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a b s t r a c t

The assessment of image quality is important in numerous image processing

applications. Two prominent examples, the Structural Similarity Image (SSIM) index

and Multi-scale Structural Similarity (MS-SSIM) operate under the assumption that

human visual perception is highly adapted for extracting structural information from a

scene. Results in large human studies have shown that these quality indices perform

very well relative to other methods. However, the performance of SSIM and other Image

Quality Assessment (IQA) algorithms are less effective when used to rate blurred and

noisy images. We address this defect by considering a four-component image model

that classifies image local regions according to edge and smoothness properties. In our

approach, SSIM scores are weighted by region type, leading to modified versions of

(G-)SSIM and MS-(G-)SSIM, called four-component (G-)SSIM (4-(G-)SSIM) and four-

component MS-(G-)SSIM (4-MS-(G-)SSIM). Our experimental results show that our new

approach provides results that are highly consistent with human subjective judgment of

the quality of blurred and noisy images, and also deliver better overall performance

than (G-)SSIM and MS-(G-)SSIM on the LIVE Image Quality Assessment Database.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Visual images are the most important and data-
intensive means for humans to acquire information, and
digital image acquisition, communication, storage proces-
sing, and display devices have become ubiquitous in daily
life. Since digital images are subject to a wide variety of
distortions in any of these, and since image traffic has
become quite dense, the assessment of digital image
quality has become an exceedingly important topic.

Subjective tests have long been considered to be the
Final Arbiter of image quality, but such tests are quite
ll rights reserved.

. Li),
time consuming and expensive, and cannot be imple-
mented in systems where real-sensitive quality scoring is
needed. Therefore, nowadays there has been an increasing
push to develop objective measurement techniques that
predict subjective image/video quality automatically.
Over the years, numerous objective metrics have been
proposed [1–21] to assess image quality. These include
many early algorithms that sensibly sought to incorporate
perceptual models [10–14,17,19] and distortion models
[16,20]; more recent algorithms based on the successful
Structural Similarity Image (SSIM) index [7–9] that
incorporate saliency [1], compression specificity [2],
multi-scales [8], amount and local information [15], and
wavelet-domain processing [21], and algorithms using
information-theoretic [5], singular-value decomposition
[4], the mahalanobis distance [18], and color [20]. A
successful visual signal-to-noise ratio (VSNR) has been
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proposed for IQA in [3], and the same group has also
studied the interesting question of the relationship
between image quality assessment with image usability
in subsequent image analysis tasks [6].

The simplest and most widely used image quality
indices remain the mean square error (MSE), computed
by averaging the squared intensity differences of
distorted and reference image pixels, and the related
peak signal-to-noise ratio (PSNR). However, the MSE
and its variants poorly correlate with human visual
perception of quality [22–25,34]. There are a number
of perceptual factors [26] that influence human percep-
tion of visual quality. Successfully incorporating these
into objective IQA metrics can lead to improved correla-
tions with visual perception [10].

Two prominent examples, the Structural Similarity
Image index (SSIM) [7] and the Multi-scale Structural
Similarity index (MS-SSIM) [8] operate under the
assumption that visual perception is highly adapted for
extracting structural information from a scene. Results in
large human studies have shown that these quality
indices perform quite well relative against human sub-
jectivity. However, the performance of SSIM and MS-SSIM
has been observed to be less competitive when used to
assess blurred and noisy images.

It is intuitively obvious that different image regions
have different importance for vision perception. Broadly,
this suggests that image content analysis should be a
primary direction of inquiry for improving quality
assessment algorithms. Neither SSIM nor MS-SSIM takes
into account factors such as the visual importance of
image features. A few researchers have explored the
possibility of improving the performance of the SSIM
indices, by assigning visual importance weights to the
SSIM values. In [27], the effect of using different pooling
strategies was evaluated. The authors suggest that good
performance can be achieved using an information-
theoretic approach using ‘‘information content-weighted
pooling.’’ In [28], a SSIM modification is introduced
wherein the SSIM values are weighted by a perceptual
importance function, but with desultory results. The
authors of [1] deepen this direction of inquiry by using
human fixation data to modify the SSIM and MS-SSIM
indices, gaining somewhat higher correlations with hu-
man subjectivity.

In this paper, we instead take a low-level approach to
the problem, where we seek to parse the image to be
assessed into regions of different low-level contents.
Specifically, we use a popular four-component image
model to parse the reference and distorted images, and
derive region-weighted versions of SSIM and MS-SSIM,
which we call four-component SSIM (4-SSIM) and four-

component MS-SSIM (4-MS-SSIM), respectively. We find
that we are able to improve upon the performance of SSIM
and MS-SSIM against human subjectivity on the LIVE
Image Quality Database.

This paper is organized as follows. Section 2 reviews
SSIM, MS-SSIM and a gradient-based SSIM. The 4-SSIM
(and 4-MS-SSIM) indices are described in Section 3.
Section 4 gives experimental results and comparisons.
Finally, future directions are considered in Section 5.
2. Structural similarity indices

2.1. Single-scale SSIM

Based on the assumption that the HVS is highly
adapted to extract structural information from the view-
ing field, a new philosophy for image quality measure-
ment SSIM was proposed by Wang et al. [7]. It defines the
separate functional measures of luminance, contrast and
structural similarity between two signals x and y:

lðx,yÞ ¼
2mxmyþC1

m2
xþm2

yþC1
ð1Þ

cðx,yÞ ¼
2sxsyþC2

s2
xþs2

yþC2
ð2Þ

sðx,yÞ ¼
sxyþC3

sxsyþC3
ð3Þ

where mx and my are the (local) sample means of x and
y, respectively, sx and sy the (local) sample standard
deviations of x and y, respectively, and sxy is the (local)
sample correlation coefficient between x and y. Generally,
these local sample statistics are computed within over-
lapping windows, and weighted within each window,
e.g., by a Gaussian-like profile. The small constants C1, C2,
C3 stabilize the computations of Eqs. (1)–(3) when the
denominator(s) become small.

Combining the three comparison functions of
Eqs. (1)–(3) yields a general form of the SSIM index:

SSIMðx,yÞ ¼ ½lðx,yÞ�a½cðx,yÞ�b½sðx,yÞ�g ð4Þ

where a, b and g are parameters that mediate the
relative importance of the three components. Usually,
a=b=g=1, C2=C3, yielding the now-familiar specific form
of the SSIM index

SSIMðx,yÞ ¼
ð2mxmyþC1Þð2sxyþC2Þ

ðm2
xþm2

yþC1Þðs2
xþs2

yþC2Þ
ð5Þ

In [7], the SSIM index is deployed using an 11�11
sliding window over the entire image space. At each
image coordinate, the SSIM index is calculated within the
local window; the resulting SSIM index map can be used
to visualize the quality map of the distorted images.
Finally, the SSIM index values can be spatially pooled, e.g.,
by taking their sample mean, yielding a single descriptor
of the image objective quality.

2.2. Multi-scale SSIM

Wang et al. [8] developed a multi-scale SSIM
(MS-SSIM) index. In MS-SSIM, quality assessment is
accomplished over multiple scales of the reference and
distorted image patches by iteratively low-pass filtering
and down-sampling the signals (Fig. 1).

Processing in MS-SSIM is simple: index the original
image as Scale 1, the first down-sampled version as
Scale 2, and so on. The highest scale M is obtained after
M�1 iterations. At the jth scale, the contrast comparison
(Eq. (2)) and the structure comparison (Eq. (3)) are
calculated and denoted as cj(x, y) and sj(x, y), respectively.
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Fig. 1. Multi-scale structural similarity measurement. L denotes low-pass filtering; 2k denotes down-sampling by 2.

Image DMOS SSIM G-SSIM MS-SSIM MS-G-SSIM 4-SSIM 4-G-SSIM 4-MS-SSIM 4-MS-G-SSIM 

(a) noise 44.7534 0.3491 0.2623 0.8539 0.7292 0.50 0.3440 0.9122 0.7856 

(b) blurred 66.3322 0.6932 0.3217 0.8825 0.6802 0.5605 0.2075 0.8566 0.6384 

Fig. 2. Comparison of IQA algorithms on blurred and noisy images.
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The luminance comparison (Eq. (1)) is computed only at
Scale M and denoted as lM(x, y).

The overall MS-SSIM index is obtained by combining
the measurement across scales via

MS�SSIMðx,yÞ ¼ lMðx,yÞ
YM

j ¼ 1

cjðx,yÞsjðx,yÞ ð6Þ

In the implementations described here, the highest
scale used is M=5.

MS-SSIM is able to capture distortions as they occur
across scales, as well as better matching the human visual
response. MS-SSIM significantly outperforms single-scale
SSIM.

2.3. Gradient-based SSIM (G-SSIM) and multi-scale G-SSIM

Chen et al. [29] developed an improved SSIM
algorithm, called Gradient-based Structural Similarity
(G-SSIM), which compares edge information between
the distorted image and the original image. G-SSIM
replaces the contrast comparison c(x, y) in Eq. (2), and
the structure comparison s(x, y) in Eq. (3), with a gradient
contrast comparison cg(x, y) and a gradient structure
comparison sg(x, y), respectively. The gradient is
generated using the Sobel operator.

Let X0 and Y0 denote the gradient maps of the original
and the distorted images, respectively, and let x0 and y0,
respectively, be block vectors from X0 and Y0. Then:

cgðx,yÞ ¼
2sx0sy0 þC2

s2
x0 þs2

y0 þC2
ð7Þ

sgðx,yÞ ¼
sx0y0 þC3

sx0sy0 þC3
ð8Þ

where the sample statistics have the same definition as
in Eqs. (1)–(3), but applied on the gradient images.
Subsequently setting C2=C3, G-SSIM is given by

G�SSIMðx,yÞ ¼
ð2mxmyþC1Þð2sx0y0 þC2Þ

ðm2
xþm2

yþC1Þðs2
x0 þs2

y0 þC2Þ
ð9Þ

Applying the identical multi-scale method described in
Section 2.2 to G-SSIM results in multi-scale G-SSIM
(MS-G-SSIM).

Extensive experimental results have shown that the
SSIM and MS-SSIM indices correlate with the perception
of visual quality much better than does the PSNR, and
remain highly competitive with respect to other IQA
algorithms [7,8,30]. However, these studies also suggest
that performance might be improved when assessing the
quality of blurred and noisy images, as also shown in
Fig. 2. Most observers would agree that Fig. 2(a) is of
better quality than Fig. 2(b), yet SSIM (G-SSIM) and
MS-SSIM (MS-G-SSIM) give contrary assessment results.
By comparison, the 4-G-SSIM, 4-MS-SSIM and 4-MS-G-
SSIM algorithms, which we will describe, yield



Gradient 
Magnitude

SSIM Map 

Reference Image
and

Distorted Image 

Edges
Regions

Texture Regions 

Smooth Regions 

SSIM Map 
for Preserved Edge 

SSIM Map 
for Texture 

SSIM Map 
for Smooth

Weight1 

Weight4

Weight3
∑

4-SSIM
(4-MS-SSIM)

Structure 
Information

Changed Edges 

Preserved Edges 

SSIM Map 
for Changed Edge 

Weight2 

Fig. 3. Diagram for calculating 4-SSIM (or 4-MS-SSIM).
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assessments that appear to better agree with visual
perception of quality.

3. Modifying SSIM: 4-SSIM and 4-MS-SSIM

IQA algorithms generally operate without attempting
to take into account image content. Since algorithms for
image content identification remain in a nascent state,
IQA algorithms that succeed in assessing quality as a
function of content will await developments in
that direction. However, low-level content of visual
importance, sometimes called salient image features,
might be used to improve IQA algorithms. For example,
intensity edges certainly contain considerable image
information, and are perceptually significant [31]. Using
this observation we incorporate a four-component
image model into SSIM (or MS-SSIM), and thereby
develop four-component weighted SSIM (4-SSIM) and
MS-SSIM (4-MS-SSIM) indices. We have also developed
four-component indices using G-SSIM (and MS-G-SSIM),
which we term the 4-G-SSIM (and 4-MS-G-SSIM) indices.

The development of 4-SSIM and 4-MS-SSIM follows
four steps: (1) Calculate the SSIM (or MS-SSIM) map. (2)
Independent of the SSIM results, segment the original
(reference and distorted) image into four categories of
regions (changed edges, preserved edges, textures and
smooth regions). Changed and preserved edge regions are
found where a gradient magnitude estimate is large, while
smooth regions are determined where the gradient
magnitude estimate is small. Textured regions are taken
to fall between these two thresholds. (3) Apply non-
uniform weights to the SSIM (or MS-SSIM) values over the
four regions. (4) Pool the weighted SSIM (or MS-SSIM)
values, e.g., their weighted average, thus defining a single
quality index for the image (4-SSIM or 4-MS-SSIM). A
diagram depicting calculation of 4-SSIM (or 4-MS-SSIM) is
shown in Fig. 3.

3.1. Definition of 4-SSIM and 4-MS-SSIM

In the 4-SSIM algorithms, an image is partitioned into
four parts: changed edges (these include edge pixels that
exist in the reference image (or distorted image) but have
disappeared from the distorted image (or reference
image), preserved edges (these edge pixels coincide in
reference and distorted images), textures and smooth
regions. We seek to more heavily weight the degradations
at the preserved and changed intensity edges in the
IQA process. Textured regions, by contrast, often
mask degradations. Artifacts in smooth regions may be
quite obvious, especially if they are high-frequency or
edge-like.

We may partition an image into four components
using the computed gradient magnitude. Ref. [32] gives a
simple image three-component partition method that we
modify it to obtain a partition into four types of regions.
The following steps explain the process:

Step 1: Compute the gradient magnitudes using a Sobel
operator on the original and the distorted images.

Step 2: Determine thresholds TH1=(0.12)gmax and
TH2=(0.06)gmax, where gmax is the maximum gradient
magnitude value computed over the original image. The
threshold values 0.12 and 0.06 affect the image compo-
nent partition in the following way: the smaller the first
value, the more ‘‘edgey’’ the region is. The smaller the
second value, the less the smooth region is.

Step 3: Assign pixels as belonging to changed edge,
preserved edge, texture, and smooth regions, as follows:

Denoting the gradient at coordinate (i, j) on the
original image by p0(i, j) and the gradient on the distorted
image as pd(i, j), the pixel classification is carried out
according to the following rules:

R1: If p0(i, j)4TH1 and pd(i, j)4TH1, then the pixel is
considered as a preserved edge pixel.

R2: If (p0(i, j)4TH1 and pd(i, j)rTH1) or (pd(i, j)4TH1

and p0(i, j)rTH1), then the pixel is considered as a
changed edge pixel.

R3: If p0(i, j)oTH2 and pd(i, j)4TH1, then the pixel is
regarded as part of a smooth region.

R4: Otherwise, the pixel is regarded as part of a
textured region but is not an edge pixel.

Fig. 4 shows a reference image and a compressed
version of it. Also shown are the identified changed and
preserved edges, the identified smooth regions, and the
identified textured regions.

3.2. Determining the weights

Edges play an important role in the perception of
images, and edges that are distorted, e.g., by blur, can



 (b) Gaussian noise (c) Speckle noise (d) Salt-pepper noise (e) JPEG compressed (f) Blurred 

SSIM 0.64 0.64 0.64 0.64 0.64 

4-SSIM 0.74 0.72 0.61 0.59 0.49 

Fig. 5. Evaluation of ‘‘Lena’’ image contaminated by different distortions: (a) Original ‘‘Lena’’ image, 512�512, 8 bits/pixel; (b) Gaussian noise

contaminated image; (c) speckle noise contaminated image; (d) salt–pepper noise contaminated image; (e) JPEG compressed image and (f) blurred image.

Fig. 4. From left-to-right: (a) original reference image; (b) JPEG compressed image; (c) preserved edge pixel image; (d) changed edge pixel image; (e)

smooth pixel image and (f) texture pixel image. In the latter four cases black indicates membership in the classes preserved edge, changed edge, smooth,

and texture, respectively.
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greatly impact the perceived quality of an image. We
therefore modify the SSIM and MS-SSIM indices by
allocating greater weight to the scores at edge regions
than on smooth and textured regions. To keep things
simple, we fixed the weight for all edge regions at 0.5,
0.25 for changed edges and preserved edge regions,
respectively. When no changed edge region is found
(when the distorted image is equal to the reference
image) or no preserved edge region (for heavily distor-
tions) exists, the weight 0.5 is set for all edge regions.

Smooth regions are important also, and the eye is
sensitive to artifacts such as false contouring, blocking,
and high-frequency noise in smooth regions. While the
distortion of textures can also be perceptually significant,
some distortions can be obscured or masked by the
presence of textures. As a simple approach, we apply the
same weights on smooth and texture regions, fixing both
at 0.25 (hence the sum of all weights is unity).

4. Experimental results and discussion

4.1. Comparisons on 5 distorted images having similar SSIM

values

As a first example, we used the reference ‘‘Lena’’ image
(shown in Fig. 5(a)) to produce 5 distorted images having
nearly identical SSIM values, as shown in Fig. 5(b–f). The
human subjective impression of the quality of these



Table 1
Spearman rank order correlation coefficient (SROCC)

JPEG2000 JPEG WN GBlur FF All data

PSNR 0.8898 0.8409 0.9853 0.7816 0.8903 0.9092

SSIM 0.9317 0.9028 0.9629 0.8942 0.9411 0.9250

4-SSIM 0.9549 0.9041 0.9867 0.9681 0.9635 0.9460

G-SSIM 0.9326 0.9038 0.9367 0.9364 0.9451 0.9448

4-G-SSIM 0.9516 0.9061 0.9736 0.9690 0.9620 0.9626
MS-SSIM 0.9536 0.9108 0.9780 0.9539 0.9350 0.9532

4-MS-SSIM 0.9551 0.9109 0.9883 0.9693 0.9416 0.9593

MS-G-SSIM 0.9311 0.8804 0.9447 0.9692 0.9381 0.9514

4-MS-G-

SSIM

0.9434 0.8969 0.9734 0.9704 0.9440 0.9626

VIF [5] 0.9563 0.9093 0.9854 0.9678 0.8662 0.9559

VSNR[3] 0.946 0.908 0.979 0.941 0.906 N/A

 (a) Salt-pepper noise (b) Speckle noise (c) Gaussian noise (d) JPEG compressed (e) Blurred 

MS-SSIM 0.66 0.66 0.66 0.66 0.66 

4-MS-SSIM 0.72 0.71 0.71 0.68 0.66 

Fig. 6. Evaluation of ‘‘Lena’’ image contaminated by different distortions: (a) Salt–pepper noise contaminated image, (b) speckle noise contaminated

image; (c) Gaussian noise contaminated image; (d) JPEG2000 compressed image and (e) blurred image.

Table 2
Linear correlation coefficient (LCC) after nonlinear regression.

JPEG2000 JPEG WN Gblur FF All data

PSNR 0.8878 0.8596 0.9862 0.7840 0.8752 0.9293

SSIM 0.9368 0.9297 0.9793 0.8741 0.9452 0.9388

4-SSIM 0.9601 0.9321 0.9770 0.9685 0.9728 0.9489

G-SSIM 0.9382 0.9343 0.9537 0.9076 0.9479 0.9563

4-G-SSIM 0.9580 0.9416 0.9835 0.9618 0.9584 0.9710
MS-SSIM 0.9578 0.9426 0.9860 0.9579 0.9346 0.9435

4-MS-SSIM 0.9602 0.9420 0.9905 0.9723 0.9394 0.9440

MS-G-SSIM 0.9378 0.9137 0.9669 0.9731 0.9445 0.9492

4-MS-G-

SSIM

0.9510 0.9316 0.9836 0.9755 0.9479 0.9555

VIF [5] 0.9633 0.9422 0.9887 0.9737 0.8828 0.9579

VSNR [3] 0.953 0.943 0.978 0.934 0.902 N/A
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images is markedly different, yet the simple SSIM index
does not distinguish them. Conversely, the 4-SSIM scores
shown in the caption do distinguish the distorted images,
and in a manner that appears coincident with human
perception of quality. If this proves to be verifiable, then it
represents an apparent advantage of four-component
weighted SSIM and of the idea of using low-level
content in IQA algorithms.

4.2. Comparisons on 5 distorted images having similar

MS-SSIM values

We also used the reference ‘‘Lena’’ image (Fig. 5(a)) to
produce 5 distorted images having very similar MS-SSIM
scores relative to the reference image, as shown in
Fig. 6(a–e). Again, these 5 distorted images have
apparently different image qualities, yet even the highly
regarded MS-SSIM does not distinguish them effectively.
In this case, the 4-MS-SSIM index delivers assessment
results that appear much more consistent with the human
impression of quality. When judging these results, it is
important to compare the relative quality scores of each
algorithm with itself, rather than between algorithms.
Broadly, one seeks a monotonic function of computed
quality against a scale of perceptual quality, which is more
important than the absolute separation of the scores.
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4.3. Experimental comparison on LIVE image database

In order to further provide more extensive and
convincing statistical quantitative comparisons, we eval-
uated the performances of 4-SSIM, 4-MS-SSIM, 4-G-SSIM,
4-MS-G-SSIM, SSIM, G-SSIM, MS-SSIM, MS-G-SSIM and
PSNR on the LIVE Image Quality Assessment Database
[33]. This database includes five types of distorted
Fig. 7. Scatter plots for DMOS versus sin

Table 3
RMSE after nonlinear regression.

JPEG2000 JPEG WN Gblur FF All data

PSNR 7.4764 8.1925 2.6493 9.7945 7.9847 8.1096

SSIM 5.6861 5.9073 3.2403 7.6636 5.3866 7.9653

4-SSIM 4.5448 5.8079 3.4191 3.9301 3.8205 7.3012

G-SSIM 5.6240 5.7159 4.8198 6.6222 5.2606 6.7652

4-G-SSIM 4.6575 5.3989 2.9006 4.3171 4.7102 5.5310
MS-SSIM 4.6705 5.3530 2.6711 4.5281 5.8715 7.6657

4-MS-SSIM 4.5391 5.3832 2.2003 3.6908 5.6577 7.6319

MS-G-SSIM 5.6407 6.5169 4.0886 3.6363 5.4229 7.2796

4-MS-G-

SSIM

5.0256 5.8275 2.8919 3.4679 5.2568 6.8220

VIF [5] 4.3634 5.3724 2.3977 3.5946 7.7529 6.6406

VSNR [3] 4.963 5.339 3.339 5.692 7.193 N/A
images: JPEG2000: 227 images, JPEG: 233 images, white
noise (WN): 174 images, Gaussian blur (Gblur): 174
images and Fastfading (FF) noise: 174 images. Difference
Mean Opinion Scores (DMOS) are also available for each
distorted image.

Three performance metrics were used to evaluate the
algorithms. The first is the Spearman rank order
correlation coefficient (SROCC). The second is the linear
correlation coefficient (LCC) between DMOS and the
algorithm scores following nonlinear regression. The third
is the RMSE (after nonlinear regression). The nonlinearity
chosen for regression was a five-parameter logistic
function [30].

4.3.1. Results on entire LIVE database

The results, presented in Tables 1–3, are reported for the
different distortion types as well as on the entire dataset. In
the experimental results of the 5 independent datasets, no
reference image is included in the presentations to human
subjects. In the test results overall data, the hidden reference
images are included. This follows the reporting of the LIVE
study and other publications.

As can be seen, 4-SSIM outperforms SSIM and PSNR on
all types of distorted images, and also performs better
gle-scale QA score for all images.



Fig. 8. Scatter plots for DMOS versus multi-scale QA scores for all images.
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than MS-SSIM on JPEG2000, WN, GBlur and FF distortions.
Overall, 4-MS-SSIM outperforms MS-SSIM. G-SSIM
outperforms SSIM, and 4-G-SSIM far outperforms G-SSIM.
Interestingly, G-SSIM is not as effective in multi-scale
form, and MS-G-SSIM proved somewhat inferior to
MS-SSIM. Yet the numbers are so close as to be
statistically insignificant. However, the four-component
weighted method effective improves MS-G-SSIM, yielding
4-MS-G-SSIM, which overall outperforms MS-G-SSIM in
whole dataset. According to the three performance
metrics overall data, 4-G-SSIM yields the best IQA
performance on the LIVE database. Figs. 7 and 8 depict
scatter plots of DMOS versus all above-described SSIM
and MS-SSIM variant indices for all images, which also
suggest that 4-G-SSIM has the best prediction
performance relative to DMOS.

4.3.2. Results on LIVE noise and blurred database

In order to show the advantages of the four-compo-
nent weight method in detail relative to the prior SSIM
algorithms and their variants, we also studied the
experimental results to rate algorithm performance
specifically on blurred and noisy images, as shown in
Table 4. As can be seen, four-component weighted 4-SSIM
(4-G-SSIM, 4-MS-SSIM, 4-MS-G-SSIM) greatly improves
the performance of each SSIM index (G-SSIM, MS-SSIM,
MS-G-SSIM), which makes them more competitive,
especially in applications where images are noisy or
blurred, relative to other IQA methods.
4.3.3. The discussion of weight

In any case, in order to explore the relevance of the
various weights of 4-SSIM, we varied the weight for edge
regions from 0 to 1.0, in steps of 0.1. To simplify things,
we applied the same weight to changed edge and
preserved edge regions. Equal weights were also allocated
to textured and smooth regions, with the total weight
summing to unity. Using this protocol, the plot of SROCC
for 4-SSIM when tested on the LIVE Image Quality
Assessment Database [33], as a function of the weight
on the edge regions, is shown in Fig. 9. As can be seen,
when the total edge weight (changed and preserved
edges) takes the value 0.6, the SROCC for 4-SSIM reaches
the highest (discrete) score, suggesting that the 4-SSIM
QA index should weight edge regions more heavily than
other regions, but that we should not eliminate the
evaluation of quality on textured and smooth regions.



Fig. 9. Plot of SROCC of 4-SSIM against edge region weight.

Table 4
Assessment results on blurred and noisy images.

SROCC LCC RMS

PSNR 0.8621 0.8483 8.4058

SSIM 0.8323 0.7472 10.5488

4-SSIM 0.9218 0.9095 6.5983

G-SSIM 0.8834 0.8691 7.8521

4-G-SSIM 0.9594 0.9491 5.0016
MS-SSIM 0.9097 0.9083 6.6389

4-MS-SSIM 0.9476 0.9375 5.5242

MS-G-SSIM 0.8930 0.8960 7.0484

4-MS-G-SSIM 0.9412 0.9386 5.4765
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5. Concluding remarks

In this paper, we presented a new four-component
weighted structural similarity metric that improves upon
the well-known SSIM and multi-scale SSIM indices and
some of their popular derivatives. Using the idea that
different image regions have different perceptual
significances relative to quality, we defined different
weights on SSIM scores according to a low-level
content-based segmentation of images into homogeneous
regions. Our experimental results show that 4-(G-)SSIM
(and 4-MS-(G-)SSIM) provide results that are more
consistent with human subjectivity, when comparing
the quality of blurred and noisy images, and also deliver
better performance than (G-)SSIM (and MS-(G-)SSIM) on
five types of distorted images from the LIVE Image Quality
Assessment Database. Interestingly, 4-(G-)SSIM per-
formed better than either MS-(G-)SSIM or 4-MS-(G-)SSIM,
suggesting that edge relevance might be of greater
significance than multi-scale.
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