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Abstract-- With the rapid proliferation of digital video 

applications, the question of video quality control becomes 
central. We present a novel multi-scale framework for video 
quality assessment that models motion in video sequences and is 
capable of capturing spatio-temporal artifacts in digital video. 
Performance evaluation of the proposed metric on the VQEG 
database shows that the system is competitive with and even 
performs better than existing methods. 

I. INTRODUCTION 
Digital video has pervaded the lives of people due to the 

popularity of applications such as Internet Video, Interactive 
Video on Demand (VoD), Video Telepresence, Video Phones, 
PDAs and other Wireless Video devices, Video Surveillance, 
HDTV, Digital Cinema etc. Unfortunately, each stage of 
processing that a video sequence goes through before reaching 
the end-user in any of these applications changes the quality of 
the video. Thus, algorithms that can automatically assess the 
quality of a video sequence are essential to monitor and 
control the quality of videos that are being distributed and 
communicated globally. In most of the applications mentioned 
above, the end users of the video sequence are human 
observers, who can instantaneously judge the quality of the 
video using their visual system. The goal of video Quality 
Assessment (QA) research is to predict the visual quality of a 
video signal, as assessed by a human observer. Most of the 
research on video QA has focused on quantifying the fidelity 
of a given video sequence, with respect to the original 
“perfect'” video sequence before any processing occurred, and 
this is known as Full Reference QA. We focus on full 
reference video QA in this paper. 

In the literature, video quality assessment has always been 
addressed using simple modifications of models developed for 
still image QA [1,2,3,4]. The main reason for this has been the 
fact that motion processing in the Human Visual System 
(HVS) is not as well understood as the initial processing 
stages in the visual pathway that play a key role in human 
perception of static images. However, precisely due to the fact 
that motion processing occurs in the HVS, different factors 
come into play in QA of moving images, that are not 
addressed sufficiently by video QA systems that are based on 
still image QA systems. We have described the importance of 
modeling motion and temporal artifacts in video sequences 
and demonstrated gains using such an approach [5,6]. 

In this paper, we will develop a multi-scale framework for 
video quality assessment, that improves upon the single-scale 
algorithms that we have previously developed for video QA 
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[5,6].  

II. MULTI-SCALE VIDEO QA 
Most video QA systems in the literature employ a scale-

space decomposition, usually separable, of the image/video 
signal to mimic similar processing in early stages of visual 
processing. Example spatial decompositions include the 
Cortex transform and the steerable pyramid [7,8]. Temporal 
frequency decomposition is performed using either a single or 
two channel model, that attempts to model temporal 
processing by neurons in the visual cortex [1,3]. However, 
such simple temporal processing is insufficient to characterize 
the response of neurons in the Medial Temporal Area (Area 
MT) of the visual cortex that is well known to play a critical 
role in movement perception in the HVS. 

The QA models in [5,6] perform a decomposition of both 
the reference and test video sequences into spatio-temporal 
bandpass channels in the frequency domain that differ 
significantly from others used in video QA. This 
decomposition achieves two goals: optical flow estimates, that 
describe the motion of each pixel in the video sequence as a 
two-dimensional vector, are derived using the outputs of these 
bandpass channels. Secondly, the video quality is computed 
between these bandpass filtered outputs in the frequency 
domain, as opposed to the pixel domain. A family of Gabor 
filters at a single scale was used in our implementation of both 
quality metrics and an iso-surface contour of the Gabor 
filterbank in the spatio-temporal frequency domain is 
illustrated in Figure 1. The spatio-temporal decomposition that 
we use is selective for the velocities of visual stimuli and has 
been successfully used for optical flow estimation on video 
sequences [9]. Further, filters such as ones we have used have 
also been proposed as physiologically plausible models for the 
tuning of neurons in Area MT [10]. To the best of our 
knowledge, the models in [5,6] are the first to use 
decompositions that are velocity-selective in a video quality 
assessment framework. However, all the filters used in [5,6] 
were at a single scale, which results in several disadvantages 
that we outline below. In this paper, we attempt to overcome 
these limitations by developing a multi-scale set of velocity-
selective filters. 

The first and most significant drawback of a single scale 
filterbank is the inability to detect motion that causes the 
spectrum of the video to lie outside the bandpass support of 
the filters. We use the Fleet and Jepson optical flow estimation 
algorithm and all reported implementations of this algorithm 
deploy a single scale of filters [9]. Such filters hence fail to  
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Figure 1: Iso-surface contours of the Gabor family in the spatio-
temporal frequency domain 

 
compute optical flow in fast moving regions of videos, 

since fast moving regions need to be detected at lower spatial 
frequencies to avoid the effects of temporal aliasing [9]. This 
is a drawback for video QA, since videos commonly contain 
fast moving objects (sports, action movies, etc.). Challenges 
that a multi-scale framework will encounter include automatic 
selection of the scale at which motion is to be detected, and 
detecting and avoiding filter outputs that suffer from temporal 
aliasing. 

In addition to motion estimation issues, single scale 
filterbanks do not span the entire frequency domain. This is 
also not desirable in a QA framework, since spectral 
components of distortions in the video, may well fall outside 
the passbands of the filterbank and will hence not be detected. 
This is all the more important in applications such as 
compression, where quantization causes loss of high 
frequency information, that cannot be detected by the filters 
we use in [5,6]. Additionally, a multi-scale framework can be 
used to model a number of perceptually-relevant effects, such 
as the reduced visibility of spatial detail in fast moving 
regions, the high visibility of flickering artifacts, and so on. To 
account for these, we propose to compute quality indices using 
only the filters at the scales at which motion is detected. We 
propose to demonstrate the performance of our multi-scale 
framework for QA using the Video Quality Expert's Group 
(VQEG) database [13]. 

III.  SCALABLE IMAGE AND VIDEO QA 
A multi-scale framework can be used in scalable image and 

video QA and to incorporate adjustments for viewing distance 
[11]. The spatial scale (spatial resolution) and temporal scale 
(frame rate) of a video stream are often altered by, e.g., 
display or transcoding requirements. It is therefore of interest 
to perform QA on images and videos that have been scaled 
relative to the reference. Example applications include 
scalable streaming video over the Internet, video display on 
small mobile devices, in-flight entertainment screens, High 
Definition video displayed on Standard Definition monitors, 
etc. Our approach to scalable QA will begin with still images, 
since that problem remains unaddressed and is a suitable 
precursor to scalable video QA. Since test and reference 

images are both resolution decomposed, the resolution scales 
can be made to match using filters at different scales. If the 
test image is 1/s the size of the reference (for simplicity, 
assume the same reduction in scale along horizontal and 
vertical axes), then the subband filters operating on the test 
image will likewise be scaled by a factor 1/s relative to those 
used on the reference. Subsampling the reference by a factor s 
after resolution decomposition will then produce a scale 
matched reference, which can be used as the reference signal 
in the QA algorithm. Such approaches have been used 
previously in scale-matched object recognition [11]. 

We will describe techniques for scalable QA of still images 
and demonstrate the performance of our proposed technique. 
We will also briefly discuss ways to extend these scalable 
techniques to video QA. 
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