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Abstract— We describe two methods by which foveated 

(variable resolution) images can be created using the 

techniques of compressive sensing (CS). Foveated sampling 

(FS) combines a linear shift-variant foveation filter with the CS 

measurement operator. Foveated sampling and reconstruction 

(FSR) combines the foveation filter with the CS measurement 

operator and also with the sparse signal estimation algorithm 

used to reconstruct images. Both methods are shown to provide 

accurate reconstruction of foveated images at much higher 

compression levels than uniform resolution CS. 
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I.  INTRODUCTION 

Compression allows digital images to be used in a wide 
variety of applications by significantly reducing the space 
required for storage and bandwidth required for transmission. 
The recently introduced field of compressive sensing (CS) is 
a technique which not only reduces transmission bandwidth, 
but also measurement bandwidth [1]. CS reduces the number 
of measurements required to represent a discrete signal by 
exploiting an underlying sparse basis. CS can be applied to a 
wide variety of signal domains. The remainder of this paper 
focuses on its application to digital imaging [2].  

The wavelet domain is a sparse basis for natural images 
[3]. Digital images of natural scenes can be represented to 
high fidelity with many fewer wavelet coefficients than the 
total number of pixels. CS can exploit this sparsity structure 
to enable a single pixel camera [4], which allows a single 
exotic photodetector to generate images at wavelengths 
outside the capabilities of focal plane arrays. In addition, CS 
sensors can transmit or store compressed images without the 
use of a compression algorithm after image acquisition. This 
can reduce the computational power required by the sensor. 
Image reconstruction is computationally intensive, but is 
deferred to a remote device with more powerful capabilities. 

Many biological imaging systems use non-uniform 
bandwidth allocation to address bandwidth challenges. In the 
Human Visual System (HVS) photoreceptors in the eye are 
densest about the fovea [5]. Density decreases rapidly with 
increasing eccentricity. This creates images with space-
variant spatial resolution, known as foveated images. 
Foveated vision provides clear benefits. High visual acuity in 
the fovea allows the performance of complex tasks and a 
wide field of view enhances situational awareness, all while 
bandwidth and processing requirements remain tractable. 

The non-uniform resolution of the HVS stands in contrast to 
the uniform resolution of nearly all digital imaging systems. 

This paper presents two strategies for creating digital 
foveated images by augmenting the techniques of 
compressive sensing. The approaches realize both the 
bandwidth reduction benefits of CS and the bandwidth 
allocation benefits of foveation. 

Section II provides background on current approaches to 
compressive imaging and image foveation. Section III 
presents two methods for integrating the approaches, named 
Foveated Sampling (FS) and Foveated Sampling and 
Reconstruction (FSR). Section IV provides a qualitative 
comparison of FS, FSR, and a leading compressive imaging 
approach. Conclusions are given in Section V. 

II. BACKGROUND 

A. Compressive Sensing 

Compressive sensing may be applied to digital imaging 
to sample and reconstruct a two dimensional image using a 
sampling rate lower than that suggested by the Nyquist-
Shannon sampling theorem. This is achieved by exploiting 
the knowledge that an image of a natural scene has a sparse 
representation in the wavelet domain. An image I is 
represented as  

 Ι  = Ψx, (1) 

where the columns of Ψ are an orthonormal wavelet basis, 
and x is the wavelet coefficient representation of I. The 
vector x is sparse. For an N-pixel image I, the M largest 
values in x contain most of the image energy. The remaining 
N – M coefficients are zero or nearly zero, and M << N.  

To compressively sense an image, a collection of samples 

y are generated using a measurement operator Φ that is 

incoherent with the sparsity basis Ψ, such that  

 y  = Φx. (2) 

A variety of techniques for generating Φ have been 
suggested [6]. This work uses a random matrix taken from 
the uniform spherical ensemble [1][7]. 

The sample vector y is length n, with M < n << N. 
Because the image being sensed does not occur naturally in 
the wavelet domain, the linear sensing operator includes the 

wavelet transform Ψ
*
:  



 y  = ΦΨ
∗
I. (3) 

The wavelet representation x is estimated from the 
sample vector y. Because n << N, (2) is underdetermined to 
recover x. Compressive sensing overcomes this limitation by 
exploiting the knowledge that x is sparse. One reconstruction 
approach is to find the solution to (2) with minimal ℓ1 norm; 
optimizing the ℓ1 norm enforces sparsity in the solution [1].  

Stagewise Orthogonal Matching Pursuit (StOMP) is a 
significantly faster reconstruction approach [7]. StOMP uses 
a Greedy algorithm to estimate x by iteratively building an 
estimate of the location of its nonzero coefficients. New 
candidate coefficients are selected based on the response of 

the current residual error with a matched filter, Φ
T
. A refined 

solution is estimated from a least-squares solution allowing 
only the selected coefficients to vary. The new solution is 
used to produce the error residual for the next iteration. 

B. Foveation 

Digital foveated imagery provides high resolution at 
points of interest and lower resolution in the periphery. 

There are several ways to create digital foveated imagery. 
Some sensors can dynamically change pixel size directly on 
the focal plane array hardware to create ‘super-pixels’ in 
peripheral regions [8]. Foveation can also be achieved with 
specialized compression algorithms [9]. Those algorithms 
use wavelet coefficient quantization to vary the quantization 
of coefficients based on their perceptual value. Foveation 
filtering applies a bank of low-pass filters to the image and 
selects the value at each pixel according to the desired acuity 
[10]. This is the equivalent of using a linear shift-variant 
filter, and the resulting image can be more efficiently 
compressed by traditional compression algorithms [11]. 

In foveation filtering, the value at each pixel (u,v) is 
selected based on a desired local low-pass cutoff frequency  
ωc(u,v). Typically, ωc(u,v) is 1.0 in the fovea (representing no 
filtering) and decreases towards the periphery. Even though 
it is shift variant, foveation filtering can be represented as a 
matrix operation, F, because it is linear 

 If  = FI, (4) 
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In (5), each row is a vector representation of a 2-D finite 
impulse response filter kernel (L) with cutoff frequency 
ωc(u,v), padded and shifted to center it at pixel (u,v). 

III. FOVEATED COMPRESSIVE SENSING 

A. Foveated Sampling 

Foveated sampling (FS) modifies the CS sampling 
process by incorporating foveation. During sampling, a 
linear operator is applied to the image occurring at the sensor 

focal plane. This operator (ΦΨ
* 
in (3)), is the combination of 

a random projection matrix and the wavelet transform. The 
new sampling equation becomes 

 y  = ΦΨ
∗
FI, (6) 

where F is the foveation matrix from (5).  
The samples generated by (6) are used to reconstruct the 

sparse wavelet coefficients xf of a foveated-filtered version IF 
of the original image I, using a traditional CS reconstruction 
algorithm. The results below used StOMP reconstruction due 
to its demonstrated success and computational efficiency. 

If the linear sampling matrix ΦΨ
*
F is pre-computed, FS 

places no additional computational requirements on the 
sensor. The benefit of FS is that foveation filtering increases 
image sparsity in the wavelet domain by eliminating 
unimportant or visually redundant image information in the 
periphery.  

CS reconstruction error at a given sampling rate is 
directly related to underlying signal sparsity. Compared to 
CS reconstruction of I, foveated sampling creates a simpler 
reconstruction problem of finding IF. Where CS exploits 
known signal sparsity, FS enforces a desired signal sparsity 
to redistribute error to visually unimportant fine wavelet 
coefficients in the image periphery. 

B. Foveated Sampling and Reconstruction 

Foveated sampling and reconstruction (FSR) modifies 
both the sampling and the reconstruction steps in CS. 

FSR begins by generating samples with FS according to 
(6). This biases the measurement operator to provide more 
detail in the fovea at the expense of fine detail in the 
periphery. That bias places additional constraints on the 
structure of the sparse signal xf being estimated during 
reconstruction.  

FSR augments StOMP (or other algorithms) to exploit 
that additional structure during reconstruction. The initial 
estimate xf,0 of the sparse wavelet coefficients is set to zero, 
and the set of active wavelet coefficient locations I0 is empty. 
At each iteration s, the residual error rs is calculated as  

 rs  = y − Φxf,s-1. (7) 

FSR then generates a vector of residual correlations with a 
matched filter and reweights them using the foveation 
operator to form the weighted correlation vector  

 cs  = Ψ
∗
FΨΦ

Τ
rs. (8) 

Weighting is used to bias the reconstruction towards 
those coefficients least impacted by the foveation operator. 
Significant residual correlations are identified by testing 
against a threshold, T, which forms a set of newly selected 
candidate coefficients Js. Js is merged with the set of active 
wavelet coefficients to create the new support set Is 

 Js  = {j:|cs(j)|>T}, (9) 

 Is  = Is-1 ∪ Js. (10) 



The submatrix ΦI is formed by selecting the columns of Φ 
indexed by I. This is used to find the least squares estimate 
of xf using only the active coefficient set 
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If StOMP termination conditions are met, the estimated 
solution xf is set to the current estimate, xf,s. The 
reconstruction algorithm for FSR only differs from StOMP 
in (8), which now incorporates the foveation operator. 

The wavelet domain foveation operator, Ψ*FΨ, impacts 
the formation of the active set, biasing it away from 
coefficients that were suppressed by foveation filtering.  

C. Experimental Results 

FS and FSR performance was quantified on a set of ten 
test images representing a variety of subjects and imaging 
conditions. Results were compared to an unmodified StOMP 
implementation based on SparseLab (available online at 
http://sparselab.stanford.edu). All tests used the multiscale 
CS extension described in [6], which directly samples the 
1024 coarsest wavelet coefficients using the “symmlet8” 
wavelet. In addition, the effects of quantization were 
considered by rounding all samples to an eight bit range 
during processing. The test images were originally 512 x 512 
pixels, in eight bit grayscale. 

The StOMP algorithm allows a variety of threshold 
selection methods. Its performance is very sensitive to 

parameter selection when using either the Constant False 
Discovery Rate (CFDR) or Constant False Alarm Rate 
(CFAR) rule. Instead, we adopted the simpler heuristic of 
setting the threshold to a fixed percentage of the peak 
correlation value. This provided good results for StOMP, FS, 
and FSR while allowing tests on a diverse set of test images.  

Figure 1 shows a comparison of the approaches as 
applied to an outdoor bridge scene and to the Lena image, all 
with sampling ratio of 0.1. FS and FSR produce foveated 
reconstructions of the original image with significantly fewer 
artifacts than StOMP at this sampling ratio. 

The differences between the reconstructions produced by 
FS and FSR are subtle and are primarily within the fovea. 
Because of its threshold bias, FSR includes more fine scale 
wavelet coefficients in its support estimate for the center of 
the image. This yields crisper edges and finer detail in the 
fovea, but also increased high frequency noise. 

For quantitative comparisons, the test images were 
reconstructed with each approach at sampling ratios of 0.05, 
0.1, 0.25 and 0.5. Reconstruction accuracy was measured 
with Mean Squared Error (MSE). MSE was measured 
against a foveation filtered version of the test image for FS 
and FSR, and against the original image for StOMP. 

Results are shown in Figure 2. FS and FSR both 
outperform StOMP at low sampling rates. They provide 
more accurate reconstructions of the foveated image than 
StOMP provides of the full resolution image. FS and FSR 
achieve comparable reconstruction error, with a slight edge 
to FS at higher sampling ratios. The error in FSR is primarily 

   

   
Figure 1.  Reconstruction of bridge and Lena images StOMP (left), FS (right) and FSR (right). Reconstructed 512 x 512 images generated using 25000 

eight-bit samples. 



high frequency noise near the fovea. FSR may outperform 
FS under a more robust perceptual error index such as SSIM 
[12], which embodies the noise masking principle, or using a 
foveation-weighted image quality index [13]. 

IV. CONCLUSIONS 

FS and FSR allow the sampling and reconstruction of 
foveated images within the framework of compressive 
sensing. FS and FSR produce high-quality foveated images 
at a sampling ratio of 0.1. In contrast, most traditional CS 
imaging approaches require sampling ratios of 0.25 or higher 
to provide acceptable quality. FS and FSR outperform 
traditional CS techniques at low sampling ratios. 

FS and FSR were evaluated with respect to a foveated 
reference image, where StOMP was evaluated with respect 
to the full resolution image. This does not address the 
distortion introduced by foveation itself (i.e., the lack of 
detail in the periphery). Our work is therefore most relevant 
to applications where foveation is appropriate and the fovea 
is correctly placed on areas of interest within the image. 

Many tractable fovea placement strategies exist, making 
the results and conclusions broadly applicable. One simple 
strategy (from an algorithmic standpoint) is to fix the fovea 
and require an operator or external control system to steer the 
field of view. Alternatively, fovea placement can be selected 
based on image content by using ‘smashed’ filters [4] to 
identify salient points in the compressed foveated domain. 
Multiple fovea configurations can be incorporated with zero 
computational cost at runtime by precomputing relevant 
quantities for alternative foveation operators F1…FK. 

This work showed how a foveation operator can be 
incorporated into the StOMP reconstruction algorithm to 
achieve superior performance at low sampling rates. We are 
also developing techniques to augment other reconstruction 
algorithms by exploiting foveation structure. One alternative 
approach under study exploits the statistics of natural images 
to modify prior probabilities during reconstruction [14]. 
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Figure 2. Comparison of FS, FSR, and StOMP error at different sampling 

ratios. 


