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bstract. Objective image and video quality measures play impor-
ant roles in numerous image and video processing applications. In
his work, we propose a new content-weighted method for full-
eference (FR) video quality assessment using a three-component
mage model. Using the idea that different image regions have dif-
erent perceptual significance relative to quality, we deploy a model
hat classifies image local regions according to their image gradient
roperties, then apply variable weights to structural similarity image

ndex (SSIM) [and peak signal-to-noise ratio (PSNR)] scores ac-
ording to region. A frame-based video quality assessment algo-
ithm is thereby derived. Experimental results on the Video Quality
xperts Group (VQEG) FR-TV Phase 1 test dataset show that the
roposed algorithm outperforms existing video quality assessment
ethods. © 2010 SPIE and IS&T. �DOI: 10.1117/1.3267087�

Introduction
pplications of digital video have been steadily increasing,
wing to rapid developments in many technologies such as
ameras, camcorders, DVD players, set-top boxes, mobile
ideo, video teleconferencing, streaming video over Inter-
et, video chat, etc. Since most applications are directed
oward human end-users, the visual quality of a video sig-
al is quite important. Quality monitoring of such videos
enerally requires automatic methods of assessment. The
oal of video quality assessment �VQA� algorithms is to
utomatically assess the quality of videos in a manner that
s consistent with human visual judgment. Such algorithms
re widely applied in video acquisition, communication,
nd display systems, and for evaluating and testing video
oders, for online quality monitoring and control, for end-
o-end video transmission systems, for perceptual video
ompression and restoration, and so on.

The simplest and most commonly used �at least until
ecently� full-reference �FR, meaning that a reference com-
arison image is available to assess quality against� objec-
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tive image and video distortion quality metrics are the
mean squared error �MSE�, computed by averaging the
squared intensity differences of distorted and reference im-
age pixels, and the log-reciprocal peak signal-to-noise ratio
�PSNR�. MSE and PSNR have been widely used because
they are simple to calculate, have clear physical meanings,
and are mathematically convenient. However, they have
been widely criticized for not correlating well with per-
ceived quality.1–3

In an effort to address this problem, many VQA metrics
have been recently proposed. For conceptual convenience,
we divide existing VQA methods into three different but
related types. The first type is based on modeling the hu-
man visual system �HVS�.4–8 This approach to VQA is in-
tuitive, since the goal of objective VQA systems is to match
visual performance in predicting quality. The second type
of approach is based on the extraction of image features
and/or statistics. These are computed from the reference
and test videos, and include such perceptually relevant
quantities as local brightness, contrast, edges, textures,
color, blockiness, and so on. Several popular algorithms
utilize a signal statistic based approach to VQA.9–13 The
third type of approach computes local motion
information,9,10,14–16 for example, video structural similar-
ity image index �SSIM�,9 speed-weighted SSIM,10 and the
MOVIE index.16

Several of these are closely related to the still image QA
algorithm called the structural similarity image index
�SSIM�,2 which operates under the assumption that visual
perception is highly adapted for extracting structural infor-
mation from a scene. The authors of Ref. 10, for example,
impose a motion-weighting model9 onto SSIM to account
for the fact that the accuracy of visual perception is signifi-
cantly reduced when the speed of motion is large. Lu et
al.17 proposed a perceptual quality significance map
�PQSM� generated by using local perceptual stimuli from
color contrast, texture contrast, motion, and cognitive fea-
tures. The authors showed that the ideas in PQSM can im-
prove the VQA performance of MSE/PSNR and SSIM. Se-
Jan–Mar 2010/Vol. 19(1)1
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hadrinathan and Bovik15,16 employed local motion
nformation obtained from optical flow to adaptively guide
he orientation of a set of 3-D Gabor filters. The Gabor
esponses are motion tuned using a model of cortical area

T to compute VQA. Wang and Li10 incorporated a recent
odel of human visual speed perception, and used a motion

nformation framework to adapt SSIM for VQA.
All of these successful algorithms operate solely using

ow-level video features, while neglecting the important in-
uence of image content. Video quality is highly correlated
ith video content. There are a number of perceptual

actors18 that influence human perception of visual quality.
uccessfully incorporating these into objective image qual-

ty assessment �IQA� metrics have the potential to achieve
mproved correlations with visual perception.

In this work, we commence our attack on this problem
y taking a low-level image-content approach to the prob-
em by seeking to parse the image to be assessed into re-
ions of different low-level content. Specifically, we use a
opular three-component image model to parse the refer-
nce and distorted images, then derive region-weighted ver-
ions of PSNR and SSIM to achieve video quality assess-
ent. The resulting algorithms are termed three component
SNR �3-PSNR� and three component SSIM �3-SSIM�. We
nd that we are able to improve the performance of PSNR
nd SSIM relative to human subjectivity on the Video
uality Experts Group �VQEG� Phase 1 test database19 and
aboratory for Image and Video Engineering �LIVE� Image
uality Database.20

The rest of the work is organized as follows. Section 2
ntroduces our three-component weighting method. The
roposed 3-SSIM �and 3-PSNR� indices and some ex-
mples are described in Sec. 3. Section 4 gives experimen-
al results. Finally, in Sec. 5, future thoughts are given.

Three-Component Weighting Method
QA/VQA algorithms generally operate without attempting
o take into account image/video content. Since algorithms
or image/video content identification remain in a nascent
tate, IQA/VQA algorithms that succeed in assessing qual-
ty as a function of content will await developments in that
irection. However, low-level content of visual importance,
ometimes called salient image features, might be used to
mprove IQA/VQA algorithms. For example, intensity
dges certainly contain considerable image information and
re perceptually significant. Using this observation we in-

SSIM (MSE)Map

Reference Image
Distorted Image

Edge Regions

Texture Regions

Smooth Regions

Structure
(Error)

Information

Gradient
Magnitude

Fig. 1 Diagram for calc
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corporate a three-component image model into SSIM �or
PSNR�, and thereby develop three-component weighted
SSIM �3-SSIM� and PSNR �3-PSNR� indices.

The development of 3-SSIM and 3-PSNR follows four
steps. 1. Calculate the SSIM �or PSNR� map. 2. Indepen-
dent of the SSIM �or PSNR� results, segment the original
�reference and distorted� image into three categories of re-
gions �edges, textures, and smooth regions�. Edge regions
are found where a gradient magnitude estimate is large,
while smooth regions are determined where the gradient
magnitude estimate is small. Textured regions are taken to
fall between these two thresholds. 3. Apply nonuniform
weights to the SSIM �or PSNR� values over the three re-
gions. 4. Pool the weighted SSIM �or PSNR� values, e.g.,
their weighted average, thus defining a single quality index
for the image �3-SSIM or 3-PSNR�. A diagram depicting
calculation of 3-SSIM �or 3-PSNR� is shown in Fig. 1.

In our approach, an image is partitioned into three parts:
edges, textures, and smooth regions as proposed in Ref. 21.
We seek to more heavily weight degradations of intensity
edges in the IQA process. Textured regions, by contrast,
often mask degradations. Artifacts in smooth regions may
be quite obvious, especially if they are high frequency or
edge-like.

We can partition an image into three components using
the computed gradient magnitude; Ref. 22 gives a simple
method to obtain a partition into three types of regions. The
following steps explain the process.

Step 1. Compute the gradient magnitudes using a Sobel
operator on the reference and the distorted images.
Step 2. Determine thresholds TH1= �0.12� gmax and
TH2= �0.06� gmax, where gmax is the maximum gradient
magnitude value computed over the reference image.
Step 3. Assign pixels as belonging to edge, texture, and
smooth regions as follows.

Denoting the gradient at coordinate �i , j� on the refer-
ence image by po�i , j�, and the gradient on the distorted
image as pd�i , j�, pixel classification is carried out accord-
ing to the following rules:

R1: if po�i , j��TH1 or pd�i , j��TH1, then the pixel is
considered to be an edge pixel.
R2: if po�i , j��TH2 and pd�i , j��TH1, then the pixel is
regarded as part of a smooth region.

Weight2

SSIM (MSE)
Map for Edge

SSIM (MSE)
Map for Texture

SSIM (MSE)
Map for Smooth

Weight1

Weight3

3-SSIM
(or 3-PSNR)∑

3-SSIM �or 3-PSNR�.
ulating
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R3: otherwise, the pixel is regarded as part of a textured
region.

Figure 2 shows an original image and a distorted version
f it. Also shown are the absolute error map, the SSIM
ndex map, and the edge, smooth, and textured regions.

Content-Based Image and Video Quality
Assessment

he primary goal of IQA/VQA is to produce automatic
mage and video ratings that correlate well with the mean
pinion scores �MOS� obtained by subjective trials. Current
eading algorithms for FR IQA and VQA do not consider
mage content of the type we have been discussing. We
elieve that many of these could be improved by incorpo-
ating content into them in simple ways. In this study, we
onsider this possibility using two popular metrics: the
SNR and SSIM.

.1 Peak Signal-to-Noise Ratio
he MSE and the related peak signal-to-noise ratio �PSNR�
re popularly used to assess image quality. Given two vec-
ors x= �xi � i=1, . . . ,N� and y= �yi � i=1, . . . ,N�, then

SE�x,y� =
1

N
�
i=1

N

�xi − yi�2. �1�

Then

PSNR�x,y� = 10 log10� L2

MSE�x,y�� , �2�

here L is a constant, representing the image dynamic
ange �e.g., for 8-bits /pixel grayscale image, L=28−1
255�.

Fig. 2 Illustration of quality maps: �a� original im
SSIM index map, �e� absolute error map for ed
absolute error map for texture regions, �h� SSIM
for smooth regions, and �j� SSIM index map for
ournal of Electronic Imaging 011003-
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Of course, the PSNR is easy to compute and implement
in software and hardware. However, the PSNR is a very
poor measure of image quality! A simple illustration is
shown in Fig. 3. Figure 3�a� is an original Einstein image.
We used the MATLAB function “imadjust” to produce a
contrast-enhanced image 	adjusted input ranges from 0.1 to
0.811, shown in Fig. 3�b�
; the MATLAB function “im-
noise” to produce noise contaminated images �Gaussian
noise density is set to 0.0044, salt-pepper noise density is
0.015, and speckle noise density is set to 0.0233�, shown in
Figs. 3�c�–3�e�, respectively; the MATLAB function “im-
write” to produce a JPEG compressed image �quality pa-
rameter set to 1, shown in Fig. 3�f��; and the MATLAB
function “imfilter” to produce a blurred image 	window
size set to 7�7, shown in Fig. 3�g�
. A human would likely
rate the distorted images in order �best� Figs. 3�b�–3�g�
�worst� relative to the reference 	Fig. 3�a�
. However, all
six images have identical PSNR of 23.58 relative to the
reference.

Using the three-component weighted approach described
in Sec. 2, it is a simple matter to define the three-
component weighted PSNR, termed 3-PSNR. The proposed
3-PSNR is defined here with weights for the three types of
regions set as follows: for edges the weighting is 0.5, while
for the texture and smooth regions the weighting is 0.25.
The resulting 3-PSNR yields results that are more consis-
tent with human subjective perception than PSNR, as
shown in Table 1.

3.2 Structural Similarity Index
The SSIM index is a recent and very popular IQA/VQA
algorithm. The idea behind SSIM2 is that natural images are
highly structured, and that the human visual system is sen-
sitive to structural distortion. It defines the function for the

�b� distorted image, �c� absolute error map, �d�
ions, �f� SSIM index map for edge regions, �g�
map for texture regions, �i� absolute error map
h regions.
age,
ge reg
index
smoot
Jan–Mar 2010/Vol. 19(1)3
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uminance comparison of the signals, the contrast compari-
on of the signals, and the structure comparison of the sig-
als, respectively, as follows:

�x,y� =
2�x�y + C1

�x
2 + �y

2 + C1

, �3�

�x,y� =
2�x�y + C2

�x
2 + �y

2 + C2

, �4�

Fig. 3 Distorted images: �a� reference Einstein
noise contaminated image, �d� salt-pepper no
nated, �f� JPEG compressed image, and �g� blu

Table 1 Quality assessment re

PSNR 3-PSNR

Fig. 3�b� 23.58 24.21

Fig. 3�c� 23.58 23.61

Fig. 3�d� 23.58 23.57

Fig. 3�e� 23.58 23.37

Fig. 3�f� 23.58 22.61

Fig. 3�g� 23.58 21.52
ournal of Electronic Imaging 011003-
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s�x,y� =
�xy + C3

�x�y + C3
, �5�

where �x and �y are �local� sample means of x and y,
respectively, �x and �y are �local� sample standard devia-
tions of x and y, respectively, and �xy is the �local� sample
correlation coefficient between x and y. Generally, these
local sample statistics are computed within overlapping
windows and weighted within each window, e.g., by a
Gaussian-like profile. The small constants C1, C2, and C3

e, �b� contrast enhanced image, �c� Gaussian
taminated image, �e� speckle noise contami-
age.

images having similar PSNR.

NR for
e regions

PSNR for
texture
regions

PSNR for
smooth
regions

4.8644 23.8684 23.2391

3.6083 23.6772 23.5430

3.5998 23.4619 23.6118

2.7049 23.8962 24.1569

0.2308 23.8573 26.1282

7.9036 23.6010 26.6760
imag
ise con
rred im
sults on

PS
edg

2

2

2

2

2

1
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tabilize the computations of Eqs. �3�–�5� when the de-
ominator�s� become small.

Combining the three comparison functions of Eqs.
3�–�5� yields a general form of the SSIM index:

SIM�x,y� = 	l�x,y�
� · 	c�x,y�
� · 	s�x,y�
	, �6�

here �, �, and 	 are parameters that mediate the relative
mportance of the three components. Usually, �=�=	=1,
ielding the now-familiar specific form of the SSIM index:

SIM�x,y� =
�2�x�y + C1��2�xy + C2�

��x
2 + �y

2 + C1���x
2 + �y

2 + C2�
. �7�

In Ref. 2, the SSIM index is deployed using an 11
11 sliding window over the entire image space. At each

mage coordinate, the SSIM index is calculated within the
ocal window; the resulting SSIM index map can be used to
isualize the quality map of the distorted images. Finally,
he SSIM index values can be spatially pooled, e.g., by
aking their sample mean, yielding a single descriptor of the
mage objective quality.

Results in large human studies have shown that the
SIM index performs quite well relative to human subjec-

ivity. However, the performance of SSIM has been ob-

Fig. 4 Illustration of distorted images: �a� refere
�c� salt-pepper noise contaminated image, �d�
image, and �f� blurred image.
ournal of Electronic Imaging 011003-

Downloaded from SPIE Digital Library on 07 Jan 2010 to 2
served to be less competitive when used to assess blurred
and noisy images. A simple example is shown in Fig. 4.
Figure 4�a� is a reference video frame image. We used the
MATLAB function “imnoise” to produce a noise contami-
nated image �Gaussian noise density set to 0.00166, salt-
pepper noise density to 0.02, and speckle noise density set
to 0.0111�, shown in Figs. 4�b�–4�d�, respectively; the
MATLAB function “imwrite” to produce a JPEG com-
pressed image �quality parameter set to 1�, shown in Fig.
4�e�; and the MATLAB function “imfilter” to produce a
blurred image �window size set to 7�7�, shown in Fig.
4�f�. The human subjective impression of the quality of
these images is markedly different, yet the simple SSIM
index does not distinguish them �see Table 2�.

Using the three-component weighted approach describe
in Sec. 2, it is a simple matter to define the three-
component weighted SSIM, termed 3-SSIM. The 3-SSIM
scores shown in Table 2 do distinguish the distorted im-
ages, and in a manner that appears coincident with human
perception of quality. If this proves to be verifiable, then it
provides evidence for an apparent advantage of the idea of
using low-level content in IQA/VQA algorithms. Table 2
also shows SSIM for edge, texture, and smooth regions,

age, �b� Gaussian noise contaminated image,
le noise contaminated, �e� JPEG compressed
nce im
speck
Jan–Mar 2010/Vol. 19(1)5
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espectively. As can be seen, the SSIM values on edge re-
ions are more consistent with human subjective judgment.

Experimental Results and Discussion
e tested the 3-SSIM and 3-PSNR indices on the VQEG

hase 1 test dataset.23 Showing demonstrable success on
his widely used video quality database would be a power-
ul indication of the relevance of low-level content to qual-
ty assessment, since the two algorithms make no use of
omputed motion information. The VQEG dataset contains
0 reference video sequences. A large number of test se-
uences were obtained by distorting each reference video
ith 16 different distortion types. Subjective scores were

ecorded for all test sequences.19 Video quality is recorded
n a frame-by-frame basis only. As suggested in Ref. 9, we
et the color weighting parameters WY=1 and WCb=WCr
0, i.e., we only use the luminance channel Y for video
uality assessment.

We follow the performance evaluation procedures em-
loyed in the VQEG Phase 1 FRTV test19 to provide quan-
itative measures on the performance of the objective qual-
ty assessment models. Two metrics are employed. The first
s the Spearman rank order correlation coefficient
SROCC�, which is an indicator of the prediction monoto-
icity of the quality index. The second is the linear corre-
ation coefficient �LCC� between the difference mean opin-
on scores �DMOS� and the algorithm scores following
onlinear regression. The nonlinearity chosen for regres-
ion was a five-parameter logistic function.24

Edges play an important role in the perception of video
rame images, and edges that are distorted, e.g., by blur,
an greatly impact the perceived quality of a video frame
mage. We therefore modify the SSIM and PSNR indices
y allocating greater weight to the scores on edge regions
han on smooth and texture regions. The distortion of tex-
ures can be perceptually significant also, and some distor-
ions can be obscured or masked by the presence of tex-
ures. Smooth regions are also important. The eye is
ensitive to artifacts such as false contouring, blocking, and
igh-frequency noise in these areas.

Training quality assessment algorithms on any single
A database to achieve the most competitive performance
n that database is, of course, to be deplored. However, it
an be quite instructive to examine the performance of a
QA algorithm on the VQEG database while varying the
arameters of the algorithm to gain insights into those as-

Table 2 Quality assessment resu

SSIM 3-SSIM

Fig. 4�b� 0.648 0.811

Fig. 4�c� 0.648 0.793

Fig. 4�d� 0.648 0.676

Fig. 4�e� 0.648 0.565

Fig. 4�f� 0.648 0.48
ournal of Electronic Imaging 011003-
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pects of the algorithm that contribute to its performance
relative to human opinion. Reporting the performance over
all parameter values tested in such studies is the only fair
method of comparison. Another way of stating this is that
the selection of parameters in any VQA algorithm needs
careful explanation.

In any case, to explore the relevance of the various pa-
rameters of 3-PSNR and 3-SSIM, we varied the weight for
edge regions from 0.5 to 1.0, in steps of 0.1. In each case
equal weights were allocated to the texture and smooth re-
gions, so that the total weights summed to unity. Using this
protocol, the plot of SROCC against the value of the QA
weight on the edge regions for 3-PSNR and 3-SSIM is
shown in Figs. 5 and 6, respectively. As can be seen, when
the edge weight takes the value 0.7, the SROCC for
3-PSNR reaches the highest �discrete� score, suggesting
that the 3-PSNR QA index should weight edge regions
much more heavily than other regions, but not eliminate
textured and smooth regions. This is intuitive, since percep-
tually significant errors can occur in any of the regions.

Surprisingly though, the plot of SROCC monotonically
increases with the edge weight, reaching a highest value at
unity �the other weights being zero�. This suggests that with
respect to QA by 3-SSIM, edge regions play a dominant
role in video quality perception. While this conclusion is

mages with similar SSIM values.

SIM for
edge

SSIM for
texture

SSIM for
smooth

0.9224 0.8414 0.5574

0.8852 0.8394 0.5624

0.6169 0.8297 0.6412

0.5735 0.3839 0.7281

0.3732 0.4084 0.7655

Fig. 5 Plot of SROCC of 3-PSNR against edge region weight.
lts on i

S
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probably too much to accept, 3-SSIM with edge weight
unity achieves an SROCC score higher than any other prior
reported method by a considerable margin.

Figures 7�a�–7�d� show the scatter plots of the
subjective/objective comparisons on all test video se-
quences for PSNR, SSIM, 3-PSNR �with edge, texture, and
smooth region weights set to 0.7, 0.15, and 0.15, i.e., the
best weights�, and 3-SSIM �with edge region weight of 1�.
Table 3 shows comparisons of the two metrics. Another
recently proposed algorithm,10 which we label speed-
weighted SSIM �SW-SSIM� is listed as well. Here we com-
pute quality at every pixel location in the frame for SW-
SSIM by using dense sampling, rather than the sparse
sampling strategy used in Ref. 10. Despite its simplicity,
the proposed 3-PSNR method outperforms PSNR, Propo-
nent P8 �the best performing index among the ten different
proponent models tested by the VQEG23� and a motion-
weighted PSNR.10 Likewise, 3-SSIM greatly improves the
performance of SSIM, yielding performance that is better
than all other tested methods.

ity assessment models on the VQEG Phase 1
bjective and objective measurements, respec-
PSNR, �b� SSIM, �c� 3-PSNR, and �d� 3-SSIM.
Fig. 6 Plot of SROCC of 3-SSIM against edge region weight.
Fig. 7 Scatter plot comparison of different video qual
test dataset. The vertical and horizontal axes plot su
tively. Each sample point represents one test video: �a�
Jan–Mar 2010/Vol. 19(1)7
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Conclusions and Discussions

n this work, we propose a new three-component weighting
ethod for objective video quality assessment. The key

eature of the proposed method is the idea of parsing an
mage into regions of different content types, then weight-
ng QA scores according to content type. This can be
iewed as an exploration into the question of the degree to
hich low-level image content measures affect the percep-

ion of quality. Experiments on the LIVE Image Quality
atabase and the VQEG FR-TV Phase 1 test dataset show

hat accounting for low-level image content can signifi-
antly affect the relevance of QA algorithms to perceived
ideo quality.

One of the most attractive features of the proposed
ethod is its simplicity. Only a simple three-component

artition of the image �or frame� is used, without recourse
o other more complex measurements, such as motion esti-

ation, spatial, and/or temporal filtering, linear transforma-
ions, or evaluation of specific distortions such as blur or
lockiness. Naturally, incorporating such aspects into the
-PSNR or 3-SSIM algorithms may produce yet further im-
rovements.

Generally, our studies suggest that image content analy-
is should be a primary direction of inquiry for improving
A algorithms. Of course, this could include creating a
ner classification of spatial regions; creating motion-based
eightings similar to SW-SSIM;10 using color more effec-

ively; and ultimately, measuring higher level measures of
mage content, like located objects like faces. Of course,
ontent-based scene analysis remains in a nascent state. We
nticipate future advances in these directions.
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able 3 Performance comparison of video quality assessment indi-
es on VQEG Phase 1 test dataset.

Model SROCC CC

PSNR �Y only� 0.780 0.781

P823 0.803 0.827

Weighted PSNR10 0.805 N/A

3-PSNR �Y only� 0.809 0.796

SSIM �Y only� 0.773 0.812

SW-SSIM �dense-Y only� 0.837 0.810

MOVIE �Y only�14 0.833 0.821

3-SSIM �Y only� 0.870 0.865
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