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Abstract—This paper aims at developing mutual statistical
descriptions of images in a visual sensor network. A two-
dimensional Gaussian scale mixture (GSM) model is proposed
to describe the joint distribution of wavelet coefficients in the
same subband of two different images. This model is tested
on two image databases, and it is shown that the proposed
model always achieves a smaller divergence from the empirical
distribution than a (jointly) Gaussian model. The GSM model
is then extended to blocks of wavelet coefficients in the same
subband and scale of non-overlapping images. A new denoising
algorithm is devised that uses this model and achieves better
performance than denoising based on marginal models.

I. I NTRODUCTION

The study of visual sensor networks (VSN) has gained
significant importance recently, with increased deployment in
applications such as video surveillance, traffic control etc. A
visual sensor networkis a network of isolated cameras that
are imaging different scenes or possibly different views of
the same scene. To better understand the fundamental limits
of compression and communication in such systems, it is
essential that a good model of the data sources (images) be
developed. We adopt a statistical approach to this problem and
propose Gaussian scale mixtures to succinctly and accurately
model a VSN.

There has been significant prior work in describing the
statistics of wavelet coefficients for a single image [1] [2].
A Gaussian scale mixture (GSM) distribution has been shown
to be a good model for describing the statistics of wavelet
coefficients for single images [3]. The problem of the joint
distribution of a pair of wavelet coefficients in a single
image is addressed in [4] and [5]. On the other hand, the
problem of distributed video coding with multi-view cameras
is considered in [6] and [7].

We consider a pair of potentially non-overlapping images
in a VSN and describe the joint distribution of the wavelet
coefficients of these images. In particular, we perform a multi-
scale wavelet decomposition of the two images and study the
joint distribution of a pair of wavelet coefficients belonging to
the same subband at the same scale. We require that the model
for the joint distribution be such that the marginal distribution
is a Gaussian Scale Mixture (GSM) distribution [5]. Therefore,
our model for the joint statistics of two images is a two-
dimensional GSM. Note that both the one-dimensional GSM
for a single image and the two-dimensional GSM for a pair
of images are good models for the wavelet coefficients in all
the sub-bands other than the subband obtained by successive
low pass filtering. Thus, throughout the paper, a subband

refers to any subband except for the subband obtained by
successive low pass filtering at different scales. We show
that the proposed model has a smaller Kullback-Leibler (KL)
divergence with the empirical joint distribution than a jointly
Gaussian model for the wavelet coefficients.

We also extend this model to blocks of wavelet coefficients
in the same subband at the same scale. We demonstrate the
utility of this model in VSNs through a denoising application.
We show the potential benefits that can be attained by using
two correlated noisy images while denoising one of the
images. In effect, we show that we can improve the quality
of a denoised image by using both noisy images as against
simply using the given noisy image. The denoising algorithm
proposed in this paper is particularly useful when the images
are highly correlated although non-overlapping.

The rest of the paper is organized as follows. We recall the
marginal distribution of wavelet coefficients in Section IIand
propose models for the joint distribution of wavelet coefficients
in Section III. We discuss the denoising algorithm in Section
IV and present results demonstrating the performance of these
models in Section V. Finally, we conclude the paper in Section
VI.

II. M ARGINAL DISTRIBUTION OF WAVELET COEFFICIENTS

We now recall the GSM model for the marginal distribution
of the wavelet decomposition coefficients of a single image
introduced in [5]. The inherent assumption with this model is
that the coefficients are independent and identically distributed
within each subband. LetS be a wavelet coefficient in a given
subband and scale. The random variableS is distributed as

S =
√

eXU,

whereX andU are independent and Gaussian distributed.U
is assumed to be a normal random variable with mean zero
and unit variance. Thus the premultipliereX corresponds to
the variance of the wavelet coefficient whileU corresponds
to the detail information. Note that the model proposed here
assumes that the non-linearity in the GSM model proposed
in [5] is an exponential function. We make this assumption
as it simplifies the foregoing formulation without negatively
impacting our ability to match the empirical distribution.The
parameters of the model can be estimated either through the
method of moments as in [8] or by maximum a posteriori
estimation [5]. The GSM model is shown to be better than
a Gaussian model for the marginal distribution of wavelet



coefficients in an image through a denoising application in
both these papers.

III. JOINT DISTRIBUTION OF WAVELET COEFFICIENTS OF

TWO IMAGES

In this section, we present two models for the joint distri-
bution of wavelet coefficients in two non-overlapping images.
The first model considers a pair of wavelet coefficients from
the two images, while the second model considers a block of
wavelet coefficients from each image.

A. Wavelet coefficients in the same subband - Model 1

We now consider the joint distribution of a pair of wavelet
coefficients (one from each image) in the same subband and
scale. As before, the coefficients are assumed to be i.i.d within
each subband of both images. LetS1 and S2 be wavelet
coefficients (scalars) belonging to the same subband at the
same scale of two different images. The model proposed
below is specific to corresponding subbands of the two images.
Therefore, the statistical parameters may be different fora
different pair of subbands. The motivation behind the proposed
model is that variance fields between images are correlated
while the details are independent. This idea is drawn from
the joint distribution of wavelet coefficients across scales [5].
Moreover, empirical observations also reveal that the wavelet
coefficients of two different images are decorrelated whilethe
variances of the wavelet coefficients are correlated. Thus,S1

andS2 are distributed as

S1 =
√

eX1U1 S2 =
√

eX2U2,

where Xi and Ui are independent of each other and each
is Gaussian distributed fori = 1, 2. Further, the random
variablesU1 and U2 have zero mean and unit variance and
are independent of each other. The joint distribution between
S1 and S2 is on account of the associated joint betweenX1

andX2. X1 andX2 are jointly Gaussian distributed with mean
µ1 andµ2 and covariance matrix

Σ =

[

σ2

1
ρσ1σ2

ρσ1σ2 σ2

2

]

.

Let {s1k}n
k=1

and{s2k}n
k=1

be the observed wavelet coef-
ficients of the two images in the same subband at the same
scale, wheren is the total number of wavelet coefficients in
the subband. We depart from the procedure of estimating the
parameters using the method of moments [8] since this method
could lead toρ /∈ [−1, 1]. Also, we desist from obtaining the
maximum a posteriori estimate of the parameters as detailed
in [5] for simplicity. Instead, we adopt a simple suboptimal
procedure to estimateµ1, µ2, σ2

1
, σ2

2
and ρ as follows. We

construct the maximum likelihood estimate ofx1k and x2k

given by x̂1k = log s2

1k and x̂2k = log s2

2k respectively. These
estimates are treated as realizations ofX1 andX2 to construct

maximum likelihood estimates of the parameters. Thus,

µ1 =
1

n

n
∑

k=1

log(s2

1k) σ2

1
=

1

n

n
∑

k=1

(log(s2

1k) − µ1)
2

µ2 =
1

n

n
∑

k=1

log(s2

2k) σ2

2
=

1

n

n
∑

k=1

(log(s2

2k) − µ2)
2

ρ =
1

nσ1σ2

n
∑

k=1

(log(s2

1k) − µ1)(log(s2

2k) − µ2).

This model achieves a smaller KL divergence with the
empirical distribution than a jointly Gaussian model. The
results of this experiment are presented in Section V. However,
it turns out that the correlation coefficientρ, is not large
enough for natural scenes. This limits the utility of the model
for applications that look to exploit the correlation between the
images. We thus consider an extended model in the following
section.

B. Blocks of wavelet coefficients in the same subband - Model
2

We now propose a statistical model for blocks of wavelet
coefficients in the two images. The wavelet coefficients in
each image in every subband and scale are partitioned into
non-overlapping blocks, each consisting of a total ofN co-
efficients. We assume that non-overlapping blocks of wavelet
coefficients within an image are independent. This assumption
is made since the objective of this paper is in studying the joint
statistics between two images. LetSi = (Si1, Si2, . . . , SiN ),
i ∈ {1, 2}, denote a block of wavelet coefficients (in the same
subband and scale) in the two images. We propose a GSM
vector model as

S1 =
√

eX1U1 S2 =
√

eX2U2,

whereXi andU i are independent of each other fori = 1, 2.
Further,U1 and U2 are Gaussian random vectors with zero
mean and identity covariance matrix and are independent of
each other.X1 andX2 are Gaussian distributed with meanµ1

andµ2 with covariance matrix

Σ =

[

σ2

1
ρσ1σ2

ρσ1σ2 σ2

2

]

.

We now describe the estimation of the parameters of the
model. LetM be the total number of blocks in each image.
Note that M denotes the total number of blocks across
subbands at different scales. Observed wavelet coefficients of
Image i, i ∈ {1, 2} in block j, j ∈ {1, . . . ,M} are denoted
by {sijk}N

k=1
. The estimates of the parameters are obtained in

the same fashion as before and shown below. Let

ηij =
1

N

N
∑

k=1

s2

ijk.



Then,

µi =
1

M

M
∑

j=1

log ηij

σ2

i =
1

M

M
∑

j=1

(log ηij − µi)
2

ρ =
1

Mσ1σ2

M
∑

j=1

(log ηij − µ1)(log ηij − µ2)

for i ∈ {1, 2}.
In this model, the correlation between the two images is

modeled through the variance of a block of coefficients rather
than the variance of individual coefficients. Also, we impose
that a block of wavelet coefficients has the same premulti-
plier. We find that this yields higher correlations between the
premultipliers for certain natural scenes, which allows usto
exploit the model in a denoising application described in the
next section.

IV. D ENOISING

We demonstrate the utility of the model for the block of
wavelet coefficients through a denoising application. LetY N

ij

denote the wavelet coefficients in blockj of the noisy Imagei,
wherei ∈ {1, 2} and j, j ∈ {1, . . . ,M}. The received signal
is given by

Y N
ij = SN

ij + ZN
ij ,

where ZN
ij is Gaussian distributed with mean zero and co-

variance matrixσ2

Zi
IN×N . We assume that the noise and the

source statistics i.e.σ2

Z1
, σ2

Z2
, µ1, µ2, σ2

1
, σ2

2
andρ are known

exactly for every subband and every scale at the receiver while
constructing the estimate.

The estimation procedure is similar to Bayesian least
squares estimate in [3], the difference being that we assume
knowledge of the source and channel statistics at the receiver.
Also, the proposed algorithm uses both images while denoising
one of the images. The minimum mean squared error (MMSE)
estimate of the denoised wavelet coefficient in a given subband
at a scale is given by

ŝijk =

∫

exi

exi + σ2

Zi

yijkp(xi|yN
1j , y

N
2j)dxi,

wherek ∈ {1, 2, . . . , N}. Here,

p(x1|yN
1j , y

N
2j) =

∫

p(x1, x2|yN
1j , y

N
2j)dx2

=

∫

p(yN
1j , y

N
2j |x1, x2)p(x1, x2)

p(yN
1j , y

N
2j)

dx2

=
p(yN

1j |x1)

p(yN
1j , y

N
2j)

∫

p(yN
2j |x2)p(x1, x2)dx2,

where

p(yN
1j , y

N
2j) =

∫ ∫

p(yN
1j , y

N
2j |x1, x2)p(x1, x2)dx1dx2

=

∫ ∫

p(yN
1j |x1)p(yN

2j |x2)p(x1, x2)dx1dx2.

Similarly,

p(x2|yN
1j , y

N
2j) =

∫

p(x1, x2|yN
1j , y

N
2j)dx1

=
p(yN

2j |x2)

p(yN
1j , y

N
2j)

∫

p(yN
1j |x1)p(x1, x2)dx1.

We will refer to the algorithm presented above as the VSN
algorithm.

We will compare this algorithm with a denoising algorithm
that just uses the given noisy image for denoising. This
algorithm will be referred to as the point to point (PTP)
algorithm and is similar to the algorithm in [3] with differences
in the estimation procedure. Even in this PTP algorithm,
we assume that the source and channel statistics are known
at the receiver. In contrast to the VSN algorithm, the PTP
algorithm only requires knowledge of the marginal statistics
of the source. The MMSE estimate of the wavelet coefficient
according to the PTP algorithm is given by

ŝijk =

∫

exi

exi + σ2

Zi

yijkp(xi|yN
ij )dxi

=

∫

exi

exi + σ2

Zi

yijk

p(yN
ij |xi)p(xi)

p(yN
ij )

dxi,

where

p(yN
ij ) =

∫

p(yN
ij |xi)p(xi)dxi.

The results of comparison are presented in the next section.

V. RESULTS

We present numerical results for the superior performance
of both the models proposed in this paper. We begin by
considering the model for the joint distribution of wavelet
coefficients in two images (Model 1). We test this model
on two different image databases, the van Hateren database
[9] and the Kodak database [10]. A wavelet decomposition
on the images is performed using the BiorSplines wavelet at
a single level. We observe that the KL divergence between
the GSM model and empirical distribution is much smaller
than the relative entropy between the Gaussian model and
the empirical distribution. The Gaussian model is chosen to
have the same first and second order statistics as the empirical
distribution. The KL divergences for the wavelet coefficients in
one of the subbands are shown in Fig. 1 and Fig. 2 respectively.
The X-axis contains the different image pairs for which the
joint distribution is computed. The KL divergences obtained
for different image pairs are sorted in increasing order and
shown in the plots.



(a) Original Image (b) Noisy Image
SNR = -10 dB

(c) VSN Algorithm
MSSIM = 0.7774

(d) PTP Algorithm
MSSIM = 0.7642

Fig. 3: Results of denoising sailing1.bmp

(a) Original Image (b) Noisy Image
SNR = -10 dB

(c) VSN Algorithm
MSSIM = 0.8886

(d) PTP Algorithm
MSSIM = 0.8760

Fig. 4: Results of denoising lighthouse2.bmp
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Fig. 1: Superior performance of GSM model over Gaussian
model on van Hateren database

We now present results of the denoising experiments for a
couple of images in the Kodak database [10]. Each image is
split into two halves and the wavelet coefficients in both halves
are corrupted by additive white Gaussian noise. The wavelet
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Fig. 2: Superior performance of GSM model over Gaussian
model on Kodak database

coefficients are obtained by computing a wavelet transform
using the BiorSplines wavelet at three scale levels. The two
halves are received at different signal to noise ratios (SNR). In
Fig. 3, the second half of ‘sailing1.bmp’ is received at 10 dB



while the first half is received at -10 dB. Note that the noise
variances in each subband are adjusted to obtain a uniform
SNR for demonstration purposes. It is clear that the VSN
algorithm achieves a better multiscale structural similarity
index (MSSIM) [11] value than the PTP algorithm. Recall
that the VSN algorithm is based on Model 2. In Fig. 4, the
first half of ‘lighthouse2.bmp’ is received at 10dB while the
second half is received at -10 dB. We wish to remark that
both ‘sailing1.bmp’ and ‘lighthouse2.bmp’ are images which
have a high value of the correlation coefficientρ in different
subbands. The superior performance of the VSN algorithm is
under conditions of high correlation between the two halves.
Moreover, the VSN algorithm performs better when the other
half is obtained at a much better SNR than the given half. This
is demonstrated through numerical results in Table I where the
MSSIM values of the first half of the denoised ‘sailing1.bmp’
are tabulated.

TABLE I: Performance variation of MSSIM with SNR for
VSN and PTP algorithms (first half of ‘sailing1.bmp’ image)

SNR1 = SNR of first half VSN PTP
SNR2 = SNR of second half MSSIM MSSIM

SNR1 = 1 SNR2 = 10 0.8550 0.8521
SNR1 = 0.1 SNR2 = 10 0.7774 0.7642
SNR1 = 0.01 SNR2 = 10 0.7527 0.7149

VI. CONCLUSION

We present models for the joint distribution of wavelet
coefficients in the same subband of two different images. We
show that a GSM model (Model 1) is better than a Gaussian
model in terms of achieving a smaller KL divergence with the
empirical distribution. We devise a denoising algorithm based
on another GSM model (Model 2) that exploits the inherent
correlation between the images. The algorithm is particularly
useful, when the images are highly correlated in the VSN.
Moreover, the algorithm also provides an approach to improve
the quality of a denoised image given a less noisy correlated
image as well. The model could also be potentially useful in
distributed compression and other communication problemsin
visual sensor networks.
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