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Abstract—Multicolor fluorescence in situ hybridization
(M-FISH) techniques provide color karyotyping that allows
simultaneous analysis of numerical and structural abnormalities
of whole human chromosomes. Chromosomes are stained combi-
natorially in M-FISH. By analyzing the intensity combinations of
each pixel, all chromosome pixels in an image are classified. Often,
the intensity distributions between different images are found to
be considerably different and the difference becomes the source
of misclassifications of the pixels. Improved pixel classification
accuracy is the most important task to ensure the success of the
M-FISH technique. In this paper, we introduce a new feature nor-
malization method for M-FISH images that reduces the difference
in the feature distributions among different images using the ex-
pectation maximization (EM) algorithm. We also introduce a new
unsupervised, nonparametric classification method for M-FISH
images. The performance of the classifier is as accurate as the
maximum-likelihood classifier, whose accuracy also significantly
improved after the EM normalization. We would expect that any
classifier will likely produce an improved classification accuracy
following the EM normalization. Since the developed classification
method does not require training data, it is highly convenient
when ground truth does not exist. A significant improvement was
achieved on the pixel classification accuracy after the new feature
normalization. Indeed, the overall pixel classification accuracy
improved by 20% after EM normalization.

Index Terms—Chromosome, classification, expectation maxi-
mization (EM), maximum-likelihood, multicolor fluorescence in
situ hybridization (M-FISH), normalization, unsupervised.

I. INTRODUCTION

T HE FLUORESCENCE in situ hybridization (FISH) mi-
croscopic imaging modality has been widely used for the

analysis of genes and chromosomes. Multiple fluorophores are
often used combinatorially to visualize several biological target
types simultaneously. Using combinatorial labeling methods,

specimens can be discriminated using fluorophores.
When three fluorophores are used, seven specimens can be an-
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alyzed by the binary combinations (presence or absence) of the
fluorophores. gray scale images of specimens, stained with
fluorophores, can be obtained using a monochrome camera and
a set of optical bandpass filters that are specifically designed for
the excitation and emission wavelengths of the fluorophores [1].

In particular, multicolor (multiplex) fluorescence in situ
hybridization, so called M-FISH, uses minimum five fluo-
rophores to uniquely identify all 24 chromosome types of
the human genome. A sixth fluorophore, DAPI (4’-6-di-
amidino-2-phenylindole, a blue fluorescent dye), is used to
counterstain the chromosomes [1], [2]. Thus, each pixel of
an M-FISH image is typically composed of six values that
correspond to the intensities of six fluorophores. Fig. 1 shows
an example of M-FISH images. By analyzing the combinations
of the six spectral intensities, all of the chromosome pixels in an
image are identified, and a pseudocolor is assigned based on the
class the pixel belongs to [3], [4]. After the pixel classification,
chromosomes are displayed according to a standard format.

The M-FISH technique has been used for the characterization
of translocations, to search for cryptic rearrangements, to study
mutagenesis, tumors, and radiobiology [5]. In cancerous cells,
translocations, or exchanges of chromosomal material between
chromosomes, are extremely common.

Currently available M-FISH systems still exhibit misclassi-
fications of multiple pixel regions due to a number of factors,
including nonhomogeneity of staining, variations of intensity
levels within and between image sets, and emission spectra
overlaps between fluorophores. The size of the misclassified
regions are often larger than the actual chromosomal rearrange-
ment. To reliably detect subtle and cryptic chromosomal
aberrations, a highly accurate pixel classification method has to
be developed. Along with a reliable pixel classification method,
automation of karyotyping process is another important goal.
The automation requires segmentation of chromosomes, which
not only involves object/background separation but also in-
volves separating touching and overlapping chromosomes.
While automating the segmentation of partially occluded
chromosomes is an extremely challenging problem, a pixel
classification method that satisfies both high accuracy and
minimum human intervention has not been realized.

In order to achieve a high accuracy in pattern recognition,
selection or extraction of good features is the most important
stage of processing. Different classifiers may produce different
accuracies, but the accuracy is fundamentally bounded by the
sample distribution in the feature space. Thus, feature normal-
ization is also a crucial part of classification after feature se-
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Fig. 1. An M-FISH image. Chromosomes are combinatorially labeled using five fluorophores and counterstained using DAPI. Each gray scale image corresponds
to the sum of intensities of the emission wavelengths (a narrow range of wavelengths) of each fluorophore. (a) DAPI. (b) Aqua. (c) Green. (d) Gold. (e) Red.
(f) Far Red.

lection. In particular, when features are obtained independently,
the normalization must be performed in order to reduce the in-
travariance of the feature distribution among different images.
In M-FISH, each channel is captured independently, and each
channel has a different integration time due to different signal
strengths of fluorophores. As the relative intensity values across
the six channels are used as features, intensity variations should
be normalized prior to pixel classification.

In this paper, we present a new normalization method for
M-FISH images using the expectation maximization algorithm.
The developed normalization method significantly increases the
pixel classification accuracy for any classifier. We also present
a new classification method for M-FISH images that does not
require training of a classifier (unsupervised) nor does it require
class parameter estimation (nonparametric).

II. NORMALIZATION OF M-FISH IMAGES

A. Motivation

In M-FISH, six fluorophores are combinatorially used to dis-
criminate 24 chromosome types. For those who are not familiar
with M-FISH, the color map of Vysis probe sets are shown in
Table I. According to the color map, chromosome 1, for ex-
ample, is stained with DAPI and spectrum Gold dyes. Ideally
chromosome 1 should be observed only in the DAPI and Gold
channels and should not be visible in other channels. However,
due to the overlap of excitation and emission spectra and the
broad sensitivity of image sensors, the obtained images con-
tain a certain amount of crosstalk between the color channels.
This phenomenon is called color spread [6]. Thus, all chromo-
somes are visible on all channels with different intensity levels
(see Fig. 1). Furthermore, each fluorophore has a different sen-
sitivity to the excitation wavelength. Thus, some fluorophores

TABLE I
CHROMOSOME LABELING CHART OF VYSIS M-FISH PROBE

require a short integration time while others require a long ex-
posure time. Especially Aqua and Gold require long exposure
times in order to visualize the hybridized chromosomes. An ex-
ample of integration times is [DAPI, Aqua, Green, Gold, Red,
Far Red] seconds. When a pixel
belongs to chromosome 1, the obtained intensity values are ex-
pected to have a pattern of [high, low, low, high, low, low] for
Vysis probes. Unfortunately, this pattern can be easily broken
when each channel is independently acquired. A long expo-
sure time amplifies the leaked intensity, and in some cases it
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TABLE II
PIXEL VALUES OF CHROMOSOME 1. EVEN THOUGH CHROMOSOME 1
IS STAINED WITH DAPI AND GOLD, THERE IS NO OBVIOUS PATTERN

IN FEATURE VALUES BECAUSE OF CHANNEL CROSSTALK AND

INDEPENDENT INTEGRATION TIME PER CHANNEL

can be higher than the chromosome intensities on other chan-
nels at the same pixel location. The different dc offset levels of
each channel of the imaging device [e.g., three channel (color
charge-coupled device (CCD)] and nonflat background eleva-
tion also bias the signal intensity upward. Furthermore, chromo-
somes appearing in one spectral channel exhibit different inten-
sity levels: some are darker or brighter than others, partially be-
cause of the nonflat background, but more substantially because
of the different fluorophore sensitivities for different chromo-
somes. Examples of real pixel values of chromosome 1 across
multiple images are shown in Table II. As shown in the table,
there is no obvious pattern in the feature values for the preceding
reasons.

When the variation of the feature distribution across images is
significant, which means the feature distribution of an unknown
image is unpredictable, classification methods that rely on the
estimation of class parameters will yield low accuracy.

As long as classes are grouped separately in the feature
space even if the feature distribution differs from image to
image, pixels can be accurately classified without estimating
class parameters using unsupervised-nonparametric clustering
methods such as -means clustering or fuzzy -means clus-
tering. However, when the number of classes is not fixed (e.g.,
chromosome images: the number of chromosome classes dif-
fers by gender or diseases), finding the right number of classes
after the clustering by cluster validation adds complexity and
may cause inaccuracy. Pixels can be clustered into a maximum
number of classes (24 clusters for M-FISH data) using these
methods, and clusters that are closer than a threshold should be
merged. The threshold will be again data dependent, which will
be different for different images.

Therefore, regardless of the choice of classifiers the variations
of the feature distribution should be minimized in order to obtain
overall high accuracy in pixel classification.

B. Background Correction and Color Compensation

This section briefly describes how each preprocessing step
improves the image quality and the quality of pattern (feature
vector). Castleman first introduced a signal model for FISH im-
ages, and showed that the true signal can be recovered based
on the model [7]. Microscope images of biological specimens
often contain nonflat background surfaces. The removal of the
nonflat background surface is called background correction, and
is commonly performed as a preprocessing step. The removal of
the channel crosstalk is called color compensation.

The observed signal at a pixel is modeled as

(1)

where, is the 6 1 vector of the true signal, is the 6 6
color spread matrix, includes the dc-offset of the CCD and
various factors that cause background intensity elevation, is
the noise of the imaging device such as white noise and shot
noise, and is the 6 6 diagonal matrix of exposure times. This
model assumes that the gray levels are linear with brightness of
the fluorophores.

The noise term can be minimized by median filtering and
lowpass filtering with a 3 3 kernel for both operations.

The nonflat background surface can be approximated by a
2-D cubic surface. The surface that has the minimum mean
square error relative to the background pixels is the estimated
2-D cubic surface [6]. By subtracting the surface from the image
(six surfaces are estimated for six channels), is removed.

After the background correction, the signal model becomes

(2)

Once the color spread matrix is found from a labeled image
or images, it can be applied to other images to correct color
spreadings (the details of estimating from the labeled images
are out of the scope for this paper). An image is a set of pixels
of , where and is the number of pixels in
an image. An image without the channel crosstalk is computed
by for all . To account for the fluorophore
sensitivities, exposure times can be multiplied by .

Color compensation is an effective method of improving the
quality of M-FISH images by removing the channel crosstalk.
Fig. 2 shows an example of before and after the color compen-
sation. It is not easy to distinguish which chromosomes are truly
hybridized and which are due to crosstalk in Fig. 2(b). In par-
ticular, chromosomes marked with number 1 and 2 are due to
crosstalk and they are effectively removed in Fig. 2(f).

Table III shows pixel values after the background correction
and color compensation. As the values show, the intensity corre-
sponding to the channel crosstalk has been removed effectively.
The background correction helps reveal the pattern and color
compensation further enhances the pattern, as shown in Fig. 2
and in Table III. Accordingly, pixel classification accuracy also
increased significantly after the background correction (results
are shown in Section IV). However, our experiments on a small
number of images showed that color compensating images after
the background correction did not improve the overall classifica-
tion accuracy, which contradicts our expectation. This suggests
that revealing the pattern helps classification but enhancing the
pattern is not enough. The pattern must satisfy a certain criteria,
which is explained in the following section. The color compen-
sation improves the image quality significantly but may not be
a necessary preprocessing step for pixel classification.

C. Expectation Maximization Normalization

Even after background correction and color compensation,
intensity variations within a chromosome and among chromo-
somes in a channel and between channels, caused by uneven hy-
bridization in a chromosome and unequal fluorophore sensitivi-
ties depending on chromosomes, remain as a source of classifi-
cation error. Given a channel, chromosomes that are supposed to
be bright in that channel are expected to have a similar intensity
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Fig. 2. Color compensation result on image V1301XY. (a) Green, Aqua, and DAPI channels of V1301XY are combined as a color image. (b) Far red, Red, and
Gold channels are combined and shown as a color image. (c) and (d) Result of background correction. (e) and (f) Color compensation result (simple scaling has
been applied to the color compensated image). As shown in (e) and (f) the quality of the image has been improved significantly by removing channel crosstalk. Pixel
values numbered on (b) are shown in Table III. (a) Before color compensation. (b) Before color compensation. (c) Background correction of (a). (d) Background
correction of (b). (e) Color compensation of (a). (f) Color compensation of (b).

level among them, but often chromosome intensities consider-
ably differ as some are much brighter than others. Those bright
chromosomes in one channel are not consistently brighter than
other chromosome in other channels where they are supposed
to appear. Often a chromosome with a certain intensity level
on one channel appears on another channel with a significantly

lower or higher intensity. This inconsistency causes classifica-
tion errors since the pattern, more specifically the texture, of
a feature vector becomes inconsistent. Given an individual
feature value, e.g., gray scale of 60, it is uncertain whether it
comes from a hybridized chromosome or from noise. Only when
a feature vector is formed does the relative intensity difference
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TABLE III
PIXEL VALUES NUMBERED ON FIG. 2(B). NP, BC, AND CC
MEANS NO PROCESSING, BACKGROUND CORRECTION, AND

COLOR COMPENSATION, RESPECTIVELY

among feature values deliver meaningful information about the
pixel membership. The relative intensity difference among fea-
ture values is called texture, which is independent of the mean
value of the vector. Two feature vectors and

have the same texture, while a third
vector has a similar intensity pattern
of High and Low as and but has a different texture, if we
define the texture as .

Suppose that (chromosome 10), and the pattern of
is consistent throughout all , then a supervised clas-

sification method should work well without further normalizing
the data. Even though background correction significantly re-
duced the variations in all feature vectors that belong to a chro-
mosome for all , there are pixels misclassified due to the
aforementioned variations. Therefore, hybridized chromosomes
must have a certain intensity level across all spectral channels,
and at the same time, noise including intensity due to spec-
tral crosstalk should have a certain intensity level that is lower
than the intensity of hybridized chromosomes across all spec-
tral channels. The normalization process should minimize the
difference of the sample distributions (determined by the joint
density functions) for all images. This can be achieved by nor-
malizing the variables (the features).

An M-FISH image is composed of six gray scale images
, each corresponding to a spectral channel.

Each gray scale image contains gray scale values that be-
long to background and chromosomes , i.e.,

, and
, where intensity due to none fluorophore and

intensity due to a fluorophore. The distribution of in
is assumed to be a mixture of two Gaussians:

and , and . Then
is a set of unlabeled samples drawn independently from the mix-
ture density

(3)

Since the models are identical for all channels, the channel
index is not specified for . A parameter vector contains

Fig. 3. Segmentation result. Chromosomes are automatically segmented from
background by utilizing six spectral information, global and local intensity, and
edge information. Cells are also removed based on the size and circularity. (a)
V130740XY DAPI Channel. (b) Segmentation result.

. and are prior
probabilities and also called mixing parameters.

The separation between and is obtained by a new
automatic segmentation method [8], which combines global and
local intensity, spectral information, and edge information to
segment chromosomes from the background. Cells are also re-
moved based on size and circularity (see Fig. 3).

After the segmentation, only pixels inside chromosome area
are classified. Among the six features, the DAPI channel pro-
vides information regarding whether a pixel belongs to chromo-
somes or to background. Since chromosome-background clas-
sification (segmentation) is already accomplished, DAPI infor-
mation becomes redundant when classifying only chromosome
pixels. Thus, the remaining five features are normalized and
used for classification.

Fig. 4 shows an example of the mixture density distributions
of of an M-FISH image, V1401XX. The black bars in
Fig. 4 represent the range of gray scale values for a pixel that has
a [high low high low high] pattern. As one can notice, a signifi-
cant portion of high values in overlaps with low values in

and , resulting in a totally unexpected pattern. This
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Fig. 4. The mixture density distribution of I (�) of V1401XX.

unexpected pattern will result in a low classification accuracy
simply because the distributions of this image and the training
data (or expected patterns) are different. We want to emphasize
that this low classification accuracy comes from the difference
in the patterns between the training and the testing data, and the
accuracy is less dependent on the fundamental error rate (Bayes
error) of the testing data. In other words, the joint distribution
of five features of the testing data may have extremely small
overlaps (low errors) among classes, but has its own distribu-
tion that is different from the training data, which will result in
a low classification accuracy.

Fig. 5 further illustrates the aspects about this point. Suppose
that each feature has a bimodal distribution, and there are two
features describing four classes. The straight lines in the figure
are the decision boundaries for the four classes. As one can see,
the fundamental error rate of each data set is determined by the
distribution of its marginal density functions. As the overlaps
between the two modes in each feature increase, the error rate of
the data increases. Both of the data in Fig. 5 seem to have small
error rates. However, the testing data’s classification accuracy
will be low because the distribution is considerably different
from the distribution of the training data set. The two distribu-
tions should be made as similar as possible by the normalization
process in order to minimize the classification error.

Given a bimodal marginal density function (3) and its pa-
rameters, the normalization process should cause and

to fall within certain ranges and the decision boundary
between and to lie at a certain point. The parameters

are unknown, and the sam-
ples are unlabeled. can be found by the maximum-likelihood
estimation procedure.

When all parameters are unknown and if no constraints are
placed on the covariance matrix (for multidimensional data), the
maximum-likelihood principle yields useless singular solutions.
However, meaningful solutions can still be obtained if we re-
strict our attention to the largest of the finite local maxima of
the likelihood function, assuming that the likelihood function
is well behaved at such maxima [9]. Then the parameter vec-
tors for each class , assuming the feature
vector is multidimensional, can be estimated iteratively using
the following equations (expressed in general terms):

(4)

(5)

(6)

where number of unlabeled samples drawn independently
from the mixture density of classes, , and

(7)

Note that the number of classes is two for our problem.
Thus, per feature, and samples are grayscale
values and and are scalars per class from the bimodal
distribution.

Among the various techniques that can be used to obtain a
solution, one approach is to use an initial estimate to evaluate
(7) for , then use (4)–(6) to update the estimates [9].
This iterative method is also called expectation-maximization
(EM). Since the solution depends on the initial estimates and to
obtain fast convergence, a -means clustering method is used to
estimate the initial parameters. -means clustering is a simple
but popular method of finding the mean vectors .
Given the initial mean vectors , the samples are classified
to the nearest . Then by approximating in (5) as

anew estimates of the mean vectors are obtained. The iteration
repeats until the means converge. Usually randomly chosen
samples are used as the initial means. In our case, the min-
imum and the maximum gray scale values in each channel are
used as the initial mean values. Once and are found via the

-means clustering, the values are estimated from the sam-
ples classified to and . These means and variances along
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Fig. 5. Distributions of training data and testing data. x and y axes are the feature values (thus, a feature vector forms a point in the figure). Each data set has its
own fundamental error rate by its own distribution, but the classification accuracy for the testing data will be low because the distributions are different between
the two data sets. The distributions should be normalized in order to obtain a high classification accuracy. (a) Training data. (b) Testing data.

Fig. 6. Marginal density function in (a) is normalized as in (c) by the piece-wise linear gray level mapping function in (b). The horizontal axes represent gray
scale range. (a) Before normalization. (b) Normalization. (c) After normalization.

with equal priors are used as initial estimates for (4)–(6). Once
the parameters are estimated by the EM method, the decision
boundary between and is found by

(8)

where

Given the parameter vectors and the decision boundary, the
sample distribution is normalized by piece-wise linear transfor-
mations as shown in Fig. 6. The input intensity is mapped to
the output intensity by

(9)

where is the minimum intensity level and is the
maximum intensity level in .

In the following sections, we will show how this new normal-
ization helps classification accuracies.

III. PIXEL CLASSIFICATION METHODS

In this section, we briefly describe previous classification
methods and introduce our new unsupervised and nonpara-
metric classification method.

A. Previous Classification Methods

The first M-FISH system described in the literature was intro-
duced by Speicher et al. [1] in 1996. Their classification method
was based on the binary combinations of fluorophore intensi-
ties at each pixel. Binary values were obtained after thresh-
olding each channel. This method is simple and fast (consid-
ering only the pixel classification time, excluding the time in-
volved in manual corrections of the segmentation map), and
does not require generation of a training data set. Their approach
demonstrated the usefulness of the M-FISH technique.

In 1998, Eils et al. [10] introduced a method called the adap-
tive region-oriented approach. An image was initially divided
into forty Voronoi polygons, and the polygons were subdivided
iteratively until all polygons satisfied a homogeneity criterion.
Neighboring polygons were merged if they were closer than a
threshold distance in feature domain (6-D space). The accuracy
of their method was not reported.

Recently, a supervised 6-feature, 25-class maximum like-
lihood classification method was introduced in [11]–[13].
Twenty five classes included 24 chromosome types and the
background. Class distributions were assumed to be normal,
and the class parameters were extracted from the training set,
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TABLE IV
TRAINING IMAGES

a subset of ADIR’s M-FISH database. By classifying every
pixel in the image including both background and chromosome
pixels, chromosomes were successfully segmented from the
background. The pixel classification accuracy of this method
was about 90% on a small number of images (the list of images
and rates are shown in Table VI).

Schwartzkopf et al. [4] developed a joint pixel classifica-
tion and segmentation method which can handle overlapping
and touching chromosomes, using a maximum likelihood
framework. After chromosome pixels were classified using a
6-feature, 24-class maximum likelihood classification method,
touching and overlapping chromosomes were separated into
single chromosomes by maximizing the likelihood of pixel
membership and chromosome. While separating overlapping
and touching chromosomes, misclassified pixels were cor-
rected resulting in an increased classification accuracy from
the initial pixel classification. The initial pixel classification
accuracy significantly varied depending on the images, ranging
from 20% to 90%. The mean pixel classification accuracy
was 68% with a standard deviation of 17.5% [14]. The pixel
classification error rate decreased by nearly 50% after using the
joint segmentation and classification method [4]. Their method
focuses on postprocessing rather than preprocessing the data to
increase the initial pixel classification accuracy.

Choi et al. [13] have emphasized the importance of feature
normalization, and performed background correction and color
compensation in order to reduce the background elevation and
channel crosstalk. Wang and Castleman [15] also performed
background correction as a normalization step, and reported that
after testing on five images, the pixel classification accuracy in-
creased on average from 83% to 91% (the list of images and
rates are shown in Table IV).

In all these previous methods, a proper feature normalization
was not performed.

B. Unsupervised Nonparametric Classification Methods

Supervised classification methods, such as the Bayes clas-
sifier (parametric) and -nearest neighbor clustering (nonpara-
metric), require training data. If the number of classes and the
forms for the class-conditional probability density functions are
known, the class parameters can be estimated from the training
data, and a parametric classification method can be used. If the
number of classes is known but the forms for the class-condi-
tional probability functions are unknown, then a nonparametric
method such as -nearest neighbor clustering can be used. In

1http://www.adires.com/05/Project/MFISH_DB/MFISH_DB.shtml

general, collecting and labeling a large set of samples can be ex-
tremely costly. Fortunately, we have available a large M-FISH
image database. Thus the use of a supervised method is an ade-
quate approach. However, in an early stage of investigation re-
garding the structure of the data based on some features, an un-
supervised method is desired since the samples are unlabeled.
Then, unsupervised methods can be used to generate the training
data set and further to extract useful features.

Popular unsupervised methods are -means clustering and
fuzzy -means clustering, which group the samples into clus-
ters whether or not classes actually exist in the data. These
methods can be readily used for normal XX (23 classes) or XY
(24 classes) samples where the number of classes is known and
fixed. When only the maximum number of classes is known, the
use of one of these methods requires cluster validation to assess
the right number of classes by finding the right threshold, which
may or may not be feasible depending on the data.

In order to overcome the limitations of these unsupervised
methods, we introduce a simple but effective unsupervised and
nonparametric classification method for M-FISH images. The
concept starts from the fact that a set of samples bound to a
particular probe set has an expected intensity pattern for each
class. Those fundamental patterns can be used as templates or
ideal prototypes for classes. If our normalization process was
effective, then the distance between a normalized sample to its
correct class mean (template) should become as close as pos-
sible. If that is true then the minimum-distance classifier [9] can
be used to classify pixels without actually training the classifier,
and the classification accuracy will express the effectiveness of
the normalization.

The derivation of the minimum-distance classifier is as fol-
lows. In Bayesian decision theory, the minimum-error-rate clas-
sification can be achieved by using a set of discriminant func-
tions , and the classifier assigns to class
if

(10)

where

If the density functions are multivariate normal in dimensions,
then the class-conditional probability density functions are ex-
pressed as

and then the discriminant functions can be written as

If we assume that the features are statistically independent and
have the same variance , then the discriminant functions
become
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after ignoring the additive constants. After further simplifica-
tion, we obtain the linear discriminant functions whose deci-
sion boundary is the hyperplane perpendicular to the line linking
the class means. If the prior probabilities are assumed to be
the same for all classes, then the classifier assigns a feature
vector to the class that yields the minimum Euclidean distance

. This classifier is essentially the same as the nearest
neighbor classifier. In general, multiple samples are used to rep-
resent each class in the nearest neighbor method, and after com-
puting the distances to all the samples from an unknown sample

, the sample is assigned to the most frequent class among
the -nearest neighbors. In the template matching case, only one
sample (ideally the class mean) per class is used to represent the
class.

In our case, the template patterns are determined by the color
table (e.g., Table I). Let a template sample from class be
denoted as , from as ,
and so on, where can be any positive real number. Then the
template patterns are defined as

After EM normalization, it is important that the samples
should be further normalized before pixel classification by

. Thus an unknown sample is assigned to
if

(11)

IV. RESULTS

A. M-FISH Database

The developed normalization and classification methods were
tested on the ADIR M-FISH database. The database contains
M-FISH images of 203 metaphase spreads from 33 slides. Ap-
plied Spectral Imaging, PSI (former ADIR), and Vysis are the
three probe sets that were used for the specimens. Three sets of
file formats are available: PSI format (requires PSI’s software
to read), PNG format, and JPEG format. Each image is accom-
panied by ground truth except 17 images that are marked as ex-
treme (EX). The set of PNG format images were used in our
experiment, and a total of 185 images were tested (85 images
for Vysis, 71 images for ASI, and 29 images for PSI). There
are 86 Vysis probe images but V1301XY and V1304XY are the
same images (only V1301XY was used). In the ground truth
image, background pixels are assigned value 0, pixels in over-
lapped region are assigned value 255, and chromosome pixels
are assigned a value from 1 to 24. In the case of a transloca-
tion, the whole chromosome is labeled as the class which makes
up most of the chromosome. The dimension of the images is
647 517 6 for all images except for two images, V261054
and V270659, whose dimension is 768 568 6.

B. EM Normalization

Each data set has its own unique error rate (Bayes error)
based on the feature distribution. While the fundamental error
rate of each data set is one problem that causes classification

Fig. 7. Feature distribution (normalized histogram) of V1290562 before and
after the EM normalization. Horizontal axis represents gray scale and vertical
axis represents the normalized frequency of a gray scale. EM normalized images
are shown in Fig. 8, and the classification result is shown in Fig. 10. (a) Before
normalization. (b) After normalization.

error, the significant error comes from having different distribu-
tions for different data sets. The EM normalization process is
focused on reducing the distribution differences among the dif-
ferent data sets. Thus, the classification accuracy improves sig-
nificantly after normalization (rates are shown in the following
section).

The mixture density parameters for each feature were found
by (4)–(6), and then the decision boundary between the modes
was found by (8). Given the parameters and the decision
boundary , the features were normalized by (9).

In particular, Fig. 7 shows the intensity distributions of the
features of V290562 before and after EM normalization. As the
figure shows, the uncertainty of a gray scale at a channel being
high (hybridized) or low (not hybridized) is removed in the nor-
malized data.

Fig. 8 shows the gray scale images before and after the EM
normalization. As the figure shows, chromosomes that are hy-
bridized have higher intensity levels than the intensities due to
nonhybridized chromosomes. This normalization ensures that
the patterns become consistent throughout all images.

C. Comparison of Classification Methods

The pixel classifications were performed with three dif-
ferent conditions: no preprocessing, background correction,
and EM normalization. Both unsupervised-nonparametric (the
minimum-distance classifier) and supervised-parametric (the
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Fig. 8. EM normalization result of V1290562 before (upper two rows) and after (lower two rows) the EM normalization.

TABLE V
OVERALL CLASSIFICATION ACCURACY. MD = MINIMUM-DISTANCE, ML =
MAXIMUM-LIKELIHOOD, NP = NO PREPROCESSING, BC = BACKGROUND

CORRECTION, AND EM = EXPECTATION MAXIMIZATION NORMALIZATION

maximum-likelihood classifier) methods were used as classifi-
cation methods.

Since the maximum-likelihood classifier requires training,
a set of images of normal male specimens were selected as
training samples for each probe set, as shown in Table IV. A
total of 26 out of 185 images were used for training: 9 out
of 85 images for Vysis images, 8 out of 71 images for ASI
images, and 9 out of 29 images for PSI images. All 185 images
were tested using both classification methods. Equation (10)
was used for the maximum-likelihood classifier assuming
the distributions were normal and (10) was also used for the
minimum-distance classifier to classify pixels.

As Table V shows, the overall classification accuracy without
any normalization was about 50%, which increased significantly
after background correction to about 60%, and further improved

TABLE VI
CLASSIFICATION ACCURACIES [%] OF THE COMMONLY CITED IMAGES. IMAGES

WITH EMPTY VALUES IN THE ML METHOD ARE USED AS TRAINING

with EM normalization to about 70% for both classification
methods. EM normalization increased the classification accu-
racy from 50% to 70%, which is a 40% increase in accuracy.

Table VI shows the classification accuracies for the com-
monly cited images in previous papers on M-FISH pixel
classification. Note that the results shown in this paper are
the initial pixel classification accuracies without any postpro-
cessing to correct obvious misclassifications using such as
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Fig. 9. Statistical significance of each classification method and bootstrapping
of each method. Left to right: NP MD, NP ML, BC MD, BC ML, EM MD,
and EM ML. Error bars are drawn at the 95th percentile.

majority filtering, and also note that the rates are regarding
the chromosome pixels only. Since chromosomes occupy less
than 10% of the image, even if the entire pixels in the image
are classified, the rates for background and chromosomes
should be separately reported. Our results are by far the most
accurate compared to the other classification methods such as
fuzzy logic classifier (unsupervised nonparametric method) [8],
fuzzy -means clustering (supervised nonparametric method)
[15], -nearest neighbors method (supervised nonparametric
method) [16], and the maximum-likelihood classifier (super-
vised parametric method) [13]. All these classifiers would
likely produce an improved classification accuracy after EM
normlization. When a supervised classification method is
used, the classification accuracy will be high when the sample
distributions of both training and testing data are the same (an
improved result is shown in this paper using a ML classifier).
When a clustering method is used, given the maximum number
of classes, for a data set whose number of classes is not known,
a right number of classes should be estimated after clustering
using the statistical parameters of known data. However, when
the sample distributions vary significantly depending on data
sets, the estimated statistical parameters will not be accurate
for all data sets. Furthermore, clustering results also depend
on the initial guess values (starting points). When they are not
carefully chosen, the solution can fall into local minima or
maxima, i.e., incorrect grouping of the data. These problems
will be alleviated when data is normalized.

In order to evaluate the statistical significance of the effect
of the EM normalization, bootstrap estimation was used. Given
185 data points for classification accuracies per method, 185
samples were selected at random (from a uniform distribution)
iteratively 1000 times and at each iteration the mean was calcu-
lated. The distribution of the means for each method is shown
in Fig. 9. The error bars represent the 95th percentile of the
means. As the graph shows, the accuracies after the EM nor-
malization are statistically significant. The difference between

the two classifiers are not significant except after the EM nor-
malization. However, it should be remembered that 26 images
were used as training and their classification results were also
included in the ML accuracy. Therefore, it is reasonable to as-
sume that the difference is slightly smaller than 4%, and whether
it is statistically significant or not, the difference is marginal be-
tween the two classifiers.

Fig. 10 shows an example of a color coded classification
result (its spectral images are shown in Fig. 8). The classifica-
tion accuracies using the MD classifier without preprocessing,
with background correction, and with EM normalization were
55.34%, 75.64%, and 84.03%, respectively. This particular
image has six translocations but they are unmarked in the
ground truth in the database. After carefully examining all six
spectral images and manually constructing the new ground
truth, the recalculated accuracy was 91.52%. There are 104
images that contain abnormalities, and among them 63 images
contain translocations. If the ground truth in the database
was marked with translocations, the true overall classification
accuracy may have been slightly higher.

There are many images that give low classification accura-
cies even after EM normalization. The common factor among
those images is that the image quality is poor. All 185 images
were individually self trained and tested to evaluate the quality
of the feature distribution. The mean accuracy was 89.95%
with 51.30% as the minimum and 99.00% as the maximum
(see Fig. 11). Images that gave lower than an 85% correct
classification rate were identified (also visually confirmed) as
bad images. In addition, three images that had higher than a
90% rate was added to the bad because they had wrong probe
labeling. They were labeled as Vysis when in fact they were
hybridized using the PSI probe. A total of 40 images were
identified as bad, and the list is shown in Table VII.

In M-FISH, all six spectral channels are expected to be
perfectly aligned to each other. While that is true for most
cases, only four images were identified as misaligned. The
misalignment can arise in various ways including mechanical
shift during image capture and the use of poor quality lenses
which will cause spherical and chromatic aberrations. The
misalignment in V291562 was a vertical shift of 10 pixels only
in channels 4 and 6. The misalignment in P080628, P080729,
and P0804XY was found in the DAPI channels only.

It is interesting that the image quality varied depending on
the probes. Images with the Vysis probe were captured with
good quality in general. Many ASI probe images display poor
quality. In many cases, at least one or more spectral channels
occupied only the low intensity range. The cause can be ei-
ther that the hybridization process was done poorly or the ex-
posure times were not set correctly. Many PSI probe images
showed low signal-to-noise ratio, as the signals do not display
the high contrast. However, this comparison may not generalize
the quality of the probes, since the image quality will depend
on the quality of the specimen preparation and the settings in
the microscope. Since images in the database were collected
from five different labs, we do not know whether the image
quality difference comes from human error or from the probe
difference.
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Fig. 10. Classification result of V290562 (spectral channels are shown in Fig. 8). (a) Ground truth. (b) Corrected ground truth. (c) EM MD.

TABLE VII
LIST OF BAD QUALITY IMAGES. PQ = POOR QUALITY DUE TO EITHER ILL-HYBRIDIZATION OR WRONG EXPOSURE TIMES,

CT = Channel Crosstalk; MA = Misalignment; WP = Wrong PROBE

Fig. 11. Correct classification rate of individually self trained and tested im-
ages. Ten bins are used from 0 to 10, 10 to 20; . . . ; 90 to 100.

Excluding the bad images, the classification accuracy of re-
maining 145 images are shown in Fig. 12. The mean accuracies
were 51.66%, 52.42%, 65.40%, 67.58%, 74.49%, and 77.80%
for NP MD, NP ML, BC MD, BC ML, EM MD, and EM ML
respectively.

V. CONCLUSION

In this paper, we have shown the importance of feature nor-
malization in M-FISH images in order to obtain improved pixel
classification accuracies, and we introduced a new normaliza-
tion method using the expectation maximization algorithm. Pre-
viously the variation in the feature distributions among the dif-
ferent M-FISH images was not emphasized as a source of mis-
classification. Even if it was recognized, there was no good
method of reducing the variation. Assuming the distribution
of each feature in the chromosome region is a mixture of two
normal density functions, the maximum-likelihood parameters

Fig. 12. Histogram of classification accuracies. x axis represents the classifi-
cation accuracy [%], y axis represents the frequency. Ten bins are used from
0 to 10, 10 to 20; . . . ; 90 to 100. Top to bottom: NP MD, NP ML, BC MD,
BC ML, EM MD, and EM ML, respectively.

were estimated for the mixture density and each feature was nor-
malized based on the parameters. The overall pixel classification
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accuracy improved by 40% after EM normalization from 50%
(with no proprocessing) to 70% (with EM normalization). The
improvement was statistically significant with no preprocessing
and with background correction.

We have also introduced a new unsupervised, nonparametric
classification method for M-FISH images. The performance was
as accurate as the maximum-likelihood classifier, whose ac-
curacy also significantly improved after EM normalization. In
fact any classifier will likely produce an improved classification
accuracy after EM normalization. Since the new classification
method does not require training data, it is an effective and con-
venient tool when ground truth does not exist. And it can be
readily used not only for M-FISH image of future probe sets
but for other FISH images in general.

To build an automated karyotyping system, not only pixel
classification but also the segmentation of overlapping and
touching chromosomes should be done automatically. Utilizing
the cluster shape, pixel membership, and prior knowledge about
the chromosome size, overlapping and touching chromosomes
can be separated. Based on the chromosome segmentation
result, misclassifications can be corrected. However, the seg-
mentation accuracy depends on the initial pixel classification
accuracy. Therefore, our developed normalization and clas-
sification methods will help improve segmentation accuracy
without the need for generating extensive ground truth.
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