Statistical Modeling of Multi-camera Images
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Abstract—This paper aims at developing mutual statistical refers to any subband except for the subband obtained by
descriptions of images in a visual sensor network. A two- successive low pass filtering at different scales. We show
dimensional Gaussian scale mixture (GSM) model is proposed {hat the proposed model has a smaller Kullback-Leibler (KL)

to describe the joint distribution of wavelet coefficients in the . - - . S "
same subband of two different images. This model is tested divergence with the empirical joint distribution than arjty

on two image databases, and it is shown that the proposed Gaussian model for the wavelet coefficients.
model always achieves a smaller divergence from the empirical We also extend this model to blocks of wavelet coefficients

distribution than a (jointly) Gaussian model. The GSM model in the same subband at the same scale. We demonstrate the
is then extended to blocks of wavelet coefficients in the Sameutility of this model in VSNs through a denoising applicatio

subband and scale of non-overlapping images. A new denoising . . . .
algorithm is devised that uses this model and achieves better W& Show the potential benefits that can be attained by using

performance than denoising based on marginal models. two correlated noisy images while denoising one of the
images. In effect, we show that we can improve the quality
of a denoised image by using both noisy images as against
The study of visual sensor networks (VSN) has gainesimply using the given noisy image. The denoising algorithm
significant importance recently, with increased deployimen proposed in this paper is particularly useful when the insage
applications such as video surveillance, traffic contral & are highly correlated although non-overlapping.
visual sensor networkis a network of isolated cameras that The rest of the paper is organized as follows. We recall the
are imaging different scenes or possibly different views @harginal distribution of wavelet coefficients in Sectioraid
the same scene. To better understand the fundamental lipitspose models for the joint distribution of wavelet coeédfits
of compression and communication in such systems, it ji$ Section Ill. We discuss the denoising algorithm in Sattio
essential that a good model of the data sources (images)IW¥&and present results demonstrating the performance sethe
developed. We adopt a statistical approach to this problem amodels in Section V. Finally, we conclude the paper in Sectio
propose Gaussian scale mixtures to succinctly and actyratgl.
model a VSN.
There has been significant prior work in describing thB. M ARGINAL DISTRIBUTION OF WAVELET COEFFICIENTS
statistics of wavelet coefficients for a single image [1].[2] . C
A Gaussian scale mixture (GSM) distribution has been shownWe now recall the GSM model for the marginal distribution

to be a good model for describing the statistics of wavelg{ the wavelet decomposition coefficients of a single image

coefficients for single images [3]. The problem of the join'{jltrOdUCGd n [.5]' The |n.herent assumptlo_n W't.h th|§ mod;el !
that the coefficients are independent and identicallyidigied

distribution of a pair of wavelet coefficients in a single . . L ;

. . . within each subband. L&t be a wavelet coefficient in a given

image is addressed in [4] and [5]. On the other hand, the e
e . . . C subband and scale. The random variables distributed as

problem of distributed video coding with multi-view camera

is considered in [6] and [7]. S = VeXU,

We consider a pair of potentially non-overlapping images

in a VSN and describe the joint distribution of the wavelevhere X andU are independent and Gaussian distributéd.

coefficients of these images. In particular, we perform atimulis assumed to be a normal random variable with mean zero

scale wavelet decomposition of the two images and study thed unit variance. Thus the premultiplief’ corresponds to

joint distribution of a pair of wavelet coefficients belongito the variance of the wavelet coefficient whilé corresponds

the same subband at the same scale. We require that the mom¢he detail information. Note that the model proposed here

for the joint distribution be such that the marginal disitibn assumes that the non-linearity in the GSM model proposed

is a Gaussian Scale Mixture (GSM) distribution [5]. Therefo in [5] is an exponential function. We make this assumption

our model for the joint statistics of two images is a twoas it simplifies the foregoing formulation without negatwe

dimensional GSM. Note that both the one-dimensional GShpacting our ability to match the empirical distributiorhe

for a single image and the two-dimensional GSM for a paparameters of the model can be estimated either through the

of images are good models for the wavelet coefficients in aflethod of moments as in [8] or by maximum a posteriori

the sub-bands other than the subband obtained by successstémation [5]. The GSM model is shown to be better than

low pass filtering. Thus, throughout the paper, a subbaadGaussian model for the marginal distribution of wavelet

I. INTRODUCTION



coefficients in an image through a denoising application maximum likelihood estimates of the parameters. Thus,
both these papers.
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[1l. JOINT DISTRIBUTION OF WAVELET COEFFICIENTS OF "
Two IMAGES 1 1
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In this section, we present two models for the joint distri- "= "=
bution of wavelet coefficients in two non-overlapping image 1 n ) )
The first model considers a pair of wavelet coefficients from 2 = no1oy Z(log(sm) — p1)(log(s3y,) — p2).
the two images, while the second model considers a block of k=1

wavelet coefficients from each image. This model achieves a smaller KL divergence with the

empirical distribution than a jointly Gaussian model. The
A. Wavelet coefficients in the same subband - Model 1 results of this experiment are presented in Section V. Hewev

turns out that the correlation coefficient is not large

We_ now consider the Jomt_dlstnbujuon of a pair of WaVEIeén(Pugh for natural scenes. This limits the utility of the rlod
coefficients (one from each image) in the same subband an

- - . Tor applications that look to exploit the correlation betmehe
scale. As before, the coefficients are assumed to be |.|hjn/v|tima es. We thus consider an extended model in the followin
each subband of both images. L&t and S; be wavelet ges. 9

coefficients (scalars) belonging to the same subband at ﬁ%ﬂon'

same scale of two different images. The model proposed

below is specific to corresponding subbands of the two imag&s Blocks of wavelet coefficients in the same subband - Model
Therefore, the statistical parameters may be differentafor2

different pair of subbands. The motivation behind the psgb  \ye po\y propose a statistical model for blocks of wavelet

model is that variance fields between images are correlatgtheiciants in the two images. The wavelet coefficients in
while the details are independent. This idea is drawn froLch jimage in every subband and scale are partitioned into
the joint distribution of wavelet coefficients across ssd. non-overlapping blocks, each consisting of a totalNofco-
Moreover, empirical observations also reveal that the Vedveoticjents. We assume that non-overlapping blocks of wavele
cogfﬂments of two ditierent IMages are decorrelated Wit o fficjents within an image are independent. This assampti
variances of the wavelet coefficients are correlated. THus, is made since the objective of this paper is in studying ti jo

and S, are distributed as statistics between two images. L8f = (Si1, Sia, ..., Sin),
i € {1, 2}, denote a block of wavelet coefficients (in the same
— £/ pX — /X
S1= Vel S2 = Ver2Us, subband and scale) in the two images. We propose a GSM

. ector model as
where X; and U; are independent of each other and eac\ﬁ

is Gaussian distributed foi = 1,2. Further, the random S, = VeXilU, Sy = VeXa Uy,

variablesU; and U, have zero mean and unit variance and

are independent of each other. The joint distribution betwewhereXi andTU; are independent of each other for 1, 2.

51 and S, is on account of the associated joint betwe®n g rther, 77, and U7, are Gaussian random vectors with zero
andX. X, and.X; are jointly Gaussian distributed with meany,ean and identity covariance matrix and are independent of
p1 andpg and covariance matrix each otherX; and X, are Gaussian distributed with mean

} and uo with covariance matrix
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Let {s1x}7_, and{s2x}}_, be the observed wavelet coef

ficients of the two images in the same subband at the same

scale, wheres is the total number of wavelet coefficients inVeé now describe the estimation of the parameters of the
the subband. We depart from the procedure of estimating th@del. LetM be the total number of blocks in each image.
parameters using the method of moments [8] since this metHigte that M denotes the total number of blocks across
could lead top ¢ [—1, 1]. Also, we desist from obtaining the subbands at dlﬁergnt scales. Observed wavelet coeffecint
maximum a posteriori estimate of the parameters as detail8#9€i, i € {1,2} in block j, j € {1,..., M} are denoted

in [5] for simplicity. Instead, we adopt a simple suboptimaPy {sijk}h1- The estimates of the parameters are obtained in
procedure to estimate;, u2, o2, o2 and p as follows. We the same fashion as before and shown below. Let

construct the maximum likelihood estimate of, and xoy, N

given by @y, = log s3, andZqy, = log s3, respectively. These Nii = 1 ZSZ,k_

estimates are treated as realizations{gfand X, to construct 7N P *



Then, where

Hi =
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for i € {1,2}. SO

In this model, the correlation between the two images \&e will refer to the algorithm presented above as the VSN
modeled through the variance of a block of coefficients mathgigorithm.

than the variance of individual coefficients. Also, we im@os

that a block of wavelet coefficients has the same premulti-\/\/e will compare this a|gorithm with a denoising a|gorithm

plier. We find that this yle'dS hlgher correlations betweke t that just uses the given noisy image for denoising_ This

premultipliers for certain natural scenes, which allowstais aigorithm will be referred to as the point to point (PTP)

exploit the model in a denoising application described i@ thalgorithm and is similar to the algorithm in [3] with diffarees

next section. in the estimation procedure. Even in this PTP algorithm,

we assume that the source and channel statistics are known

IV. DENOISING at the receiver. In contrast to the VSN algorithm, the PTP

Igorithm only requires knowledge of the marginal statssti

f the source. The MMSE estimate of the wavelet coefficient

according to the PTP algorithm is given by

We demonstrate the utility of the model for the block og
wavelet coefficients through a denoising application. K@i
denote the wavelet coefficients in bloglof the noisy Image,
wherei € {1,2} andj, j € {1,...,M}. The received signal

X

is given by Bk = / — yap(alyNda

1] 61i+0%i 1) v1Jij 7

Yij =5 +Zij :/ S y,;jkp(y”l ’A),p( Z)da:,»,
: o : et + oy, Pyi;)
where ZZ.J}’ is Gaussian distributed with mean zero and co-
variance matrixs% Iy . We assume that the noise and thyhere
source statistics i.er3,, 0%, , i1, fi2, 0%, 03 andp are known p(yiy) = /P(yf}flivi)p(xi)d:vi-
exactly for every subband and every scale at the receivdewhi
constructing the estimate. The results of comparison are presented in the next section.
The estimation procedure is similar to Bayesian least V. RESULTS

squares estimate in [3], the difference being that we assume
knowledge of the source and channel statistics at the mceiv We present numerical results for the superior performance
Also, the proposed algorithm uses both images while dempisiof both the models proposed in this paper. We begin by
one of the images. The minimum mean squared error (MMSEQnsidering the model for the joint distribution of wavelet
estimate of the denoised wavelet coefficient in a given sadbbacoefficients in two images (Model 1). We test this model
at a scale is given by on two different image databases, the van Hateren database
[9] and the Kodak database [10]. A wavelet decomposition
. evi N N on the images is performed using the BiorSplines wavelet at
Sijk = /Myijkp(xiylj’y2j)dxi’ a single level. We observe that the KL divergence between
! the GSM model and empirical distribution is much smaller
wherek € {1,2,...,N}. Here, than the relative entropy between the Gaussian model and
the empirical distribution. The Gaussian model is chosen to
p(x1|y{\§’ yé\jf_) = /p(3317$2|yﬁ-, yé\;—)de have the same first and second order statistics as the eahpiric
distribution. The KL divergences for the wavelet coeffidgeim
one of the subbands are shown in Fig. 1 and Fig. 2 respectively
The X-axis contains the different image pairs for which the
joint distribution is computed. The KL divergences obtaine
/p(yévj|x2)p(aj1,x2)dg;2’ for different image pairs are sorted in increasing order and
shown in the plots.

P(y{\;, yé\; |21, 22)p(z1, 22)

= N N dl‘g
p(y1y, ¥a5)

~ plyfyle)

-yl v)



(a) Original Image (b) Noisy Image (c) VSN Algorithm (d) PTP Algorithm
SNR = -10 dB MSSIM = 0.7774 MSSIM = 0.7642

Fig. 3: Results of denoising sailingl.bmp

(a) Original Image (b) Noisy Image (c) VSN Algorithm (d) PTP Algorithm
SNR = -10 dB MSSIM = 0.8886 MSSIM = 0.8760

Fig. 4: Results of denoising lighthouse2.bmp

c van Hateren Image Database c Kodak Image Database
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Fig. 1: Superior performance of GSM model over Gaussidfig. 2: Superior performance of GSM model over Gaussian
model on van Hateren database model on Kodak database

We now present results of the denoising experiments forcaefficients are obtained by computing a wavelet transform
couple of images in the Kodak database [10]. Each imageusing the BiorSplines wavelet at three scale levels. The two
split into two halves and the wavelet coefficients in bothveal halves are received at different signal to noise ratios (BINR
are corrupted by additive white Gaussian noise. The wavelgg. 3, the second half of ‘sailingl.bmp’ is received at 10 dB



while the first half is received at -10 dB. Note that the noisg7]
variances in each subband are adjusted to obtain a uniform
SNR for demonstration purposes. It is clear that the VS
algorithm achieves a better multiscale structural sintyar
index (MSSIM) [11] value than the PTP algorithm. Recall
that the VSN algorithm is based on Model 2. In Fig. 4, theg
first half of ‘lighthouse2.bmp’ is received at 10dB while the
second half is received at -10 dB. We wish to remark th ltO]
both ‘sailingl.bmp’ and ‘lighthouse2.bmp’ are images whic
have a high value of the correlation coefficigntn different [11]
subbands. The superior performance of the VSN algorithm is
under conditions of high correlation between the two halves
Moreover, the VSN algorithm performs better when the other
half is obtained at a much better SNR than the given half. This
is demonstrated through numerical results in Table | wheee t
MSSIM values of the first half of the denoised ‘sailingl.bmp’
are tabulated.

TABLE [: Performance variation of MSSIM with SNR for
VSN and PTP algorithms (first half of ‘sailingl.bmp’ image)

SNR1 = SNR of first half VSN PTP
SNR2 = SNR of second half MSSIM | MSSIM
SNR1 =1 SNR2 =10 0.8550 | 0.8521
SNR1 = 0.1 SNR2 =10 0.7774 | 0.7642
SNR1 =0.01 SNR2 =10 | 0.7527 | 0.7149

V1. CONCLUSION

We present models for the joint distribution of wavelet
coefficients in the same subband of two different images. We
show that a GSM model (Model 1) is better than a Gaussian
model in terms of achieving a smaller KL divergence with the
empirical distribution. We devise a denoising algorithnsdsh
on another GSM model (Model 2) that exploits the inherent
correlation between the images. The algorithm is partitula
useful, when the images are highly correlated in the VSN.
Moreover, the algorithm also provides an approach to imgrov
the quality of a denoised image given a less noisy correlated
image as well. The model could also be potentially useful in
distributed compression and other communication probliems
visual sensor networks.
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