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ABSTRACT

General-purpose no-reference image quality assessment ap-

proaches still lag the advances in full-reference methods.

Most no-reference methods are either distortion specific (i.e.

they quantify one or more distortions such as blur, blocki-

ness, or ringing), or they train a learning machine based on

a large number of features. In this approach, we propose a

discrete cosine transform (DCT) statistics-based support vec-

tor machine (SVM) approach based on only 3 features in the

DCT domain. The approach extracts a very small number of

features and is entirely in the DCT domain, making it com-

putationally convenient. The results are shown to correlate

highly with human visual perception of quality.

Index Terms— No-reference image quality assessment,

discrete cosine transform, anisotropy, entropy, support vector

machine.

1. INTRODUCTION

The massive dissemination of digital visual information (in

the form of images and video) and the broad range of applica-

tions that rely on it, such as PDAs, high definition televisions,

internet video streaming, and video on demand, to name a

few, necessitates means to evaluate the visual quality of this

information. Only recently did full-reference image quality

assessment (FR-IQA) methods reach a satisfactory level of

performance by correlating highly with human visual percep-

tion of quality. SSIM [1], MS-SSIM [2], and the VIF index

[3] are examples of FR-IQA algorithms, to name a few. These

methods, however, rely on a reference signal against which to

compare the test signal. This strictly limits their application

domain and calls for reliable blind/no-reference image qual-

ity assessment (NR-IQA) algorithms. However, no current

NR-IQA algorithm exists that provides consistently reliable

generic performance.

NR-IQA algorithms generally follow one of three trends: 1)

Distortion-specific approaches: these quantify one or more

distortions such as blockiness [4], blur [5], [6], or ringing

[7] and score the image accordingly. 2) Learning-based ap-

proaches: these train a model to predict the image quality

score based on a number of features extracted from the image

[8], [9]. 3) Natural scene statistics (NSS) approaches: these

rely on the hypothesis that images of the natural word (i.e.

distortion free images) occupy a small subspace in the space

of all possible images and seek to find a distance between

the test image and the subspace of natural images [10]. The

first approach is distortion-specific and hence obviously ap-

plication specific. The second approach is only as reliable as

the representativeness of the features used to train the learn-

ing model. Moreover, most existing algorithms following this

trend rely on a large number of features. The third approach

is a promising one but relies on extensive statistical modeling

and reliable generalization of the models.

In this paper, we propose an SVM regression-based learning

model that relies on only 3 features extracted entirely from

the DCT domain, making it computationally convenient. The

3 DCT features are chosen based on the observation that their

statistics change as the image quality changes. This makes

our method a hybrid of trends 2 and 3. We show that the

method correlates highly with human visual perception. We

also report how each feature alone correlates with human vi-

sual perception.

The rest of the paper is organized as follows. In Section 2,

we describe the 3 DCT-domain features and the motivation

behind the choice of the features. In Section 3, we show

how each feature alone correlates with subjective differential-
mean-opinion-score (DMOS). In Section 4, we describe the

learning model. We present the results in Section 5, and we

conclude in Section 6.

2. DCT DOMAIN FEATURES

The performance of a learning model is a function of the rep-

resentativeness of the features (that are used for prediction) of

image quality. In other words, the prediction is only as good

as the choice of features extracted. It has been hypothesized

that the human visual system (HVS) is adapted to the statistics

of images in its natural surrounding, and that natural images

exhibit strong structural dependencies between their pixel in-

tensity levels [1]. Consequently, we choose to extract features

representative of image structure, and whose statistics are ob-

served to change with image distortions. We elect to extract

structure features locally from local DCT coefficients, (in par-

ticular DCT transform of 17 × 17 image patches). We ignore

the DC coefficient whose magnitude is usually much higher

313978-1-4244-7993-1/10/$26.00 ©2010 IEEE ICIP 2010

Proceedings of 2010 IEEE 17th International Conference on Image Processing September 26-29, 2010, Hong Kong



than the higher-frequency DCT coefficients in a local image

patch. We illustrate how the statistics of the higher frequency

DCT coefficients change as an image becomes distorted in

Fig.1 and Fig.2, which show the DCT coefficient histograms

of a distortion free and a Gaussian blur distorted image, re-

spectively. Similar trends in the histogram statistics are ob-

Fig. 1. Original image DCT histogram. Horizontal axis is

non-DC DCT coefficient magnitudes

Fig. 2. Gaussian blur distorted image DCT histogram. Hori-

zontal axis is non-DC DCT coefficient magnitudes

served throughout the LIVE IQA database of images [11], on

which we perform our study. Among the observed differences

in the histograms is the peakedness at zero, (the distorted im-

ages are observed to have a higher histogram peak at zero),

and the variance along the support of the histogram. We seek

to make use of statistical differences, such as the ones demon-

strated above, to develop a NR-IQA index.

2.1. Kurtosis

To capture the statistical traits of the DCT histogram we com-

pute its kurtosis, which quantifies the degree of its peakedness
and tail weight, and is given by:

κ(x) =
E(x − μ)4

σ4
(1)

where μ is the mean of x, and σ is its standard deviation.

The kurtosis of each 17 × 17 DCT image patch is com-

puted, and the resulting values are pooled together by averag-

ing the lowest tenth percentile of the obtained values to obtain

a global image kurtosis value.

2.2. Anisotropy Features

It has been hypothesized that degradation processes damage

a scene’s directional information. Consequently, anisotropy,

which is a directionally dependent quality of images, was

shown by Gabarda et al. in [12] to decrease as more degra-

dation is added to the image. In [12] anisotropy is computed

via the generalized Renyi entropy and a windowed pseudo-

Wigner distribution (PWD). In this work, we compute a mod-

ified version of the anisotropy measure described in [12]. The

anisotropy measure we compute is derived from the DCT co-

efficients of 17 × 1 oriented image patches. Our anisotropy

computation proceeds as follows: DCT image patches are

computed along four different orientations (0◦, 45◦, 90◦ and

135◦) at each pixel in the image. Each patch consists of the

DCT coefficients of 17 oriented pixel intensities. (We discard

the DC coefficient, since the focus is on directional informa-

tion). Let the DCT coefficients of a certain patch be denoted

by P [n, k], where k is the frequency index of the DCT coeffi-

cient (1 < k ≤ 17), and n is the spatial index where the DCT

patch was computed. Each DCT patch is then subjected to a

normalization of the form:

P̃θ[n, k] =]
Pθ[n, k]2∑
k Pθ[n, k]2

, (2)

where θ is one of the four orientations. The Renyi entropy for

that particular image patch is then computed as

Rθ[n] = −1
2
log

( ∑
k

P̃θ[n, k]3
)
. (3)

Let Mθ be the number of image patches for orientation θ,

then the average per orientation for all patches of orienta-

tion θ is obtained. This is denoted as E[Rθ]. The variance

across all four orientations (denoted as var(E[Rθ])) along

with the maximum E[Rθ] across the four orientations (de-

noted as max(E[Rθ])) are chosen as measures of anisotropy.

3. CORRELATION WITH SUBJECTIVE DMOS

We report how each feature alone correlates with subjective

DMOS provided with the LIVE IQA database. The LIVE

IQA database consists of 5 subsets of images according to

the type of distortion introduced to the image. These are

JPEG2000 distortions, JPEG distortions, white noise, Gaus-

sian blur, and fast fading channel distortions (these are sim-

ulated by JPEG2000 errors followed by channel bit errors).

We compute the Spearman correlation for each of the 3 ex-

tracted features on each of the 5 LIVE IQA database sub-

sets separately (prior to using the features for prediction in

the learning model). These are reported in Table 1. While

some correlations are low in some subsets (and high in oth-

ers), others are significantly high, such as the kurtosis feature

that consistently results in a high correlation value across all
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LIVE Subset Kurtosis Max entropy Entropy variance

JPEG2000 0.8378 0.6120 0.6000

JPEG 0.7756 0.5901 0.7874

White Noise 0.9322 0.9351 0.9617

Gaussian Blur 0.9481 0.7756 0.2111

Fast Fading 0.6999 0.6526 0.0686

Table 1. Spearman correlation (subjective DMOS versus

each DCT-based feature)

5 subsets. These numbers motivate us to employ these fea-

tures in a more elaborate model for quality score prediction.

Towards this end we use these features to train a polynomial

kernel regression SVM.

4. PREDICTION MODEL

Previous work in IQA has shown that extracting features and

performing analysis at multiple scales can improve the quality

assessment method. This is due to the fact that the perception

of image details depends on the image resolution, the distance

from the image plane to the observer, and the acuity of the ob-

server’s visual system. A multiscale evaluation accounts for

these variable factors. One example is the multi-scale struc-

tural similarity index (MS-SSIM) [2] which outperforms the

single scale SSIM index. We thus extract the same features

described above at two scales. The features at the second

scale are extracted, in the same manner as explained in the

previous sections, after performing a down-sampling opera-

tion (by a factor of two in each spatial dimension) on the im-

age in the spatial domain.

We then use the features at the 2 scales to train and test a 3rd

order polynomial kernel regression SVM [13]. The training

and test sets are completely content independent, in the sense

that no two images of the same scene are present in both sets.

The LIVE database is derived from 29 reference images. The

training set contains images derived from 15 reference im-

ages, and the test set contains the images derived from the

other 14.

5. RESULTS

To evaluate the method, the linear Pearson correlation as well

as the Spearman correlation were computed between the re-

ported subjective DMOS and the DMOS predicted by our

method. These are computed for each of the 5 LIVE IQA

database subsets as well as on the entire database. The results

are displayed in Table 2. A plot of the predicted DMOS ver-

sus the subjective one for each of the data set subsets is shown

in Figs 3-8.

6. CONCLUSION

Our proposed method is a general (non-distortion specific)

approach to NR-IQA using a minimal number of features ex-

Fig. 3. Predicted DMOS versus Subjective DMOS

(JPEG2000)

Fig. 4. Predicted DMOS versus Subjective DMOS (JPEG)

tracted entirely from the DCT-domain (which is computation-

ally convenient). The method is shown to correlate highly

with human visual perception of quality.
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