session
k and M = 32 denotes the number of subjects (out of 38) whose
scores were accepted.

A similar analysis was performed on the continuous time quality
scores obtained from each subject to obtain continuous time MOS
scores:
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Here, Tj denotes the duration of video j. We first studied the re-
lation between the statistics of MOSf

j (t) and MOSj . The cursor was
always placed at the center of the slider when playback started and
we found that subjects took on average about a second to respond to
the quality of the video. We discarded the scores in MOSf

j (t) during
the first second of playback of the video. We found that the mean of
the continuous time quality scores was a very good indicator of the
discrete score assigned by the subjects to the video at the end of the
presentation. The linear correlation coefficient between the mean of
the continuous time quality scores assigned by each subject (after
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Fig. 2. Scatter plot showing final scores assigned by subjects against
the mean of the continuous scores.

ignoring the first second) and the final score assigned by the subject
is 0.9620. A scatter plot is shown in Figure 2. We also performed an
F-test on the mean of the continuous scores and the final scores and
the hypothesis that the two data sets came from populations with the
same mean was accepted at 95% confidence.

It has been reported that the final quality judgment from the sub-
jects is influenced heavily by the quality of the last segment of the
video [3]. However, we found that schemes where continuous time
scores from later segments of the video were weighed more heavily
did not correlate as well with the final score as the overall mean on
our database. We believe that this is possibly due to the short dura-
tion of the videos used in our study (8-10 seconds) and the fact that
we used natural videos where the temporal nature of the distortions
varied considerably. This is also inline with the results of [4], where
this effect was found to be negligible for 8 second long videos.

Our analysis suggests that computing the average of frame level
quality scores from QA algorithms can serve as a good indicator of
the overall quality of the video, provided that frame level quality
scores from the QA algorithm match continuous time quality scores
from human subjects. However, we found that the continuous time
scores provided by human subjects follow a smoother trajectory over
time. Further, subjects react sharply to drops in video quality and
provide poor quality scores for such regions and do not react as
sharply to improvements in quality thereon. We refer to this as a
hysteresis effect, since the memory of poor quality elements in the
past causes subjects to provide lower quality scores immediately af-
terward. Since this memory is retained even after the time varying
video quality returns to acceptable levels, it is a form of subjective
hysteresis.

Objective algorithms, on the other hand, tend to be less smooth,
react quickly to improvements in quality and do not consider the ef-
fects of prior quality scores. This is illustrated in Figure 3, which
shows subjective continuous time quality scores against objective
scores from the Temporal MOVIE algorithm for 2 videos in the
database [2]. The Temporal MOVIE index is computed every 8
frames and the resulting values are scaled for visibility and interpo-
lated using straight lines in the figure. In the figure shown on the left,
notice that Temporal MOVIE reacts to the sudden drop in video qual-
ity indicated by the subjects but recovers quickly as the quality im-
proves over time, while human subjects do not react to the improve-
ment as sharply. In the figure on the right, Temporal MOVIE scores
show multiple frames where video quality drops sharply, which re-
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(a) (b)

Fig. 1. (a) Screenshot from the subjective study interface displaying the video to the subject with the time-varying quality scale. (b) Screenshot
from the subjective study interface that prompts the subject to enter a quality score for the video they completed viewing.

sults in a steadily decreasing subjective percept of quality. Note that
the human response to quality lags the waveform obtained from the
Temporal MOVIE index, which accounts for the delay between the
subject viewing a change in quality and indicating this change us-
ing the interface. In the next section, we model these effects in the
pooling stages of objective video QA algorithms to improve their
performance in matching human perception.

4. TEMPORAL POOLING STRATEGY FOR QA

We propose a new temporal pooling strategy to account for the sub-
jective effects seen in Section 3. We hypothesize that the average
of frame level quality scores obtained from objective QA algorithms
can serve as a good indicator of the overall quality of the video, pro-
vided that modeling of the memory effect and the sharp reaction of
subjects to drops in video quality is accounted for. Let g(t) represent
time varying scores obtained from an objective QA algorithm for a
video. First, we recursively define a memory component to quality
at each time instant ti using quality scores obtained from the QA
algorithm over the previous t = τ seconds:

x(1) = g(1) (6)
x(ti) = min[x(t)], t = {max(1, ti − τ), ti − 1} (7)

The minimum of the quality scores over the previous τ seconds
accounts for the fact that subjects are intolerant of poor quality video
events. The recursive computation ensures that the memory element
x is smoothly varying, similar to the behavior of human subjects as
shown in Section 3. While a model that linearly combines quality
estimates for the current frame with that of the previous frame has
been proposed [4], this model is not based on subjective experiments
of human performance and is very different from the memory model
that we propose here.

We also construct a current quality element at each time in-
stant ti using quality scores obtained from the QA algorithm in
the next t = τ seconds. To account for the fact that subjects re-
spond strongly to drops in quality, we sort the quality scores in
ascending order and combine them using a Gaussian weighting
function [8]. Let v = {v1, v2, . . . , vk} denote the sorted elements
and w = {w1, w2, . . . , wk} represent the descending half of a
Gaussian weighting function that sums to 1 (1/K

∑K

k=1
wk = 1).

The standard deviation of the Gaussian window was chosen to be
(2K − 1)/12.

v = sort[g(t)], t = {ti,min(ti + τ, Tj)} (8)

y(ti) =

K∑

k=1

vkwk, k = {1, 2, . . . , k} (9)

We then linearly combine the memory and current elements of
quality to produce time varying quality scores that account for the
hysteresis effect and approximate the continuous time quality judg-
ments from human subjects. The overall video quality is computed
as the mean of the time varying scores, accounting for the finding
that the overall subjective quality assigned by humans is well ap-
proximated by the mean of the continuous time quality scores.

g′(ti) = αy(ti) + (1 − α)x(ti) (10)

G =
1

T

∑

t

g′(t) (11)

5. RESULTS AND CONCLUSION

We tested the performance of PSNR, SSIM [1] andMOVIE [2] using
the hysteresis pooling strategy on the LIVE Video Quality Database
[7]. The original implementations of PSNR and SSIM [1] use the
mean of the quality scores computed at each frame as the frame
level quality score. However, it has been pointed out that humans
are sensitive to small regions of poor quality in a video and the mean
often overestimates frame level qualities. Pooling using the coeffi-
cient of variation (CoV) have been proposed to improve the spatial
pooling of quality scores [7]. We found that the performance of both
PSNR and SSIM improves considerably by using the CoV to pool
the quality scores at each frame.

We measured the efficacy of the hysteresis temporal pooling
strategy in terms of the Spearman rank order correlation coefficient
(SROCC) and the linear correlation coefficient (LCC) on the LIVE
Video Quality Database in Tables 1 and 2. MOVIE uses the CoV for
pooling and entries for pooling using the mean in Tables 1 and 2 are
hence left blank. We have two hysteresis parameters in our model:
the duration of the memory effect modeling τ and the linear factor α.
We found that τ = 2 seconds and α = 0.8 produced good results.
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Fig. 3. Continuous time scores (solid line) from human subjects and objective scores from Temporal MOVIE (dashed line) for two videos.

Algorithm M1 M2 M3
PSNR 0.5398 0.6058 0.6256
SSIM 0.5257 0.6974 0.7330
Spatial MOVIE - 0.7270 0.8009
Temporal MOVIE - 0.8055 0.8150
MOVIE - 0.7890 0.8394

Table 1. SROCC of VQA algorithms for different pooling strategies.
M1: spatial & temporal means, M2: spatial CoV & temporal mean.
M3: spatial CoV and hysteresis based temporal pooling. The best
performing algorithm is highlighted in bold font.

Since τ corresponds to the duration of the memory effect, a value
of 2 seconds seems reasonable based on the human data illustrated
in Figure 3. We found that the results don’t vary significantly as τ
varies from 1-3 seconds. α controls the contribution of the memory
effect to the linear weighting and we found that the results are sim-
ilar for values of α above 0.5. This shows that the subjective qual-
ity estimate is weighted more by the current element of quality, as
compared to the memory element. It is seen that performing spatial
pooling using CoV improves the performance of PSNR and SSIM
considerably when compared to spatial pooling using the mean. The
performance of all algorithms is improved by incorporating hystere-
sis based temporal pooling. These results are quite promising since
the underlying QA algorithms are unchanged and the gains are solely
due to better temporal pooling of quality scores.

In conclusion, we proposed a new hysteresis based temporal
pooling strategy for video QA algorithms based on the results of
a subjective study. We showed that scores assigned by humans to a
video can be approximated quite well using the mean of their con-
tinuous time quality scores. We also demonstrated differences be-
tween the temporal evolution of quality scores obtained from human
subjects and scores from objective QA algorithms. We proposed a
hysteresis model for temporal pooling of quality scores and demon-
strated that it performs quite well and results in improvements in the
performance of three full reference video QA algorithms.
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