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Abstract

We propose a novel technique to detect feature points
from portrait and range representations of the face. In this
technique, the appearance of each feature point is encoded
using a set of Gabor wavelet responses extracted at multi-
ple orientations and spatial frequencies. A vector of Gabor
coefficients, called a jet, is computed at each pixel in the
search window on a fiducial and compared with a set of
jets, called a bunch, collected from a set of training data
on the same type of fiducial. The desired feature point is
located at the pixel whose jet is the most similar to the
training bunch. This is the first time that Gabor wavelet
responses were used to detect facial landmarks from range
images. This method was tested on 1146 pairs of range and
portrait images and high detection accuracies are achieved
using a small number of training images. It is shown that
co-localization using Gabor jets on range and portrait im-
ages resulted in better accuracy than using any single image
modality. The obtained accuracies are competitive to that
of other techniques in the literature.

1. Introduction

Automatic detection of facial feature points (fiducials)
plays an important role in applications such as facial feature
tracking, human-machine interaction, and face recognition.

Many face recognition algorithms operate based on geo-
metrical features like the distances and angles defined be-
tween several prominent facial landmarks [3]. Other re-
searchers have used local texture or shape descriptors ex-
tracted around one or more fiducial points as desired fea-
tures for face recognition purposes [4].

The main landmarking assumption in [4] is that the nose
tip is the closest point to the 3D sensor and hence in the re-
sulting range image, the nose tip has the highest gray scale
value. This method may simply fail when the face regis-
tration step erroneously detects a streak of hair or tip of a
protruding chin as the nose tip.

The above examples highlight the important role that a
robust automatic facial feature detection can play in au-
tomation of those face recognition algorithms that currently
require human intervention [3]. A robust feature detection
method can also improve the performance of face recogni-
tion algorithms that are reliant on fiducial detection algo-
rithms founded on poor heuristics [4].

Recently, extensive work has been focused on automatic
feature localization from portrait images of the face. A por-
trait image also referred to as a “2D image,” contains facial
texture and color information. The active appearance model
(AAM) by Cooteset al. [1] is one of the most effective fa-
cial landmark detection algorithms on 2D images. An itera-
tive search algorithm seeks the best location for each feature
using a texture model describing that feature’s surrounding.
These feature locations are then fine-tuned using the spatial
distribution of feature points encoded by a shape model. In
a later work, Cristinacceet al. [2] improved the AAM al-
gorithm and showed that their new shape optimized search
(SOS) algorithm outperforms the AAM.

There have been very few techniques proposed in the lit-
erature that use3D facial information for fiducial detection.
The existing ones are mainly based on mean and Gaussian
curvatures extracted from range images. Curvature features
are very sensitive to3D acquisition noise; therefore, they
require extensive preprocessing. Recent studies [5] show
that these techniques suffer from a large number of false
positives and thus result in low accuracies.

Elastic bunch graph matching (EBGM) [6] is a success-
ful 2D face recognition algorithm in which multiple Ga-
bor wavelet coefficents at different scales and orientations
are used to model local appearance around fiducial points.
In this paper, we have extended the concept of using Ga-
bor wavelets to represent local information around feature
points to detect features on both2D portrait and3D range
images of the face. To the best of our knowledge this is the
first time that Gabor-based appearance models are used to
detect feature points from range images of the face.

The remainder of this paper is organized as follows: In
Section 2 we present an overview of Gabor wavelets and



similarity measures defined to compare Gabor wavelet re-
sponses. A detailed description of our feature localization
methods is given in Section 3. In section 4 our algorithm is
evaluated on a dataset of1146 pairs of co-registered range
and portrait images from119 subjects. The conclusion and
future works are presented in section 5.

2. Background

2.1. Gabor Jets

The local appearance around a point,~x, in a gray scale
imageI(~x) can be encoded using a set of Gabor coefficients
Jj(~x). Each coefficientJj(~x) is derived by convolving in-
put imageI(~x) with a family of Gabor kernelsψj
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Gabor kernels are plane waves restricted by a Gaussian

envelope function of relative widthσ = 2π. Each kernel is
characterized by a wave vector~kj = [kv cosφu kv sinφu]

T

wherekv = 2−(v+1) with v = 0, 1 . . . , 4 symbolize spa-
tial frequencies andφu = (φ/8)u with u = 0, 1 . . . , 7 are
the different orientations of the Gabor kernels used in this
paper.

A jet ~J is a set{Jj , j = u+ 8v} of 40 complex Gabor
coefficients obtained from a single image point. Complex
Gabor coefficients can be represented in their exponential
form Jj = aj exp(iφj) whereaj(~x) is the slowly varying
magnitude andφj(~x) is the phase of thejth Gabor coeffi-
cient at pixel~x.

The similarity between two jets is defined using the
phase sensitive similarity measure:
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This similarity measure returns real values in the range
[−1,+1], where a closer value to+1 means a higher simi-
larity between the input jets.

2.2. Gabor Bunch

In order to search for a given feature on a new face im-
age, a general representation of that fiducial point is re-
quired. As proposed in [6], the general appearance of each
fiducial point can be modeled by bundling the Gabor jets
extracted from several manually marked examples of that
feature points (e.g. eye corners) in a stack-like structure
called a “Gabor bunch”.

In order to support a wide range of variations in the
appearance of faces caused by subjects’ different gender,
race, and facial expression, a comprehensive training set
should be selected. For example, the Gabor bunch repre-
senting an eye corner should contain jets from open, closed,
male, female and other possible eye corners. In this work
a training set containing50 pairs of registered portrait and
range images is selected carefully to cover possible varia-
tions present in the data set.

The similarity measure between a jet and a bunch is nat-
urally defined to be the maximum of the similarity values
between the input jet and each constituent jet of that bunch

SB( ~J,
~~B) =

50
max
i=1

S( ~J, ~B(i)) (3)

where in equation (3),~~B represents a bunch and~B(i)s with
i = 1, . . . , 50 are its constituent jets.

3. Materials and Methods

3.1. Data

In this study we have used a collection of face images
provided by Advanced Digital Imaging Research (ADIR)
LLC. (Friendswood, TX). This data set contains1196 pairs
of portrait and range images from119 subjects captured
using a stereo imaging system made by3Q Technologies
Ltd. (Atlanta, GA). All ADIR’s 2D and3D face images are
roughly aligned with respect to a fixed generic face model
using iterative closest point (ICP) algorithm. Hence, all im-
ages are frontal face images with nose tip approximately
located at the center of the image.

We have reduced the size of all images by a factor of
3 in each direction and the resulting images are of size
251 × 167 pixels. Finally,2D colored portrait images were
transformed to gray scale portrait images. No further pre-
processing has been applied to the data set.

3.2. Training

A set of50 pairs of registered range and gray scale por-
trait images covering a variety of facial appearances from
subjects with different ages, races, and genders was selected
for the training and Gabor bunch extraction. This train-
ing set contains neutral and expressive faces among which
many examples have open mouth or closed eyes.

We have manually marked11 prominent facial features
on the portrait images of these50 training pairs. Since these
portrait and range images are perfectly aligned, the location
of fiducials on the range image of the pair is exactly the
same as the portrait one. Figure 1 shows a range and portrait
pair from the training set with11 feature points marked with
red “X” on the portrait image.



(a) (b)

Figure 1. Example of face images from the
ADIR data set a) A portrait image with marked
fiducial. b)The corresponding range image.

Finally, Gabor jets are calculated from images of each
modality (portrait and range) at the manually marked land-
marks. All Gabor jets from a specific feature point ( e.g.
nose tip) and modality are stacked together to create a bunch
representation of that fiducial in that modality. For example
the nose tip’s range-bunch describes the nose tip in the range
images.

3.3. Localization Method

In the elastic bunch graph matching [6], the “search area”
of each feature point is constrained by penalizing the defor-
mation of a graph connecting the fiducials in an optimiza-
tion algorithm. Since all of the face images in ADIR data
set are coarsely aligned to a frontal view, our prior knowl-
edge about the human face can be used to limit the search
area of each feature point. For example, the nose tip is ex-
pected to be located at the center of the image and the left
eye’s inner corner is always located above and to the left of
the nose tip.

In this work, each fiducial point is looked for in a search
area centered at the average location of that fiducial in the
training data. Each search area is a rectangle box of size
40 × 40 pixels. The sides of these rectangular areas are at
least5 times the standard deviation of each fiducial’s coor-
dinates in the training set. Our results show that the search
window is reasonably large and all fiducials are located in
their expected search area. In figure 2, the search area of
the nose tip and inner corners of the eyes are marked with
rectangular boxes.

In order to automatically locate a fiducial point on a pair
of range and portrait images which have never been seen
before, the range and portrait data enclosed by the search

area of that feature point are first convolved with the set
of 40 Gabor wavelets presented in (1). As a result, each
pixel of the search area is represented with two Gabor jets,
a “range jet” and a “portrait jet”. Next, The jets of each
modality are compared to their corresponding bunch using
the similarity measure between a jet and a bunch formulated
by (3). Consequently, a similarity map is created for each
modality demonstrating the similarity between each pixel
in the search area and the appropriate bunch describing the
appearance of the target feature point. In each modality’s
similarity map, the pixel with the highest similarity value
is the target fiducial. Ultimately, the range and portrait in-
formation are combined by selecting the modality whose
localized feature point has higher similarity score.

Figure 2. Search areas of the nose tip and in-
ner eye corners.

4. Results

The proposed landmark detection algorithm is tested on
the remaining1146 pairs of facial images available in ADIR
data set. The correct location of the feature points are man-
ually marked on all testing images. To evaluate the detec-
tion accuracy, the positional error of each detected fiducial
is normalized by dividing the error distance with the inter-
ocular distance of that face.

The average of the normalized positional errors is de-
noted asme, adopting the same notation as in [2]. Fig-
ures 3(a) shows the cumulative probability distribution of
me averaged over all feature points. This figure indicates
that when the acceptable detection error isme ≤ 0.06, the
search algorithm based only on range information is suc-
cessful for91% of faces whereas the success rate of a lo-
calization algorithm based only on portrait information is
as high as96%. Eventually, the combination of range and
portrait information works on98% of faces.



Figure 3(b) demonstrate the same distribution for4 nasal
fiducials (i.e. nose tip, subnasal, and nose left/right cor-
ners). This figure indicates that when only portrait infor-
mation is used by our proposed detection algorithm, nasal
fiducials are successfully located on more than98% of faces
given thatme ≤ 0.06. From figure 3(b), it is apparant that
the range information outperforms the portrait information
in finding nasal fiducials for any given valueme.

The performance of our novel feature point localization
algorithm is promising and competitive to well known al-
gorithms like AAM [1] and SOS [2]. Cristinacceet al. [2]
has compared the performance of AAM versus SOS in de-
tecting17 features on1521 facial images. Cristinacceet
al. used a very large training set containing1055 face im-
ages compared to our algorithm which needs only50 image
pairs. They reported that when the acceptable normalized
displacement error isme ≤ 0.1, AAM is successful on70%
and SOS works for85% of faces. Whereas, withme ≤ 0.1,
the success rates of our proposed method are more than99%
for any fiducial using any combination of range or portrait
modalities (see figure 3(a)).

Our detection algorithm employs a simple search method
with a remarkable performance in finding fiducial points on
expressive and neutral facial images. Our proposed local-
ization algorithms require a small set of representative faces
for training and because the computational cost is low, it is
suitable for real time applications.

5. Conclusion

In this paper we have presented novel algorithms for2D
and3D facial landmarking. Gabor coefficients are used to
encode the appearance of facial landmarks. Coefficient ex-
tracted from pixels of the search window are compared to
those of the training data to automatically locate fiducialson
images of each modality. The Gabor coefficients have been
employed for the first time to detect feature points on range
images. It was shown that the proposed3D Gabor-based
feature detection algorithm can outperform its2D counter-
part in detecting nasal feature points. Experimental results
on a database of 1146 portrait and range images indicate the
highly competitive performance of our method compared to
well-known methods in the literature. In the future, it is
desirable to adopt a coarse-to-fine landmarking strategy to
increase the computational efficiency.
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