
FAST STRUCTURAL SIMILARITY INDEX ALGORITHM 

Ming-Jun Chen and Alan C. Bovik 

Laboratory for Image and Video Engineering (LIVE) 
The University of Texas at Austin, USA 

ABSTRACT 

The development of real-time image quality assessment 
algorithms is an important direction on which little research 
has focused. This paper presents a design of real-time 
implementable full-reference image quality algorithms based 
on the SSIM index [2] and multi-scale SSIM (MS-SSIM) 
index [3]. The proposed algorithms, which modify 
SSIM/MS-SSIM to achieve speed, are tested on the LIVE 
image quality database [13] and shown to yield performance 
commensurate with SSIM and MS-SSIM but with much 
lower computational complexity. 

Index Terms— Real time, MS SSIM

1. INTRODUCTION 

With the increasing prevalence of digital images and videos, 
people live in an era full of digitized visual information. 
Effective systems for automatic image quality differentiation 
are thus urgently needed to help people manage the 
abundance of presented digital visual content. In the field of 
full-reference (FR) image quality assessment research, 
several algorithms have been proposed and studied for 
assessing image or video quality. For instance, “Yonsei” has 
been recommended by the VQEG group as an FR quality 
assessment method in the J.144 document [1], while the 
Structural SIMilarity (SSIM) index [2] is widely used 
algorithm in FR image quality assessment applications. A 
number of algorithms have been derived from SSIM: Multi-
scale SSIM (MS-SSIM) [3], Percentile Pooling SSIM (P-
SSIM) [3], Complex-Wavelet SSIM index (CW-SSIM) [5], 
Gradient-based Structural Similarity (G-SSIM) [6], and 
Three-Component Weighted SSIM [7]. All these derivative 
algorithms aim to improve the accuracy but inevitably 
increase the computational complexity.  

The surge of mobile applications has created a demand for 
low complexity algorithms that can run on mobile devices. 
Multimedia services, such as Video On Demand (VOD) and 
IPTV are already available on mobile devices, further 
necessitating algorithms that have low complexity. Here we 
focus on reducing the computational complexity of SSIM, 
and propose a low complexity SSIM index, which we term 
Fast SSIM, which performs at a level comparable to the 

SSIM index. We also extend the Fast SSIM concept to the 
Multi-Scale SSIM index, which has better performance than 
single scale SSIM. The resulting Fast MS-SSIM algorithm 
performs commensurate with that of MS-SSIM. The rest of 
this paper is organized as follows. Section 2 reviews the 
SSIM and MS-SSIM indices. Section 3 describes the 
luminance term of Fast SSIM. In Section 4, the contrast term 
and the structural term of FAST are elaborated. Section 5 
explains how optimization can be applied to Fast SSIM and 
Fast MS-SSIM. Experiments are presented in Section 6, and 
concluding remarks are offered in Section 7. 

2. STRUCTURAL SIMILARITY INDEX  

2.1. Single Scale Structural Similarity Index  

Based on the hypothesis that the HVS is highly adapted for 
extracting structural information, the SSIM algorithm 
assesses three terms between two non-negative signals x and 
y: luminance l(x, y), contrast c(x, y), and structure s(x, y):  
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where C1 = (K1L)2, C2 = (K2L)2, and C3 = C2/2 are small 
constants; L is the dynamic range of the pixel values, and K1

<< 1 and K2 << 1 are scalar constants. The constants C1, C2

and C3 provide spatial masking properties and ensure 
stability when the denominator approaches zero. Combining 
the three terms, the general form of SSIM is: 
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The overall SSIM index value between x and y is defined as 
the average of all SSIM index values calculated within an 
11x11 isotropic Gaussian weighting window passed over 
image, although other “pooling” strategies exist [4]. The 
Gaussian weighting window prevents artifacts arising from a 
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discontinuous truncation of the image when computing the 
local values of the SSIM index map. 

2.2. Multi-scale Structural Similarity Index  

The distance between the image and the observer affects the 
observer’s perceived image quality. The results of subjective 
image tests will vary as the viewing distance changes. In 
addition, images are naturally multi-scale, and both 
distortions and image features possess multi-scale attributes. 
For these reasons, the Multi-scale SSIM (MS-SSIM) index 
was developed. 

In MS-SSIM, quality assessment is performed on multiple 
scales of the reference and the distorted images. Low-pass 
filtering and dyadic down-sampling is applied iteratively, 
and elements of the SSIM index applied at each scale, 
indexed from 1 (original image) through and the finest scale 
M obtained after M − 1 iterations. 

At each scale i, the contrast and structure terms are 
calculated: cj(x, y) and sj(x, y) respectively. The luminance 
term is computed only at scale M and represented as lM(x, y). 
The overall quality evaluation is obtained by combining the 
measurement over scales: 
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3. LUMINANCE TERM 

As noted by Rouse and Hemami [8], the luminance term 
of the SSIM index often plays a less significant perceptual 
role in predicting visual quality that the other terms. They 
propose eliminating it to reduce complexity. We choose to 
preserve the luminance term since images may suffer from a 
luminance bias, even if image quality databases do not 
explicitly include such distortions. Nevertheless, we have 
sought to expend as little computation as possible on the 
luminance term. 

The luminance term in Fast SSIM utilizes an 8x8 square 
window, and an integral image technique [9] to compute the 
luminance similarity between the reference and test images. 

By utilizing the so-called integral image, extracting the 
mean value of the pixels within a square window can be 
made quite efficient. As shown in Fig. 1, the value of the 
integral image at (x, y) is the sum of the pixels values above 
and to the left of (x, y), and including the value at (x, y). 

Computing the sum over any rectangular area can be 
achieved with only two additions and one subtraction. As 
shown in Fig. 1, the sum of the pixel values within the 
rectangle D can be computed using four array references. 
The value of the integral image at location 1 is the sum of 
the pixels in rectangle A. The value at location 2 is A+B, at 

location 3 is A+C, and at location 4 is A+B+C+D. The sum 
over region D can be computed as ‘4’+’1’-(‘2’+’3’) where 
‘i’ is the value of the integral image at location i.

Fig. 1. Left: Integral image. Right: How to compute sum value over 
region D in integral image domain. 

Using the integral image [9] and a square window, the 
complexity of computing the luminance term is reduced 
considerably. Assuming the window size is nxn, the standard 
SSIM index algorithm (using a Gaussian weighted window) 
requires n2 multiplies and (n2-1) additions to calculate the 
mean value, while the proposed Fast SSIM algorithm only 
requires 3 additions and 1 subtraction. 

4. CONTRAST AND STRUCTURE TERMS  

The computation of the variance term is the most time 
consuming part of the SSIM algorithm. In order to lower the 
complexity, we substitute a gradient value in Fast SSIM.  
Following Field [10], while images of real-world scenes vary 
greatly in their absolute luma and chroma distributions, the 
gradient magnitudes of natural images generally obey heavy 
tailed distribution laws. Indeed, some no-reference image 
quality assessment algorithms [11], [12] use the gradient 
image to assess blur severity. Similarly, the performance of 
the Gradient-based SSIM index [6] suggests that applying 
SSIM on the gradient magnitude may yield higher 
performance. The gradient is certainly responsive to image 
variation. Moreover, the gradient magnitude has low 
complexity and is amenable to integer-only implementation. 

We generate the gradient image using the Roberts gradient 
templates depicted in Fig. 2.  

Fig. 2. Roberts gradient templates. 

The gradient magnitude is approximated by1  

{ } ( ) { }max , 1/ 4 min ,I i j i j∇ = ∇ ∇ + ∇ ∇  (1) 

where i∇ and j∇ are the Roberts template responses in the 

two orthogonal directions. This approximation is based upon 
a simple expansion of the gradient. The contrast c(x, y) and 

                                                
1 An accurate truncated expansion approximation learned by author 
ACB whilst lecturing at Texas Instruments in the 1990s.
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structure s(x, y) terms of the Fast SSIM index algorithm are 
then defined: 

( )2
22

2 )2(
),(

C

C
yxc

GyGx

GyGx

++
+

=
μμ

μμ

( )
( )

3

3

( , )
G xG y

G x G y

C
s x y

C

μ
μ μ

+
=

+
where C3 = C2/2, and 

1

1 N

G x i
i

x
N

μ
=

= ∇

1

1 N

G xG y i i
i

x y
N

μ
=

= ∇ ∇

where 
ix∇ and 

iy∇ are the gradient magnitude values of 

the images x and y at spatial coordinate i, estimated using the 
approximation (1). 

The Fast SSIM index between signals x and y is then:
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In MS-SSIM, the contrast and structural terms are 
calculated over multiple scales. Therefore, the Fast MS-
SSIM index between signal x and y is defined as: 
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Another modification that we make is to use an integer 
approximation to the Gaussian weighting window. In this 
way, the computation of the contrast and structural terms 
uses only integer operations. Fig. 3 shows the window. 

The simplifications include: all computations reduced to 
integer operations, with square roots eliminated. 

Fig. 3. 8x8 integer approximation to Gaussian window. 

5. OPTIMIZATION 

Optimization is an essential process when implementing an 
algorithm for industrial applications. We propose to apply 
parallel computing and sub-sampling on the Fast SSIM index 
algorithm in order to achieve the best performance.

Data-level parallelization and frame–level parallelization 
are adopted in this study to optimize the parallel computing. 
After optimizing computation of the luminance part, about 
80% of the computation is consumed on the contrast and 
structure terms. Since most operations in Fast SSIM are 
integer-only, Fast SSIM is amenable to Single Instruction 
Multiple Data (SIMD) optimization. Also, since Fast SSIM 
does not currently use any dependency between frames, it is 
natural to conduct frame level parallelization. 

Regarding sub-sampling, we suggest that the contrast and 
structure terms need not be computed at the original scale in 
Fast MS-SSIM. Since humans are less sensitive to higher 
spatial frequencies, skipping computation of the contrast and 
structure terms at the first scale appears to not lower 
performance, but it does increase the computation speed 
dramatically. The experiment results shown in the next 
section support this assumption.   

6. EXPERIMENTAL RESULTS 

The LIVE database of images [13] was used in the following 
experiment. The database includes DMOS subjective scores 
for each image and 6 types of distortions. The distortions 
include JPEG2000 compression distortion (227 images), 
JPEG compression distortion (233 images), white noise (174 
images), gaussian blur (174 images), and fast fading channel 
noise (174 images).  

Fast-SSIM was evaluated against the LIVE DMOS scores 
using the Spearman Rank Order Correlation Coefficient 
(SROCC). The performance numbers on speed were tested 
on a 768x432 video with 250 frames. All experiments were 
conducted on a Intel Core2Duo 2.2 GHz platform, except 
the experiment result on multi-threading optimization, which 
was run on an Intel Core2 Quad Q6600 platform.    

Algorithm SROCC Speed(fps)
SSIM 0.9244 3.42 

Fast SSIM  
(Luminance term optimized only)

0.9204 5.09 

Fast SSIM 0.9214 9.17 
Fast SSIM (SIMD) 0.9214 16.6 

Fast SSIM  
(SIMD+multi-threading) 

0.9214 57.83 

Table 1. SROCC and speeds of SSIM algorithms. 
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Algorithm SROCC Speed(fps)
MS-SSIM 0.9429 2.54 

Fast MS-SSIM  
(Luminance term optimized only)

0.9409 3.74 

Fast MS-SSIM 0.9409 6.4 
Fast MS-SSIM  

(Proposed algorithm  
using sub-sampling) 

0.9409 25.31 

Fast MS-SSIM  
(SIMD+sub-sampling) 

0.9409 35.34 

Fast MS-SSIM  
(SIMD+sub-sampling  

+multi-threading) 
0.9409 121.97 

Table 2. SROCC and speeds of MS-SSIM algorithms. 

Table 1 makes it clear that the Fast SSIM and Fast MS-
SSIM algorithms suffer no performance loss in terms of their 
subjective quality prediction capability; the SROCC scores 
are very close. However, looking at the performance 
improvement on speed, the improvement from SSIM to Fast 
SSIM is 168% (from 3.42 fps to 9.17 fps). Thus Fast SSIM 
is 2.68 times faster than SSIM. For optimization, Intel SSE2 
instructions were implemented to calculate the mean and 
correlation of the gradient images, to demonstrate the 
improvement on applying data-level parallelization.  As 
shown in Table 1, Fast SSIM with SIMD enhances the 
performance from 9.7 fps to 16.6 fps. Finally, with multi-
threading optimization, Fast SSIM reaches 57.83 fps on an 
Intel Core2 Quad platform, which qualifies the algorithm for  
real-time application. 

The performance numbers for Fast MS-SSIM are shown in 
Table 2. The modifications in Fast MS-SSIM are the same as
the modification in Fast SSIM, except that we propose to 
skip the analysis on contrast and structural terms on the 
original scales. Table 2 shows that the SROCC scores of Fast 
MS-SSIM and Fast MS-SSIM with sub-sampling are very 
close, but both are a little lower than MS-SSIM. However, if 
we compare the performance of Fast MS-SSIM with Fast 
MS-SSIM with sub-sampling, Fast MS-SSIM with sub-
sampling yields better performance for assessing image 
quality, at speeds adequate for real-time application.  

7. CONCLUDING REMARKS 

In this paper we proposed Fast SSIM and Fast MS-SSIM 
index algorithms and verified their performance on the LIVE 
image database [13]. The experimental results show that the 
proposed algorithms not only have competitive performance 
with SSIM and MS-SSIM for assessing image quality, but 
have much lower computational complexity. Indeed, the 
proposed algorithms achieve real-time performance with 
simple optimization. 
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