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Abstract—We propose a novel visual scalable video coding
(VSVC) framework, named VSVC H.264/AVC. In this approach,
the non-uniform sampling characteristic of the human eye is
used to modify scalable video coding (SVC) H.264/AVC. We
exploit the visibility of video content and the scalability of the
video codec to achieve optimal subjective visual quality given
limited system resources. To achieve the largest coding gain
with controlled perceptual quality degradation, a perceptual
weighting scheme is deployed wherein the compressed video is
weighted as a function of visual saliency and of the non-uniform
distribution of retinal photoreceptors. We develop a resource
allocation algorithm emphasizing both efficiency and fairness by
controlling the size of the salient region in each quality layer.
Efficiency is emphasized on the low quality layer of the SVC.
The bits saved by eliminating perceptual redundancy in regions
of low interest are allocated to lower block-level distortions in
salient regions. Fairness is enforced on the higher quality layers
by enlarging the size of the salient regions. The simulation results
show that the proposed VSVC framework significantly improves
the subjective visual quality of compressed videos.

Index Terms—Frequency weighting, H.264/AVC, human visual
system, perceptual coding, scalable video coding, visual attention.

I. Introduction

THE EXPLOSIVE growth of multimedia applications such
as network video broadcasting, video-on-demand, and

video conference has energized networked visual communica-
tion as an active research area. To transmit voluminous video
data over the available bandwidth of networks, considerable
efforts have been applied to the development of video com-
pression techniques such as H.261, H.263, H.264, MPEG-1, 2,
and 4 [1], [2]. To improve the performance of visual communi-
cation systems, it is necessary to consider both the perceptual
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quality of the reconstituted and displayed videos [14]–[24], as
well as the seamless delivery and assurance of quality using
scalable video coding (SVC) techniques to mediate perceptual
video quality as a function of bitrate [7]–[12].

Recently, a new SVC H.264/AVC has been developed as
an amendment of the H.264 and MPEG-4 part 10 video stan-
dards [4]–[6]. The notion of perceptual weighting is enabled
by varying the quantization parameter (QP) from 1 to 51 in the
standard [13], [14]. If the QP is constant over all macroblocks
(MBs) in each picture, then the perceptual importance of each
MB is regarded to be likewise equal regardless of content. Of
course, this may result in MBs located in regions of high inter-
est or visual attention being quantized to an annoying degree,
leading to loss of subjective quality in the reconstituted video.

In our proposed visual scalable video coding (VSVC)
framework, we incorporate perceptual weighting into the re-
source allocation algorithm. This idea is not entirely new.
In [33], an improvement of visual quality was achieved by
allocating more encoding bits for regions having high percep-
tual salience. In [15]–[21], a non-uniform spatial filtering law,
called foveation, was employed to define spatial perceptual
weights on the MBs. Larger weights were applied near pre-
sumed visual fixation points, which were represented at high
resolution, while lower weights were assigned to peripheral
points. This process of foveation weighting attempts to match
the non-uniform density of photoreceptors over the retina. The
local spatial bandwidth (LSB) rapidly decreases with distance
from the presumed fixation point(s).

Fig. 1 is an example of controlling perceptual quality. In one
image, the QP is fixed at 40, while in the other, local perceptual
quality at the MB level is controlled by varying the QP in the
range 34 to 46. In this example, the 16th frame of the Soccer
sequence was used for visual quality inspection, where the
presumed visual fixation point is on the soccer player near the
right center. It is visually observable that higher perceptual
quality is obtained by controlling the QP as a function of
each MB. This suggests that adaptive perceptual weighting by
spatially localized control of the QP is promising for generally
improving the perceptual video quality.

Approaches that incorporate elements of visual perception
into video coding have been studied in [14]–[24]. In particular,
perceptual quality can be effectively improved by utilizing
foveation in MPEG/H.263 video coding, if the fixations points
can be acquired or accurately guessed. Resource allocation
is accomplished as a function of the spatial distance from
foveation point(s) [16]–[21]. Fixation point selection can be
directly determined through the use of eye-tracking, or if that is
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Fig. 1. Comparison of perceptual quality. (a) Fixed QP allocation for each
MB. (b) Dynamic QP allocation for each MB in a picture.

inconvenient, by the use of visual salience measures based on
color, skin detection, luminance edges, motion, or other visual
attractors [28]–[31]. Motion and other spatiotemporal features
have been used to identify regions of visual importance [22]–
[28]. In [24], motion information is used to discover perceptu-
ally significant regions at low complexity. In our application,
the sophisticated motion prediction tools in the H.264/AVC
coder suggests that spatio-temporal features are readily avail-
able for deciding assessing visual saliency [26]–[28].

The approach taken in this paper is to allocate limited
resources to the MBs in each frame in order to mediate the
perceptual quality of each layer. When the number of target
encoding bits for a layer is given, an optimization procedure
is formulated to enable block-level resource allocation based
on the video content.

First, we propose a perceptual weighting scheme based
on foveation to enable the capture of visible frequencies in
video. The scheme consists of two parts: visual salience is
determined using motion information [23], [24]; then, the LSB
is calculated for each MB based on a foveation model [15]–
[21].

Second, we develop a resource allocation algorithm for op-
timizing perceptual quality by utilizing the computed motion-
based salience to control the scalable quality layers in the
SVC. The allocation algorithm enhances perceptual quality
by allocating more bits to highly localized salient regions at
the lower quality layers. If degradation occurs in less salient
regions, higher quality will still be attained in more salient
region(s). At the higher quality layers, the salient region(s) is
expanded. Fairness among MBs is fulfilled by allocating more
bits to region(s) of lower saliency at the highest quality layer.
Thus, a tradeoff between efficiency and fairness is mediated
based on the number of available bits and the associated
quality layer.

We provide simulations where we measure the performance
gain in terms of efficiency and fairness relative to conventional
algorithms. To measure efficiency, we utilize the foveated peak
signal-to-noise ratio (FPSNR). To measure fairness, we plotted
the distribution of mean square error (MSE) of a frame.

II. System Description

A. Motivation

Perceptual weighting of MBs is an approach that has
been effectively used for single-layer video coding using rate

Fig. 2. Proposed VSVC framework compared to a conventional SVC
scheme. (a) Conventional SVC scheme. (b) Proposed VSVC scheme.

control [16], [20], [21], [25], [28]. For SVC H.264/AVC
coding, we are unaware of any developed approach that, e.g.,
adaptively selects a QP and allocates bits to each layer based
on perceptual saliency or foveation. Such an approach is
feasible and promising; by using a rate control algorithm, the
number of target bits could be decided, and a constant QP
determined for each layer, on a frame-by-frame basis. This
would require flexibly assigning perceptual weights to each
MB, as well as an appropriate bit allocation scheme.

To improve the coding performance of each quality layer,
our proposed VSVC approach exploits the non-uniform sam-
pling of the eye’s sensory apparatus by controlling the sizes
of identified salient regions across layers, and by controlling
the number of bits for each MB via a rate control algorithm.
Fig. 2 shows the mechanics of the proposed VSVC framework
compared to a conventional approach. At each quality layer,
the region indicated by dotted lines indicates regions of
presumed higher salience, while the solid lines indicate regions
of lower salience.

The conventional approach shown in Fig. 2(a) applies an
equal perceptual weighting across the layers. However, the
human visual response is higher for lower frequency infor-
mation, which can be taken into account when selecting the
quantization levels. In the conventional approach, no account
of visual attention or spatial assignment of visual importance
or salience is used in defining the three quality layers.

By comparison, Fig. 2(b) shows the various features of
our proposed VSVC framework. The three quality layers are
configured to optimize perceptual quality, i.e., an MB-level
rate control mechanism computes the perceptual weights as
a function the identified perceptually most salient regions
in each quality layer, which are dynamically selected. For
the lowest quality layer (layer 0), a small region of visual
importance is maintained over which perceptual quality will
be maintained. The region(s) of presumed perceptual interest is
larger in layer 2, and larger still in layer 3. Significant savings
in bit allocation in all three layers can be obtained in this way,
with high efficiency in layers 0 and 1. Fair resource allocation
can be achieved in layer 2 to maintain the perceptual quality
of all MBs by expanding the sizes of the salient region(s).

B. Overview of the Proposed VSVC Algorithm

Fig. 3 is a block diagram for the proposed VSVC scheme.
Fig. 3(b) and (c) shows the result of applying foveation-based
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perceptual weighting on the 35th frame of the Silent video test
clip.

The proposed VSVC structure is based on the basic SVC
H.264 design, which is classified as a layered video coder.
Fig. 3(a) shows the typical coder structure with two spatial
layers represented using a solid line. Since the proposed
VSVC algorithm extends the coarse-grain Signal-to-noise ra-
tio (SNR) scalability, the inter-layer prediction mechanism
using the upsampling operation is omitted [34], [35]. The
dotted processing blocks are added for the proposed SVC
algorithm.

Next, the LSB for each MB is found by the perceptual
weight allocator, which determines motion-based salience,
determines which MBs fall within the salient region, and
applies foveation-based perceptual weights.

Fig. 3(b) illustrates the outcome of the motion-based
salience model. The face and left hand, both of which are
in motion, are selected as region of heightened visual interest.

The LSB is decreased exponentially from the center of each
salience region, which we will call the foveation point. The
intention is that when a visual fixation falls on the region,
the projection of the distribution of LSBs onto the retina will
approximately match the non-uniform distribution of the pho-
toreceptors. A map illustrating the foveation-based perceptual
weighting model is shown in Fig. 3(c). Resources are allocated
according to spatial placement within the indicated isocontours
of the foveation-induced LSBs. In this example, MBs in region
A are located in a high salient region and are thus finely
quantized. MBs in region B are located in regions of lower
saliency resulting in coarser quantization.

By considering visual importance together with bit allo-
cation at each quality layer, the resource allocator seeks to
optimize efficiency and fairness to achieve improved percep-
tual video quality. Encoding each quality layer depends on the
QP, on motion information, and on identifying salient regions.
Finally, the encoded bits are multiplexed to produce a scalable
video bitstream.

III. Foveation-Based Perceptual

Weighting Allocator

We introduce two perceptual models: one is motion-based
and the other is foveation-based. Using these models, it is
possible to calculate the LSB for each MB in each quality
layer. The perceptual weights are defined over the spatial and
temporal domains using the following observations.

1) Moving objects in video are strong attractors of visual
attention and tend to draw visual fixations [23], [24],
[26], [29], [37], [38].

2) The eye is sensitive to the temporal correlation of
moving objects [22].

3) Fixated regions in a video are perceived at high resolu-
tion via foveal sampling [15], [20], [21], [29].

The motion-based saliency model exploits the first and sec-
ond assumptions. The third assumption is employed in the
foveation-based perceptual weighting model.

Fig. 4 diagrams the foveation-based perceptual weight al-
locator, and shows results from its operation. The weight

Fig. 3. Overview of the proposed VSVC scheme. (a) Block diagram of the
proposed VSVC scheme. (b) Result of applying the motion-based salience
model. (c) Depiction of the foveation-based perceptual weighting scheme.
Foveation-induced bandwidths are plotted as iso-contours within which the
perceptual weights, quantization, and bit allocations are determined.

allocation algorithm consists of four stages. Stages A–C
accomplish the motion-based saliency determination, while
Stage D obtains the foveation-based perceptual weighting.
This means that we regard the salient MBs as an extended form
of foveation points in the unit of MB rather than in the unit of
pixel for obtaining the LSB of MBs in each frame. Simulation
results are shown for each stage, which are explained below,
using the 23rd frame of the Soccer video clip.

A. Motion-Based Saliency Model

1) Stage A: Partition Selection: Fig. 4(a) diagrams the
motion-based saliency model. The model utilizes motion in-
tensity (speed) and the MB partition, both of which can be
obtained from the motion estimation (ME) module in the
hierarchical B prediction. In H.264/AVC, there exist nine
different prediction modes for intra MBs and seven different
prediction modes for inter MBs. The block partition of the kth
MB in the nth frame, which is denoted as Pn,k, is calculated by
performing rate-distortion optimization (RDO)-based coding
mode selection algorithm [25], [34]–[36]. From Fig. 4(b), it
may be observed that blocks having small partition size are
associated with inhomogeneities, such as edges. Blocks having
large partition size are associated with homogeneous regions
[24], [27].

To attempt to distinguish moving objects of interest from
the background, speed is employed. For the kth MB in the
nth frame, the speed is given by

In,k =
√

(MVx
n,k)2 + (MV

y

n,k)2 (1)
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Fig. 4. Block diagram and simulation results for the foveation-based perceptual weight allocator. (a) Block diagram. (b) Result of Stage A. (c) Result of
Stage B. (d) Result of Stage C. (e) Result of Stage D in Soccer video clip. (f) Result of Stage D in Stefan video clip.

where MVx
n,k and MV

y

n,k are the horizontal and vertical compo-
nents of motion. Using In,k and Pn,k, salient regions are found
in each frame.

2) Stage B: Determination of Salient Regions: If Pn,k

indicates a small partition size, the corresponding block may
occur at or near an object boundary. However, the block may
also belong to the background. Using only Pn,k, it is not
possible to determine whether the MB should be considered
as a salient MB. The MB may be part of a salient region,
provided that the speed of the MB is nonzero. However, if the
speed is too large, the perceptibility of the moving MB may
significantly decrease. Hence, an upper bound on the speed of
the MB is required, i.e., if the MB belongs to a salient region,
then its speed must fall below a threshold [23], [29], [32],
[37] 0 < In,k < �k where �k is the sum of the global mean,
μk, and standard deviation, δk, of motion intensities in the kth
frame as follows:

�k = μk + δk (2)

where the motion intensity (Il,k) is calculated from (1). In the
case of an intra-coded MB, the motion intensity of the MB
is set to zero since there is no motion vector. However, for
forward, backward, and bidirectional-coding types, motion
vectors for each MB are utilized for obtaining the motion
intensity regardless of the direction of prediction.

If the speed of the MB falls outside of this range, then
the MB is regarded as a part of a non-salient region. A
binary function An,k is used to indicate whether or not the

kth MB belongs to a salient region; An,k=1 indicates saliency
while An,k=0 indicates otherwise. The result of Stage B is
exemplified in Fig. 4(c). It may be observed that edges of the
moving soccer players and the moving ball are selected as
candidate salient regions.

3) Stage C: Motion Consistency: Assuming that salient
regions typically survive across consecutive frames [22], we
define a binary function Cn,k that indicates the temporal
continuity of motion flow of salient objects, as follows:

Cn,k =

{
1, if Wn,k ≥ S

0, otherwise
(3)

where Wn,k = An−1,k + An,k + An+1,k and S = 2. Based on
this criterion, moving blocks having transient motion (An,k=1,
Cn,k = 0) are considered as non-salient. This motion consis-
tency criterion can vary according to the frame rate, e.g., by
increasing S at a high frame rate and by diminishing S at a
low frame rate.

The processing of Stage C is exemplified in Fig. 4(d). It
may be observed that many blocks with An,k=1 are removed
in the process, owing to their low motion consistency. Yet there
remain a number of MBs that are promising salient objects.

Using An,k and Cn,k, the salient region selection algorithm
is summarized.

1) Calculate In,k and Pn,k for the kth MB.
2) Determine whether Pn,k < MODE 16 × 16. If so,

proceed to the next step. Otherwise, indicate that the
MB is not salient by setting An,k = 0.
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Fig. 5. Viewing geometry for the foveation model.

3) Determine whether 0 < In,k < �k. If so, indicate that
kth MB is a candidate salient MB: An,k = 1. Otherwise,
set An,k = 0.

4) Determine whether Wn,k > S. If so, then kth MB is
salient: Cn,k = 1. Otherwise, it is not Cn,k = 0.

The block size for the MB partition is selected by perform-
ing the RDO-based coding mode selection algorithm. Thus, the
block partition is, in fact, dependent on the target bitrate. In
most cases, the higher the target bitrate, the greater the number
of blocks with smaller partition mode, so that the number of
salient MBs increases, and vice versa. However, this is not
critical to the algorithm from the point of view of efficiency
and fairness. If the target bitrate is high, it is beneficial that the
salient region is larger, so that fairness is guaranteed, and vice
versa. Thus, the variation of block size as a function of the
target bitrate is not critical to the following efficiency-fairness
(EF) resource allocation algorithm. In the worst case, no MB
in a frame could be selected as a salient MB at a low bitrate.
In this situation, the center MBs of a frame could be candidate
salient MBs based on the tendency of human fixations to seek
the center of the frame side [15], [20], [21].

B. Foveation-Based Perceptual Weighting Model

Light reflected from objects in the environment passes
through the optics of the eye and onto the retinal pho-
toreceptors (cones and rods). We make the very reasonable
assumption that the video is bright enough to elicit photopic
vision, hence the visual input is dominated by the responses of
the cones. The density of the cones and associated receptive
field neurons is non-uniformly distributed across the retinal
topography, peaking in density at the fovea, which also is
centered on the optical axis of the eye. The point on an
object surface that projects light onto the center of the fovea
is correctly termed a point of visual fixation. The term
foveation point, which we shall use, is related, but different.
Since our application is presenting video images to human
observers, it is presumed that the points of visual fixation fall
on the displayed video being viewed. A foveation point in a
video is a coordinate in space-time where it is expected that
humans fixations are likely to be placed. Therefore, foveation
points in video are represented with a high spatial resolution.
The resolution is made to fall off systematically away from a
foveation point, unless another foveation point is approached.
This scheme is applicable for multiple foveation points as

well. It can be seen that there are multiple foveation points in
Fig. 4(d). If the LSBs for each foveation point overlap, then
the larger LSB is chosen to determine the perceptual weight. In
this way, the video presentation is made to have high resolution
where the observers visual fixations are known or predicted to
be placed, thus seeking to match the sampling capability of the
retina. There has been useful work done on determining the
visual resolution response (contrast sensitivity) as a function
of the placement of the stimulus on the retinal relative to the
fovea, which is known as the retinal eccentricity [39]–[41].

Fig. 5 diagrams a viewing geometry where �pf = (pf
x , pf

y )
(pixels) indicates a foveation point that is also a fixation point,
v is the viewing distance from the eye to the display image
plane, and N is the number of pixels along the horizontal axis.
The distance u from the point �p = (px, py) (pixels) to the
foveation point �pf is u = d(�p)

/
N, where d(�p) =

∥∥�pf − �p∥∥
2.

The vertical distance v is defined similarly. The eccentricity
is then defined as the visual angle [20] as follows:

e(v, �p′) = tan−1(
u

v
) = tan−1(

d(�p′)
Nv

). (4)

For a given eccentricity, e(v, �p), the local spatial cut-off
frequency (cycle/degree) fc is defined by setting the contrast
sensitivity to 1.0 (the maximum possible contrast) and is
calculated as follows:

fc(e(v, �p)) =
e2 ln( 1

CT0
)

α(e(v, �p) + e2)
(5)

where CT0 is a minimum contrast threshold, e2 is a half-
resolution eccentricity constant, and α is a spatial frequency
decay constant. In this model, higher spatial frequencies than
fc are less visible or invisible.

In a displayed digital image, the effective display visual res-
olution r (pixels/degree) is expressed in terms of the viewing
distance v (cm) and display resolution N (pixel/cm) as follows:

r = pv tan(
π

180
) ≈ Nv

π

180
. (6)

The highest displayable spatial frequency is half of r as
follows:

fd(v) =
r

2
≈ Nv

π

360
. (7)

Using (5) and (7), the local foveated bandwidth of a given MB
�pk and viewing distance v is

f́ n,k
s = min(fc(e(v, �pk)), fd(v)). (8)

The LSB is explicitly the local foveated bandwidth within
which the maximum possible contrast can be recognized as
a function of the distance from a foveation point. Thus, an
MB will have a lower LSB when it is further from the
foveation point. Likewise, high frequency coefficients tend to
be more severely quantized as the QP is increased. Therefore,
in Section IV, we propose a scheme to adjust local QPs as a
function of the LSB.
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1) Stage D: Computation of LSB Using Foveation Model:
As shown in Fig. 4(d), there can be multiple foveation points.
Thus, multiple LSBs overlap. In this situation, the largest LSB
is chosen to determine the perceptual weight as follows:

fn,k
s = max

f

{
f́ n,k

s

(
df,k

)}
(9)

where the local foveated bandwidth is expressed as a function
of the distance, df,k, between the f th foveation point and the
kth MB. Using fn,k

s , the LSB is obtained for each MB as
shown in Fig. 4(e). In Fig. 4(f), the 6th Stefan video test
clip is additionally shown as a result. This process makes
it possible to eliminate visual redundancy from non-salient
regions to improve coding efficiency.

2) Computational Complexity: The foveation-based per-
ceptual weighting model consists of Stages A–D. In Stage
A, the root mean square (RMS) value of directional motion
estimates is computed on each MB. This value depends on
the motion partition. The 4 × 4 sub-block is the smallest
for a 16 × 16 MB, in which case the MB consists of 16
sub-blocks. Suppose that all the MBs of a video frame have
4 × 4 sub-blocks. In this case, the maximum number of RMS
values to be computed is 16K where K is the total number
of MBs in the frame. After Stage A is finished, Stages B
and C perform simple threshold comparisons to determine the
saliency regions of all MBs. Based on the selected foveation
points, the LSB is then computed. Since the LSB can be
obtained using table look-up there is negligible computational
overhead.

IV. Optimal Resource Allocation: Efficiency

and Fairness

The LSB of each MB can be obtained using the foveation
principles outlined in the preceding. In order to adjust video
quality as a function of the LSB, the QP is adjusted according
to the saliency of each MB. Here, resource allocation cross
the layers is developed considering efficiency.

Now let rk(qk), dk(qk), and qk be the rate, distortion, and
QP of the kth MB. Let M be the number of MBs in a frame,
and Rn

T be the number of target bits for a frame. Given QP
qk for the kth MB, then rk(qk) and dk(qk) are calculated for
each MB using the RDO algorithm in the reference software
SVC H.264/AVC [12]. The QPs for coding the M MBs then
compose a quantization state vector �Q = (q1, q2, · · · , qM).
Given the above, we propose an optimal resource allocation
algorithm for each quality layer in the following. For brevity,
we drop the dependence on v in fn,k

s (v) in (7) and express it
as fn,k

s .
We assume a viewing distance, v = 40 cm. If the viewing

distance is increased, then the LSB decreases more slowly
from the foveation point, and vice versa. At a greater distance,
a larger region is covered by the angle subtended by the fovea,
causing the sensitivity to be more uniform over a larger part of
the image. In this case, fairness increases in importance (and
vice versa). This is reflected in the design of the LSB model
(5).

A. EF Resource Allocation Algorithm

Here we introduce the EF algorithm that seeks to achieve
a desirable tradeoff between efficiency and fairness in each
quality layer. If efficiency is only considered at the expense
of fairness, then MBs having large LSB will obtain the most
encoding bits. Other MBs having low LSB will likely have
very poor perceptual quality. The more efficient the scheme
becomes, the more unfair the enhancement quality layers
will become. While this is the idea of our scheme, it is
still important to carefully design the resource allocator to
mediate efficiency while maintaining an appropriate modicum
of fairness at each quality layer.

The quantity fn,k
s in (7) is used to determine the size of

the salient regions in each layer. For a given efficiency level l,
let EF (l) denote the threshold above which fn,k

s must fall
for an MB to fall within a salient region, and vice versa.
Fig. 6(a) shows the layered mechanism of the proposed VSVC
framework.

Using efficiency level 9 in Fig. 6(a), the highest efficiency
is achieved by setting EF (9) = EFmax, which is the largest
possible LSB. This makes it possible to maintain optimal
perceptual quality over the smallest salient region. Using
efficiency level 4 in Fig. 6(a), both efficiency and fairness
are moderately realized by assigning an intermediate value
of the LSB to EF (4), which leads to an enlarged salient
region. Finally, using efficiency level 0 in Fig. 6(a), increased
fairness can be assured by assigning a lower value EF (0). This
makes the salient region as large as possible. The LSB of the
MBs within the salient region is set to the highest value. We
term this scheme the EF algorithm, representing the balanced
tradeoff between efficiency and fairness at each layer.

To decide the required number of salient region sizes, fn,k
s

is mapped onto discrete levels of frequency sensitivity, which
vary with the frequency indices of the transform coefficients,
the coefficient magnitudes, and the block luminances [14],
[23], [24], [26]. Let α and β be the indexes of 2-D transform
coefficients in a block. The normalized local spatial frequency
(cycle/degree) can be expressed as follows:

Ns(α, β) =
1

2N

√
α2 + β2 (10)

where Ns(α, β) is normalized by 0.5 [23]. Fig. 7(a) shows the
contours of Ns(α, β) as a function of the transform coefficient
index. In our implementation, ten values of Ns(α, β) are used
to define the size of the salient region.

To modify the perceptual weighting of each MB as a
function of quality layer, fn,k

s is quantized using the values
of Ns(α, β). Denote the quantized versions of fn,k

s by f̂ n,k
s .

The quantization process is as follows:

f̂ n,k
s = max

{
z ∈ N̄s|z ≤ fn,k

s

}
(11)

where N̄s =
{
Ns (1, 1) , Ns (1, 2) , · · · , Ns

(
ᾱ, β̄

)}
. ᾱ and β̄

are the maximum transform coefficient indices. In SVC
H.264/AVC, ᾱ = 4 and β̄ = 4. For example, if fn,k

s = 0.19, then
f̂ n,k

s = 0.17. This follows since for the next level Ns(α, β) =
0.25, the nearest discrete value of fn,k

s is 0.17. Fig. 7(b) shows
the contours of f̂ n,k

s derived from fn,k
s by using (11).
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Fig. 6. Proposed VSVC framework. (a) Distribution of resources to achieve efficiency and fairness across layers in the proposed VSVC framework.
(b) Illustration of variation of salient region size and shape across the quality layers. (c) Distribution of w

n,k
s (i) in the MBs in an arbitrary image row

(seventh row).

Fig. 7. Plots of coefficient indices. (a) Contours of Ns(α, β) as a function of coefficient index. (b) Contours of f̂
n,k
s from f

n,k
s . (c) Contours of g

n,k
s from

f̂
n,k
s . (d) Relation between g

n,k
s and f̂

n,k
s .

The values of f̂ n,k
s are mapped onto integer values denoted

gn,k
s in the range [0, 9] as depicted in Fig. 7(c) which is denoted

as gn,k
s . The relation between gn,k

s and f̂ n,k
s is defined by a

weighting function wn,k
s as follows:

f̂ n,k
s = wn,k

s (gn,k
s ). (12)

Fig. 7(d) shows the weighting function of wn,k
s in (12). If gn,k

s

= 9, then the associated MB obtains the highest discrete value
f̂ n,k

s = 0.5. At the other extreme, if gn,k
s = 0, then lowest value

f̂ n,k
s = 0.01 is assigned to the MB.
Suppose that there are L quality layers. Then, for a given

quality layer l, the perceptual weighting of each MB in the
EF algorithm is fixed by defining ŵn,k

s as follows:

ŵn,k
s (gn,k

s ) =

{
wn,k

s (L) , if gn,k
s ≥ l

wn,k
s

(
gn,k

s + L − 1
)
, otherwise

(13)

where L = 9 in our implementation. Thus, the region with
gn,k

s ≥ l becomes salient and ŵn,k
s is decreased in proportion

to the distance from the salient region.

Fig. 6(b) and (c) depicts the operation of the EF algorithm.
The Soccer test clip is utilized. The algorithm is illustrated for
three efficiency levels l = 0, 4, 9 with the corresponding QPs
of 42, 36, and 28, while showing the variation in the size of
the salient region.

B. EF Resource Allocation

The resource allocation algorithm is designed to minimize
the overall distortion subject to the target rate constraint using
a rate control algorithm as follows:

min
�Q

[
D( �Q)

]
= min

�Q

M∑
k=1

[
ŵn,k

s (gn,k
s ) · dk(qk)

]
(14)

subject to (13) and

subject to

{ ∑M
k=1 rk(qk) ≤ RT

qmin ≤ qk ≤ qmax
(15)

where l = {0, 1, 2, . . . , 9} and L = 9. The first constraint is
the number of target bits. The second constraint represents
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the feasible range of variation of the QP. A large difference in
the QP between adjacent MBs may result in an abrupt change
in perceptual quality, which may be noticeable and visually
annoying.

For a given RT , the goal of (14) is to allocate an optimal
QP for each MB to minimize the overall perceptual distortion.
This problem can be solved by using a greedy algorithm. At
each iteration of the greedy algorithm, each MB is evaluated to
determine which can achieve the greatest (weighted) distortion
reduction using the least bits, if there are encoding bits
available. To conduct this evaluation, define

φk =
ŵn,k

s (gn,k
s ) · (dk(qk) − dk(qk − 1))

rk(qk − 1) − rk(qk)
. (16)

This quantity evaluates the gradient of the reduced weighted
distortion that is achieved when qk is decremented by one.
Which MB most effectively enhances the expected perceptual
quality via rate control is determined as

k̂ = arg max
k

[φk] . (17)

If qmax ≤ qk̂ − 1 ≤ qmin, then the QP for the k̂th MB
is decremented by 1. Otherwise, another MB is selected that
satisfies (17). The current rate allocated to MB k̂ is updated,
by setting Rsum = Rsum + rk̂(qk̂). This procedure is repeated
until Rsum ≤ RT . The iteration algorithm is summarized as
follows.

1) Initialize RT , Rsum = 0, qk = qmax for all MBs.
2) For each layer l, wn,k

s (i) is assigned to MBs using (15).
3) Calculate φk using (16) for all MBs.
4) Find k̂ (17) that satisfies qmin ≤ qk̂ ≤ qmax using (15).
5) If Rsum + rk̂(qk̂) > RT , this procedure is terminated.

Otherwise, go to Step 6.
6) If qk̂ < qmin, set φk̂ = 0 and go to Step 4.
7) Update: qk̂ = qk̂ − 1 and Rsum = Rsum + rk̂(qk̂).
8) Calculate φk̂ using (16) for the k̂th MB and go to Step 4.

This iterative procedure is continued until Step 5 is satisfied.
After the procedure is terminated, �qk = q∗

k which is the optimal
QP of the kth MB. The vector �Q consists of the optimal QP
values q∗

k for 1 ≤ k ≤ M.

V. Simulation Results

We use the reference software SVC H.264/AVC [12] to
demonstrate the effectiveness of the proposed VSVC algo-
rithm. The proposed VSVC algorithm and the conventional
SVC algorithm using frame level framework (the previous
version of SVC H.264/AVC) are used for performance com-
parison.

Encoding configurations are as follows. The RDO mode and
the loop filter are enabled. The content-based adaptive binary
arithmetic coding option is turned on and variable block sizes
with a search range of 32 are utilized for block ME.

For scalable video, the maximum temporal level is 5 based
on groups of pictures with 16 frames. All frames except
I frames are coded as B frames, which use forward and
backward referencing. Let QPTmax be the QP at the highest
temporal level, which is known prior to coding. The remaining

TABLE I

Target Bitrate and Used Bitrate Comparisons for Different

Quality Layers with Conventional SVC Algorithm,

EF(9), and EF(2)

Quality Target Used Bitrate
Layer Bitrate Conventional EF(9) EF(2)

Stefan BL 280.0 279.98 280.86 279.70
EL 550.0 551.18 547.62 549.55

City BL 120.0 119.77 121.05 120.70
EL 260.0 261.13 260.70 258.50

Soccer BL 160.0 166.80 162.24 166.96
EL 340.0 339.08 340.12 338.21

Silent BL 100.0 101.54 99.17 100.76
EL 220.0 219.53 217.54 219.35

BL: base layer; EL: enhancement layer.

QPT s for the temporal levels 0 ≤ T < Tmax are determined
by the reference software [12], [34], [35]. We consider SNR
scalability to improve perceptual quality without including
temporal and spatial scalability.

Thus, one spatial resolution is encoded for quality layer
scalability. The parameters qmax and qmin for each temporal
level T are set to QPT + 6 and QPT − 6, respectively.

The foveation-based perceptual weighting model is config-
ured assuming a block size of 4 × 4 for evaluating f̂ n,k

s . The
following test video clips with a CIF resolution of 30 f/s were
used for the performance comparison: Soccer, Silent, Stefan,
and City where 300 frames are used for each test video clip.
The simulation results are studied with respect to two aspects:
objective perceptual quality and subjective perceptual quality.

A. Objective Visual Quality Evaluation

In this section, we evaluate the proposed VSVC algorithm
at different quality layers. Two different quality layers of the
EF algorithm are considered: l = 2 and 9, which represent
pure fairness and efficiency, respectively. Two types of quality
layers are considered: the base and the enhancement quality
layers, where the values of initial QPTmax are set to 42 and 36,
respectively. Using the initial QPTmax , the total used bitrate is
controlled to the target bitrate. Table I compares the target and
used bitrates for each quality layer.

To evaluate efficiency in the base quality layer, we utilize
the FPSNR first developed in [16]. Specifically, the mean
square error weighted by quantized LSB f̂ n,k

s is defined here
as follows:

FMSELSB =
1

M∑
k=1

J∑
j=1

(f̂ n,k
s )2

M∑
k=1

J∑
j=1

(ok(j) − rk(j))2 · (f̂ n,k
s )2

(18)
where ok(j) is the jth pixel of the kth MB in the original
video frame, and rk(j) is the jth pixel of the kth MB in the
reconstructed image. M and J represent the total number of
MBs in a frame and the total number of pixels in an MB,
respectively. Then, the overall FPSNR is

FPSNR = 10 · log10
2552

FMSELSB
. (19)
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TABLE II

Average FPSNR and PSNR Comparison for Different Quality

Layers with the Conventional SVC Algorithm, EF(9), and EF(2)

Scheme Stefan City Soccer Silent
Average Conventional 30.29 31.63 31.44 31.51
FPSNR EF (9) 30.97 31.93 32.06 32.33

(BL) EF (2) 30.39 31.55 31.57 31.96
Average Conventional 32.26 33.43 32.90 33.24
FPSNR EF (9) 32.15 33.19 32.84 33.17

(EL) EF (2) 32.56 33.71 33.05 33.65
Average Conventional 28.01 29.64 29.82 30.53
PSNR EF (9) 27.72 29.35 29.57 30.12
(BL) EF (2) 27.85 29.72 29.79 30.41

Average Conventional 30.85 32.48 31.95 33.42
PSNR EF (9) 30.47 31.84 31.75 32.61
(EL) EF (2) 30.61 31.95 31.81 32.81

BL: base layer; EL: enhancement layer.

Table II tabulates the average FPSNR and PSNR compari-
son for each quality layer. In the base layer, the EF (9) scheme
delivers a higher FPSNR than EF (2) and the conventional
SVC scheme (in the range 0.3–0.68 dB), since EF (9) allocates
more resources to the identified perceptually important region
since there is a lack of encoding bits. As shown in Fig.
8, EF (9) consistently delivers higher FPSNR values across
frames. Conversely, the average traditional PSNR of EF (9) is
lower than that of conventional SVC for all of the test clips
in Table II. This is expected, since conventional SVC utilizes
a resource allocation scheme in order to lower the highest
distortion for each MB in a frame. Yet this is not an effective
measure of the perceptual quality.

As shown in Table II, the EF (9) scheme yields the low-
est average FPSNR, since it makes an effort to reduce the
distortion of the smallest salient region. As compared to con-
ventional SVC, EF (2) obtains a higher FPSNR (in the range
of 0.15–0.38) over all of the test video clips, indicating that
EF (2) provides more efficient perceptual quality improvement
than the conventional algorithm. Although the average PSNR
of EF (2) is lower than that of conventional SVC, SVC reduces
the overall distortion over the MBs without regard to the
perceptual relevance of the salient region.

B. Subjective Quality Comparison

In order to conduct subjective quality comparison, we use
a video test clip reconstructed by both the proposed VSVC
algorithm with the EF algorithm and by conventional SVC.
We present a few exemplary reconstructed pictures from
different quality layers. In addition, we have made several
demo sequences available for public download at [44], to
enable visual comparison between the result of conventional
SVC and the proposed VSVC schemes.

Fig. 8 shows a frame from the video clips reconstructed
using the base (166.25 kb/s) and enhancement (198.62 kb/s)
layers in the conventional SVC algorithm, where EF (8)
(165.37 kb/s) and EF (4) (197.14 kb/s) are used for the base
and enhancement layers. The 98th frame of the City test video
clip is used.

Fig. 8(a) and (b) compares the subjective quality for the base
layer. When conventional SVC was used, noticeable perceptual

Fig. 8. Subjective quality comparisons for different quality layers on the
98th frame of the City test video clip. (a) Base layer in conventional SVC.
(b) Base layer in EF (8). (c) Enhancement layer in conventional SVC.
(d) Enhancement layer in EF (4).

degradation occurs in the middle of the frame owing to the lack
of adequate encoding bits. On the contrary, EF (8) preserves
details in the video frame better than does the conventional
SVC scheme. This is a good demonstration that efficiency
is more important than fairness toward improving subjective
video quality, when there is a lack of encoding bits.

Fig. 8(c) and (d) compares the subjective quality for the
enhancement quality layer. Since EF (8) allocates more en-
coding bits to MBs having a large perceptual weighting, a
noticeable degradation of the subjective quality occurs in
the remaining MBs. However, the proposed fairness scheme
improves the subjective video quality more effectively than
does the efficiency scheme on the enhancement quality layer.
Conversely, when conventional SVC is used, noticeable per-
ceptual degradation occurs in the middle of the frame owing
to a lack of adequate encoding bits in the base layer.

Fig. 9 shows the degree of reduced distortion over the frame
using conventional SVC, EF (8), and EF (4). The distortion is
defined as the MSE between the original and reconstructed
images divided by 10 000. The 98th frame of the City test
video clip is used.

Fig. 9(a) and (b) represents the distribution of resources in
conventional SVC for different quality layers. Since resource
allocation in conventional SVC is based on the MSE, resources
are allocated equally into all MBs in the base and enhancement
quality layers.

The distribution of reduced distortions in the proposed SVC
is shown in Fig. 9(c) and (d) for the different quality layers.
It may be observed that EF (8) allocates resources in the
perceptually important region with l = 8 in the base quality
layer. In the enhancement quality layer, EF (4) enlarges the
range of allocated resources in the same region with l = 4.

Fig. 10(a) and (b) shows the video clips reconstructed using
the base layer in conventional SVC (164.43 kb/s) and in EF (8)
(162.25 kb/s) with an efficiency level of l = 8, respectively. The
16th frame of the Stefan test video clip is used for comparison.
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Fig. 9. Distortion and QP distribution comparisons for different quality
layers on the 98th frame of the City test video clip. (a) Amount of reduced
distortion in base layer of conventional SVC. (b) Amount of reduced distortion
in the enhancement layer of conventional SVC. (c) Amount of reduced
distortion in the base layer of EF (8). (d) Amount of reduced distortion in
the enhancement layer of EF (4).

Fig. 10. Subjective quality comparisons on the 14th frame of the Stefan test
video clip. (a) Base layer in conventional SVC. (b) Base layer in EF (8).

Fig. 11. Subjective quality comparisons on the 103th frame of the Silent
test video clip. (a) Enhancement layer in conventional SVC. (b) Enhancement
layer in EF (4).

Using conventional SVC, a noticeable degradation of quality
occurs owing to the lack of encoding bits. However, the
proposed efficiency algorithm allocates more resources into
the salient region to improve the visual quality. While the
spectators in the background are more distorted, the tennis
player, which has been assigned high perceptual importance,
is maintained with higher quality.

Fig. 11(a) and (b) shows the video clips reconstructed using
the enhancement layer in the conventional SVC (131.40 kb/s)

and in EF (4) (130.11 kb/s) with an efficiency level of l = 4,
respectively. The 103rd frame of the Silent test video clip is
used.

Based on the proposed motion-based saliency model, the
region where hand movement for sign language is selected
as the salient region. While the enhancement layer in EF (4)
focuses on the quality improvement of the selected salient
region, conventional SVC still assigns more bits into the back-
ground. Consequently, the visual quality in EF (4) is better
than that of conventional SVC owing to the salient region-
based resource allocation. The proposed fairness scheme in
VSVC effectively inhibits perceptual degradations in areas
of identified perceptual importance by allocating increased
resources to those MBs.

From these visual quality comparisons and the FPSNR
analysis, it is apparent that the perceptual weighting scheme
of the proposed SVC can efficiently improve the subjective
quality of H.264 compressed videos in identified perceptually
important regions.

VI. Conclusion

We have proposed an MB-level perceptual weighting frame-
work as an extension to SVC in H.264/AVC. To enable
adaptation to the non-uniform resolution of the visual photore-
ceptors, we developed a foveation-based perceptual weighting
allocator. The proposed VSVC scheme was developed based
on two essential objectives, namely, enforcing efficiency and
fairness in the quality layer to improve coding performance.
To find an optimal tradeoff between efficiency and fairness,
we proposed the EF resource allocation algorithm, which
preferentially allocates coding resources to salient regions. The
size of the salient regions is increased as the efficiency level
is raised.

The simulations showed that the VSVC algorithm achieves
higher perceptual quality using FPSNR than does conventional
SVC by 0.3–0.8 dB in the different quality layers. In summary,
it can be concluded that the proposed VSVC algorithm is
a promising solution for achieving high-quality and reliable
video communications over variable rate channels with good
control of QoS. Such algorithms that emphasize perceptual
quality as a function of visual importance, saliency, computed
or measured fixations, or other similar criteria are likely
to continue growing in importance, owing to the ongoing
increases in display sizes and video bandwidths, expectations
for higher video quality, and generally, increased ubiquity of
video in our daily environment.
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