
Foveated Analysis of Image Features at

Fixations

Umesh Rajashekar a, Ian van der Linde a,b, Alan C. Bovik a,
Lawrence K. Cormack a

aCenter for Perceptual Systems, The University of Texas at Austin, USA

bDepartment of Computing, Anglia Ruskin University, Bishops Hall Lane,

Chelmsford, Essex, CM1 1SQ, England

Abstract

Analysis of the statistics of image features at observers’ gaze can provide insights
into the mechanisms of fixation selection in humans. Using a foveated analysis frame-
work, in which image patches were analyzed at the resolution corresponding to their
eccentricity from the prior fixation, we studied the statistics of four low-level local
image features: luminance, RMS contrast, and bandpass outputs of both luminance
and contrast, and discovered that the image patches around human fixations had,
on average, higher values of each of these features at all eccentricities than the image
patches selected at random. Bandpass contrast showed the greatest difference be-
tween human and random fixations, followed by bandpass luminance, RMS contrast,
and luminance. An eccentricity-based analysis showed that shorter saccades were
more likely to land on patches with higher values of these features. Compared to a
full-resolution analysis, foveation produced an increased difference between human
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1 Introduction

By using a variable resolution sampling of the visual field, the human visual
system has evolved to an efficient imaging system that allows for a wide field
of view without the accompanying data glut. The resolution is highest at
the center (fovea) and drops rapidly towards the periphery (Wandell, 1995).
The human eyes interact actively with the visual environment to gather infor-
mation efficiently from this multi-resolution visual input. The human visual
system uses a combination of steady eye fixations linked by rapid ballistic eye
movements called saccades (Yarbus, 1967). While the degradation of spatial
resolution in the retina has been modeled accurately by measuring the contrast
thresholds of transient stimuli (Banks, Sekuler, and Anderson, 1991; Geisler
and Perry, 1998) and used in several applications (Geisler and Perry, 1998;
Lee, Pattichis, and Bovik, 2001; Wang, Lu, and Bovik, 2003), the problem of
selecting fixations in foveated systems is still an open research problem.

Despite the seemingly complex mechanisms that underly the process of active
vision, human observers excel at visual tasks. Based simply on our own daily
experience, the process of gathering visual information at the current fixation
while simultaneously attending to the variable resolution visual periphery in
search for potentially interesting regions seems effortless. Thus, an understand-
ing of how the human visual system selects and sequences image regions for
scrutiny is not only important to better understand biological vision, it is also
the fundamental component of any foveated, active artificial vision system.

The human visual system has conceivably evolved multiple mechanisms for
controlling gaze. The interplay of high-level cognitive and low-level image fea-
tures influences eye movements in many intricate ways and makes the problem
of modeling gaze a formidable task. Theories for automatic gaze selection can
be broadly classified into top-down and bottom-up categories. Top-down ap-
proaches emphasize a high-level, cognitive or semantic understanding of the
scene. Bottom-up approaches assume that eye movements are quasi-random
and strongly influenced by low-level image features such as contrast and edge
density. Given the rapidity and sheer volume of saccades during search tasks
(over 15,000 each hour), it is also reasonable to suppose that there is a sig-
nificant random component to selecting fixation locations. Thus, highlighting
differences in the statistical properties of image features between observers’
fixations and random fixations is a useful step towards gaze modeling.

Approaches supporting the bottom-up theory propose a computational model
for gaze selection that is based on image processing techniques to accentuate
features that are deemed visually relevant (Privitera and Stark, 2000), or de-
rived from a biologically-inspired model of visual attention (Itti, Koch, and
Niebur, 1998). The general framework of these approaches is to first high-
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light several image primitives such as color, intensity, and orientation. Each of
these features is then analyzed at various spatial scales to produce a saliency
map. Fixations are deployed to regions in decreasing order of saliency with
inhibition-of-return to discourage visiting previously fixated areas. Recent ver-
sions of this model also account for temporal flicker, and motion energy as
motion primitives (Itti, 2004). Incorporating high-level contextual information
into these low-level saliency-based models have been reasonably successful in
emulating human fixation patterns in object detection tasks (Torralba, 2003;
Hamker, 2005).

A recent version of the bottom-up approach of gaze modeling, is based on
computing natural scene statistics directly at the point of gaze of observers,
and extracting image features that are significant at these locations. The avail-
ability of relatively inexpensive, accurate eye trackers has made this approach
feasible. In one reported work (Reinagel and Zador, 1999), the statistics of
natural images at point of gaze were compared to the statistics of patches
selected randomly from the same image sets. The results show that the re-
gions around human fixations have higher spatial contrast and spatial entropy
than the corresponding random fixation regions, indicating that the human
eye may be trying to select image regions that help maximize the informa-
tion content transmitted to the visual cortex by minimizing the redundancy
in the image representation. In particular, the authors note that the RMS
contrast at the point of gaze was on average 1.17 times the contrast obtained
from an image shuffled set of patches. Even when the size of the patch around
fixations was varied, local image contrast was found to be reliably higher (sta-
tistically significant) than those obtained from patches at random fixations,
with a maximum difference occurring around patch sizes of 1◦ (Parkhurst and
Niebur, 2003). These contrast results were also replicated by others (Mack,
Castelhano, Henderson, and Oliva, 2003).

While these gaze-contingent measurements provide useful insight into visual
features that are relevant for understanding and modeling gaze, the ensemble
of image patches around fixations in the above mentioned studies were ana-
lyzed at maximum resolution (of the stimulus). Owing to the foveated nature
of our visual system, image features that draw fixations are not encoded at
full-resolution, but instead are extracted from the visual periphery whose res-
olution varies across the visual field. Parkhurst (Parkhurst, Law, and Niebur,
2002) tried to account for this by incorporating a variable resolution function
in the model and discovered an improved correlation between points of high
saliency and recorded fixations. However, in their work, the foveated structure
was imposed on the extracted feature maps and not on the image stimulus.
More recently, gaze contingent filtering in video sequences was found to pro-
vide improved model-predicted salience for some features such as orientation
and flicker (Itti, 2006).
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In this paper, we incorporate several enhancements to existing frameworks
for gaze-contingent analysis of low-level image features at visual fixations. We
recorded the eye movements of 29 observers as they viewed 101 calibrated
natural images, and then attempted to quantify the differences in the statis-
tics of image patches at observers’ fixations and those selected at random.
In addition to extending previously studied image features to include local
patch luminance, RMS contrast, bandpass luminance, and bandpass contrast
at full-resolution, we also incorporated a foveated analysis of these image fea-
tures by first foveating the image at a fixation point, and analyzing the image
patch at the subsequent fixation from this foveated stimulus. The foveated
analysis is shown to differ significantly from the full-resolution analysis for
contrast-related features. We use models of foveation that are more accurate
for capturing the degradation of spatial resolution in human observers. This
foveated model is applied directly to the image stimulus before any feature
is extracted. A direct consequence of using a foveated analysis framework is
the need to group patches of similar blur before computing any kind of statis-
tics on them. We address this by using an eccentricity-based analysis that
highlights the relevance of each of these features as a function of eccentricity
from the previous fixation point. This study uses a much larger collection of
human observers, a large, carefully selected dataset of high resolution natu-
ral calibrated images, accurate models of foveation, and eye movements that
are recorded with very high spatial and temporal resolution than previously
reported studies.

The rest of this paper is organized as follows. In Section 2, the experimental
setup, data collection procedure, the image database, and the visual tasks are
presented. As mentioned earlier, all image features are measured after taking
into account the variable resolution periphery. The process of filtering the
image based on an observer’s current fixation is described here. The results of
evaluating local image luminance, contrast, and bandpass statistics at human
and randomly selected fixations are described in Section 3. The influence of
each of these features as a function of saccade magnitude is presented. Finally,
a discussion of how these results compare with prior gaze-contingent work, and
some extensions of this work are discussed in Section 4.

2 Methods

2.1 Observers

A total of 29 adult human volunteers (19 male and 10 female) participated
in this study. All observers either had normal or corrected-to-normal vision.
Observers consisted of members of the public, undergraduates, graduates stu-
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dents, research fellows, and faculty from the University of Texas at Austin
from a range of academic disciplines. Each observer visited for a single ses-
sion, only 2 had seen the image stimuli previously; 24 were näıve as to the
purpose of the experiment.

2.2 Natural Image Stimuli

101 static images of size 1024∗768 pixels (cropped from the center of the orig-
inal 1536 ∗ 1024 images) were manually selected from a calibrated grayscale
natural image database (van Hateren and van der Schaaf, 1998); images con-
taining man-made structures and features such as animals, faces, and other
items of high-level semantic interest that could have instinctively attracted
attention were omitted. Images whose luminance statistics suggested satura-
tion of the capture device, and thus exhibited non-linearity, were also omitted.
Typical images are shown in Fig. 1.

The stimuli were displayed on a 21-inch, gamma corrected monitor at a dis-
tance of 134cm from the observer. The screen resolution was set at 1024 ∗ 768
pixels, corresponding to about 1 arc minute per pixel (or 60 pixels per de-
gree of visual angle). The total spatial extent of the display was thus about
17◦ × 13◦ of visual angle. The MATLAB psychophysics toolbox (Pelli, 1997;
Brainard, 1997) was used for stimulus presentation. Since the range of bright-
ness varied drastically across the image database, each image was scaled so
that the brightest point in each image corresponded to the brightest output
level of the monitor without affecting the image contrast.

Before displaying each stimulus image, a Gaussian noise image was displayed
to help suppress after-images corresponding to the previous image that may
otherwise have attracted fixations. Each image was displayed for 5 seconds.
The ambient illumination in the experiment room was kept constant for all
observers, with a minimum of 5 minutes luminance adaptation provided while
the eye-tracker was calibrated.

2.3 Visual Task

Observers were instructed to free view each of the 101 images. To discourage
observers from fixating at only one location in the image and to insure a
somewhat similar cognitive state across observers, they were given a simple
memory task: following the display of each image, observers were shown a
small image patch (1◦ ∗ 1◦) and asked to indicate (via a numeric keypad)
whether the image patch was from the image they just viewed or not. Auditory
feedback (via a sampled voice) was provided to indicate a correct or incorrect
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response. Before starting the main experiment, each observer went through a
training session of 10 trials to ensure that the observer became familiar with
the handheld control box, dark adapted, and comfortable in the experimental
environment prior to data collection. Images for the practice session were
selected from the same database as the images used for the experiment proper.

2.4 Eye Tracking

As the observers viewed the scene, their eye movements were recorded using an
SRI Generation V Dual Purkinje eye tracker. It has an accuracy of < 10′ of arc,
precision of about 1′ of arc, a response time of under 1 ms, and bandwidth
of DC to > 400Hz. The output of the eye tracker (horizontal and vertical
eye position signals) was sampled at 200 Hz by a National Instruments data
acquisition board in a Pentium IV host computer, where the data were stored
for offline data analysis.

Monocular eye tracking was used to reduce calibration time. A bite bar and
forehead rest were used to restrict the subject’s head movement. The subject
was first positioned in the eye tracker and a system lock established onto
the subject’s eye. A linear interpolation on a 3 ∗ 3 calibration grid was then
done to establish the transformation between the output voltages of the eye
tracker and the position of the subject’s gaze on the computer display. The
calibration also accounted for crosstalk between the horizontal and vertical
voltage measurements.

This calibration routine was repeated compulsorily every 10 images, and a
calibration test run after every image. This was achieved by requiring that
the observer fixate for 500ms within a 5 s time limit on a central square region
(0.3◦ × 0.3◦) prior to progressing to the next image in the stimulus collection.
If the calibration had drifted, the observer would be unable to satisfy this
test, and the full calibration procedure was re-run. The average number of
calibrations per observer for the 101 images was 16.5, i.e. between 6 and 7
images were typically viewed before the calibration test was failed. Average
calibration error for passed calibration tests was 5.48 pixels horizontally and
vertically. The requirement for a central fixation prior to displaying the next
image also ensured that all observers commenced viewing the image stimuli
from the same location.

The average duration for the experiment was approximately 1 hour, includ-
ing the initial calibration. Observers who became uncomfortable during the
experiment were allowed to take a break of any duration they desired. Post-
experimental debriefing revealed that most observers rated the eye-tracker as
only mildly uncomfortable. Plotting the mean performance of the observers
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over time in the patch detection task does not suggest a prevailing fatigue
factor, with performance slope remaining constant throughout (Fig. 2).

2.5 Image Data Acquisition

The sampled voltages corresponding to the eye movements of the observers for
each trial were converted to gaze coordinates (i.e. position of gaze on the image
in pixels). Next, the path of the subject’s gaze was divided into fixations and
the intervening saccadic eye movements using spatio-temporal criteria derived
from the known dynamic properties of human saccadic eye movements. Stated
simply, a sequence of eye position recordings was considered to constitute a
fixation if the recorded gaze co-ordinates remained within a stimulus diameter
of 1◦ visual angle for at least 100ms. The exact algorithm (adapted from (ASL,
1998)) accommodates for drifts, blinks and micro-saccadic eye movements. The
resulting pattern of fixations for a single trial is shown by the dots in Fig. 3.
The lines show the eye movement trajectories linking the fixations. The first
fixation is indicated by a square in the center of the image.

We then extracted circular patches of diameters 32, 64, 96, 160, 192 pixels cen-
tered at each fixation. This corresponded to patches of diameter ranging from
0.5◦ to 3.2◦. Image patches around fixations that extended beyond the bound-
ary of the image were discarded. If we simply extracted patches around each
fixation, fewer smaller sized patches would be discarded at image boundaries
than larger sized patches. Figure 4 shows a plot of the percentage of fixations
that were used in the analysis as a function of patch size. We decided to use
192 pixels (3.2◦) as the maximum patch diameter because it provided a trade-
off between a fairly large patch while still retaining 94% of all the recorded
fixations. Finally, we ensured that the number of image patches analyzed un-
der each of the patch sizes was always the same by first creating a bank of
image patches of diameter 192 pixels, and extracting image patches of smaller
diameter from the center of this image set.

2.6 The Image-Shuffled Database

The ensemble of the image patches around the fixation points was then ana-
lyzed to determine if it contained any features that had statistically significant
differences from an ensemble of image patches that were picked randomly. The
ensemble of randomly selected patches was obtained by replacing the fixations
of an observer for a particular image with those of a different image. The im-
age shuffled database therefore simulates a human observer who is not driven
by the image features of that particular image, but otherwise satisfies all crite-
ria of human eye movement statistics. Further, this methodology of simulating
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random fixations accounts for both known potential biases of human eye move-
ments (such as the tendency of observers to fixate at the image center, and the
log-normal distribution of saccade magnitudes), and unknown biases (such as
possible correlations between magnitude and the angle of the saccades). Tatler
et. al (Tatler, Baddeley, and Gilchrist, 2005) provide a discussion of how such
biases might influence the statistics of image features.

Other researchers (Reinagel and Zador, 1999; Parkhurst and Niebur, 2003;
Mack et al., 2003) have also simulated a random observer by uniformly dis-
tributing fixations in an image, and extracting local image patches around
these fixations. However, since we propose to foveate images at the current
fixation, n, and then extract image statistics at the subsequent fixation point,
n + 1, it is important that image patches within each ensemble (random and
human-selected) be blurred to similar extents overall. To illustrate this point,
Fig. 5 shows the distribution of saccade magnitudes (distance between fixa-
tions n and n + 1) for both human fixations (solid line) and by uniformly
distributing fixations (dashed line) in the image. Unlike the plot for human
saccade magnitudes which peaks at around 1.5◦, the saccade magnitude plot
for the uniformly distributed fixations peaks at a higher value of 7◦. Since the
low-pass filtering applied to a patch is proportional to the magnitude of the
saccade leading to a fixation upon that patch, all the image patches in the
database obtained using the uniformly distributed fixations would be blurred
more than the image shuffled database, which will bias the final results. For
this reason, all comparisons with the random observer in this paper corre-
spond to this image shuffled database, and not to the uniformly distributed
fixations.

2.7 Foveation

An important contribution of this paper is the foveated analysis of the low-
level features of image patches at the resolution at which they were actually
encoded. To achieve this, the given image was first foveated at the observer’s
current fixation before the patch at the subsequent fixation was extracted for
analysis. There are many ways of creating a foveated version of an image given
a fixation point such as band-pass filtering (Lee, Pattichis, and Bovik, 2001),
DCT-domain (Sheikh, Evans, and Bovik, 2003), and multi-resolution (Chang
and Yap, 1997; Geisler and Perry, 1998), approaches. Since neither speed nor
storage was an issue for our offline analysis, we used the spatially-varying
bandpass filtering approach, where every pixel in the foveated image was ob-
tained by blurring its grayscale value with a low pass filter of appropriate
cut-off frequency (obtained from models of the contrast sensitivity function).
The contrast sensitivity (CSF ) measured as function of spatial frequency, f
(cycles per degree), and retinal eccentricity, e (degrees), is modeled (Geisler
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and Perry, 1998) as:

CSF (f, e) = C0 exp
(

−αf
e + e2

e2

)

(1)

where C0 , α = 0.106, and e2 = 2.30 are constants that provide an adequate
fit to experimentally recorded contrast threshold values. Since we are mainly
interested in retaining the relative magnitudes of the sinusoidal amplitudes,
the value of C0 is not relevant, and is set to 1.0.

The CSF can be considered to be a two dimensional transfer function that
can be used to blur an image at various eccentricities, e. For implementa-
tion purposes, we compute the 2D discrete fourier transform of the image,
pad it appropriately, and perform a point-wise multiplication with the CSF
described above (for every possible eccentricity), perform an inverse Fourier
Transform, and crop out the valid image area. Ideally, we will have to create
enough blurred versions of the original image to account for the largest possi-
ble eccentricity (length of the image diagonal). In our analysis, we found that
the maximum saccade magnitude seldom exceeded 12 degrees (720 pixels).
Therefore, we created 720 blurred versions of each image in increments of one
pixel (arc minute).

To create an image that is foveated around a fixation point, we simply needed
to find the appropriately blurred version of every pixel. We begin by computing
the eccentricity of a pixel location (in the foveated image) from the fixation
point, select the blurred image corresponding to this eccentricity (from the 720
blurred versions), and select the grayscale value from the exact same location
as the pixel from this blurred image. The process was then repeated for every
pixel to obtain the corresponding foveated image. Figure 6 shows the original
image at full-resolution and a foveated version of the same image with the
fixation point indicated by the white dot.

2.8 Eccentricity-based analysis of image statistics

One of the direct consequences of evaluating statistics of foveated patches is
that, if care is not taken, image patches that have been blurred to different
extents will be grouped and analyzed together, thus possibly resulting in er-
roneous statistics due to this cross-resolution comparison of image patches.
In our analysis, since the patches around human fixations and those in the
image shuffled ensemble have the exact same saccade magnitudes (and hence
the same average blur), the statistics of image features will be underestimated
just as often as they will be overestimated, and will not bias these statistics
significantly.
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However, in order to alleviate the effect of comparing statistics of patches that
were blurred to different extents, we performed an eccentricity-based analy-
sis where patches of similar blur were grouped together and analysis of the
relevant statistic was repeated for each group (saccade bin). This eccentricity-
based analysis also provides insight into the influence of the location (and
hence resolution) of the image feature in the visual periphery on influencing
saccades. Cross-resolution issues do not arise for the full-resolution analysis
because all patches have the same resolution as the image.

To perform the eccentricity-based analysis of our image features, each patch
in the database was first associated with the eccentricity of the saccade mag-
nitude that was executed to get to that particular patch - i.e. the eccentricity
of the fixation point from the previous fixation. (The first fixation was ignored
for this analysis.) Figure 5 shows the histograms of saccade magnitudes of all
observers (solid line), and all images in this experiment. These saccade mag-
nitudes were then partitioned into 5 bins such that each bin contained the
same number of patches. The vertical lines in Fig. 5 show the boundaries of
the 5 bins that was used for the analysis. We decided to use 5 bins to achieve a
trade-off between the number of patches per bin and the total number of bins.
After binning, the number of image patches per bin was found to be around
6, 000. A uniform binning of the saccade magnitudes is not recommended since
the number of patches within each bin in a uniformly size saccade bin would
have been very different.

2.9 Bootstrapping

To evaluate the statistical significance of the image feature under considera-
tion, we used bootstrapping to obtain the sampling distribution of the mean
as follows. For each bootstrap trial, the ensemble of image patches at the ob-
server’s fixations (and from the image shuffled fixations) for each image was
sampled with replacement. The feature of interest was computed for these
patches, and averaged across the 101 images in the database. This process
was repeated 200 times to obtain the sampling distribution of the average
image feature. The error bars in all the figures in this paper correspond to a
95% confidence interval obtained using this bootstrap procedure.

3 Results

We now present the result of evaluating four local image features: the patch
luminance, root-mean-squared contrast, bandpass luminance, and bandpass
contrast on image patches centered at human fixations and patches from the
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image shuffled database.

3.1 Luminance Statistics

To verify if luminance is a feature that significantly influences fixations, we
computed the average luminance of patches at human fixations and compared
them to the luminance of image patches from the image shuffled database.
The average luminance for each image patch was computed using a circular
raised cosine weighting function (Raj, Geisler, Frazor, and Bovik, 2005). The
raised cosine function w is expressed as:

w(i) = 0.5 ∗
[

cos
(

πri

R

)

+ 1
]

(2)

where ri =
√

(xi − xc)2 + (yi − yc)2 is the radial distance of a pixel location

(xi, yi) from the center of the patch, (xc, yc), and R is the patch radius. The
mean luminance for a given image patch weighted using the raised cosine
window was computed as:

Ī =
1

M
∑

i=1
wi

M
∑

i=1

Iiwi (3)

where M is the number of pixels in the patch, Ii is the grayscale value of pixel
at location (xi, yi).

The absolute values of the patch luminance will, of course, depend on the
database on images and will also vary across images. Since we were mainly
interested in the differences between the image statistics at observers’ fixation
and randomly selected fixations, and not the absolute values, we simply com-
puted the ratio of average patch luminance at the observers’ fixations to the
average patch luminance for image patches from the image shuffled database
for each image, and then averaged this ratio across the N(= 101) images in
the database. Further, using the saccade binning idea from Section 2.8, we
computed the average luminance ratios of image patches within each saccade
bin as follows.

Iratio(e) =
1

N

N
∑

n=1

Ipog(e, n)

Irand(e, n)
(4)

where Ipog(e, n) and Irand(e, n) correspond to average luminance for the patches
around observers’ fixations and the image shuffled database respectively for
image number n. The eccentricity of the patch with respect to the prior fixa-
tion is denoted by e.
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This eccentricity-based analysis of the luminance ratio is plotted as a function
of saccade magnitude in Fig. 7. The error bars correspond to 95% confidence
intervals on the mean obtained via bootstrapping. Each panel corresponds to
the patch size (indicated by the title) that was used for the analysis. From
this plot, we see that the ratios take values that are consistently well above
1.0 indicating that saccades executed by observers tend to land on regions
with higher luminance. However, given that the maximum ratio is only around
1.04, the effect does not seem to be very strong and diminishes with increasing
patch size. The tendency to fixate at brighter regions is more pronounced at
lower saccade magnitudes and with smaller patch sizes. Finally, since foveation
does not affect the mean patch luminance, there is no statistically significant
difference between the foveated (dashed) and full-resolution (solid) curves.

3.2 Local Contrast Statistics

We now discuss the statistics of another low-level image feature, the local im-
age contrast at fixations. Similar to the luminance computation, the contrast
of image patches around observers’ fixations was compared to the contrast
of image patches from the image-shuffled database. For each image patch,
a weighted root-mean-squared (RMS) contrast using a circular raised cosine
weighting function (2) was computed as follows:

C =

√

√

√

√

√

√

1
M
∑

i=1
wi

M
∑

i=1

wi

(Ii − Ī)2

(Ī)2
(5)

where M is the number of pixels in the patch, Ii is the grayscale value of pixel
at location (xi, yi) and Ī is the mean of the patch (3).

We then computed the ratio of average RMS contrast at the observers’ fixa-
tions to the average RMS contrast for image patches from the image shuffled
database for each image, and then averaged this ratio across the N = 101
images in the database as follows:

Cratio(e) =
1

N

N
∑

n=1

Cpog(e, n)

Crand(e, n)
(6)

where Cpog(e, n) and Crand(e, n) correspond to average RMS contrast for all
patches at eccentricity e around observers’ fixations and the image shuffled
database respectively, for image number n.

The eccentricity-based RMS contrast ratios for various patch sizes are shown
in Fig. 8. From these plots, we note that the curves for both the full-resolution
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and foveated analysis are significantly higher than 1.0 for all eccentricity values
(and patch sizes) indicating that observers select patches that are of higher
contrast than the random observer. The higher values of the contrast ratios
(within any patch size) suggest that the effect of contrast is stronger than
local patch luminance. Second, the RMS ratio for the foveated analysis are
significantly higher than those for the full-resolution analysis for all patch sizes
that were used in this analysis. This is evident in Fig. 9, where the contrast
ratios (averaged across eccentricity bins) are plotted as a function of the patch
size that was used to compute contrast. While the full-resolution analysis is
in agreement with previous reported results on the RMS contrast statistics
(Reinagel and Zador (1999)), it underestimates the influence of RMS contrast

in drawing fixations. In Fig. 9, for example, the foveated statistics at a patch
size of 1◦ shows that the average contrast at human fixations is 1.1 times the
contrast at random fixations - a result which is significantly different from
the value of 1.07 that is obtained from the full-resolution analysis. Finally, as
in the case of luminance ratios, increasing the patch size reduces the ratios
towards 1.0.

3.3 Bandpass Luminance Statistics

Thus far, we have found that both the mean luminance and RMS contrast
are significantly higher for image patches at human fixations than those ob-
tained from the image-shuffled database, with RMS contrast having a stronger
effect. The next image feature that we investigated was the output of center-
surround-like filters on these image patches. The motivation for using this
feature is based on the intuition that it is not necessarily regions of higher
luminance or contrast, but regions that differ from their surroundings that
will draw fixations. For example, in Fig. 10, it is very likely that human ob-
servers will fixate on the central region in both the images. The central square,
despite having lower luminance (in the left image) and lower contrast (in the
right image) than any other region in the image, draws attention because it
differs from its surroundings. Such features can be detected by the outputs of
center-surround or more generally, bandpass kernels.

Given a collection of image patches at human and randomly selected fixations,
one could resort to a brute force approach and vary various parameters of a
bandpass kernel such as its size (full width at half-max) and shape (as defined
by aspect ratio) to find the bandpass filter whose outputs are maximally differ-
ent when applied to the two sets of image patches. In other words, the optimal
bandpass filter is the one that selects the bands of spatial frequencies whose
energies differ maximally between human and random patches. Thus, instead
of the brute force approach described earlier, we used a simple alternative
where the filter was designed in the spatial frequency domain.
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To locate the spatial frequencies that are most relevant for separating the two
patch ensembles in a given image n, we first compute the ratio of the average
discrete fourier transform (DFT) magnitudes of patches at point of gaze to
that of the patches selected randomly:

Fratio(e, n) =

1
P (e,n)

P (i,e)
∑

p=1
|Ĩ(e, p)pog|

1
R(e,n)

R(e,n)
∑

r=1
|Ĩ(e, r)rand|

(7)

where Ĩ(e, ·)pog and Ĩ(e, ·)rand are the DFTs of an image patch at eccentric-
ity, e, at point-of-gaze and random fixations respectively. P (e, n) and R(e, n)
correspond to the number of image patches at human and random fixations re-
spectively in image n at eccentricity e. The average value of this ratio across the
N = 101 images was then computed to yield: F ratio(e) = (1/N)

∑N
n=1 Fratio(e, n).

Figure 11 shows the plots of F ratio(e) for a patch size of 1.6◦×1.6◦. Each panel
corresponds to a ratio of centered discrete fourier transforms at a particular
eccentricity bin (indicated by the title). The top row shows plots of these
ratios for the full-resolution analysis, and the bottom row for the foveated
analysis. The white circle in each panel of Fig. 11 corresponds to the maxi-
mum visible spatial frequency at a given eccentricity as derived from (1). We
notice that while the full-resolution analysis selects several spatial frequen-
cies beyond what the observer can see (outside the white circle), the foveated
analysis, by design, ignores spatial frequencies beyond the cut off frequency
limit. The white circle does not always fit the resulting Fratio(e) plots snugly
for the foveated analysis, because each saccade bin represents several eccen-
tricities, and the mean eccentricity within each bin was used to select the cut
off frequency.

Since we are looking at ratios of magnitudes of DFTs of patches selected by
human fixations to those from the image-shuffled fixation, the selection of the
optimal bandpass kernel amounts to selecting the spatial frequencies that are
significantly greater than 1.0. One could, for example, simply select the spatial
frequency corresponding to the maximum ratio within each eccentricity bin in
Fig. 11. We selected those spatial frequencies whose ratios were greater than
0.98 times the maximum ratio value at any particular eccentricity. This allows
for the selection of a band of frequencies instead of a single spatial frequency
as the relevant bandpass kernel.

Once the bandpass kernels were identified, the final step involved computing
the average energy at these spatial frequencies in the image patches as the
feature of interest. In particular, given an image patch I(p, e), located at an
eccentricity e from the previous fixation, we computed the energy of the patch
only at the relevant spatial frequencies as highlighted by Fratio(e). The ratio
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of the average value of this energy for human fixations to that of the patches
from the image-shuffled random fixations was computed for each image, and
averaged across the N images.

The resulting ratios of bandpass luminance for a patch size of 1.6◦ × 1.6◦ is
shown in Fig. 12 as a function of saccade magnitude. Due to computational
issues, the bandpass analysis was performed for only this patch size. We notice
that the values of the ratios are higher (with a maximum value of 1.25) than
those obtained by evaluating just the luminance values of the local image
patches (a maximum ratio value of 1.04). The average luminance and bandpass
luminance ratio value across all saccades for this patch size was 1.01 and
1.16 respectively. In other words, observers are more likely to fixate on image
regions that have a bandpass luminance profile than patches that are brighter
on average. Further, we also notice that there is no statistical significance
between the foveated and the full-resolution analysis. Since foveation does
not alter the mean luminance of a region, the bandpass luminance statistic
- a measure of difference between the means of two regions - is not affected
significantly by foveation.

3.4 Bandpass Contrast Statistics

Finally, we extend the analysis to the center-surround (or bandpass) statistics
of local image contrast. Intuitively, this is a measure of the contrast of local
image contrast. The motivation for computing this statistic is that it captures
higher order structure that are missed by the other three features. For example,
as in Fig. 10 (right), the human eye might land on regions whose central and
surrounding regions have the same mean luminance (and hence not captured
by the bandpass luminance kernels), but different contrast profiles. One way
to evaluate this feature is by computing the difference between the local image
contrast in a central region of an image patch and the local image contrast in
an area surrounding that image patch. The problem of computing the optimal
bandpass kernel is more involved than before because we first have to compute
local image contrast - which itself depends on the size of neighborhood used
to compute the contrast - and then optimize the size of the bandpass kernel
that maximally separates human and random patches in the sense of this
particular statistic. To address this issue, we compute the magnitude of the
local image gradient for each pixel and use this as a measure of an extremely
local (pixel-level) measure of image contrast. The goal of designing the optimal
contrast bandpass kernel now amounts to determining the spatial scales at
which these local image gradients vary. Similar to the approach used in Section
3.3, we computed the average DFT magnitudes of the gradient patches at
point-of-gaze to those at random fixations and detected the significant spatial
frequencies.
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Having located the significant spatial frequencies, we repeated the process
of computing the energy of each patch within the relevant spatial frequency
bands as before (Section 3.3) except that the filtering was applied to the local
patch gradient instead of the patch itself. Figure 13 shows the value of this
ratio as a function of saccade magnitude for a patch size of 1.6◦ × 1.6◦. The
ratio values for this feature is the highest of all the ratios we have computed
thus far (with a maximum of 1.3 and average of 1.2). We also notice that
the foveated analysis produces ratios that are statistically higher than the
full-resolution analysis (for three of the five saccade bins).

4 Discussion

Analysis of the statistics of image features at observers’ gaze can provide in-
sights into the mechanisms of fixation selection in humans. Using a foveated
analysis framework, in which features were analyzed at the spatial resolution
at which they were encoded, we studied the statistics of four low-level local
image features: luminance, RMS contrast, bandpass outputs of luminance and
contrast, and discovered that the image patches around human fixations had,
on average, higher values of each of these features than the image patches
selected at random. Second, by examining the actual values of the ratios (Fig.
14), we found that bandpass contrast showed the greatest difference between
human and random fixations (maximum ratio of 1.3), followed by bandpass
luminance (1.25), contrast (1.12), and luminance (1.04). The results are con-
sistent with the intuition that it is not necessarily local luminance or contrast,
but rather the variation in the features with respect to its surroundings that
seem to be stronger around human fixations. In fact, automatic fixation selec-
tion algorithms have incorporated center-surround mechanisms in their design
to capture luminance variations (Itti and Koch, 2001). Finally, if we interpret
bandpass contrast as a feature that highlights regions whose texture is dif-
ferent from the surrounding textures, the high value produced by the feature
could be attributed to top-down mechanisms such as observers fixating on
objects (that are distinct from their surroundings) in the real world scenes;
randomly-selected fixations on the other hand are less likely to land often on
such objects in the scene.

Incorporating foveation into saliency models for video sequences has been
reported to improve the predictive ability of some features such as flicker and
orientation, but not luminance contrast (Itti, 2006). The study suggests that
contrast measures on grayscale static images might not be influenced by lower
simulation realism. However, in this study, we found that contrast measures
such as local RMS contrast and bandpass contrast are indeed affected by
foveation. One possible reason for this contradiction in findings could be that
motion is a very strong cue and dominates contrast cues. It is also possible that
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the measure of contrast used in that study was the output of center-surround
filters. As mentioned earlier (and seen in Fig. 12), we do not expect contrast
measures defined by center-surround mechanisms to be affected significantly
since foveation does not alter the mean luminance of the center and surround
patch.

Tatler et al. (Tatler, Baddeley, and Vincent, 2006) have observed that the in-
fluence of image features is not uniform across saccade magnitudes and note
that by ignoring this dependence, prior work in this area (Reinagel and Zador,
1999; Parkhurst and Niebur, 2003; Tatler, Baddeley, and Gilchrist, 2005) tends
to estimate the influence of visual features incorrectly. They also study the in-
fluence of various image features as a function of spatial frequency. Itti (Itti,
2005) performed a similar eccentricity analysis of low-level features in draw-
ing fixation in video sequences and found that short and long saccades had
increased saliency at human fixations. In our study, since we use a foveated
analysis framework, we analyze patches at the spatial frequency at which they
were processed by the human visual system, and so incorporate both saccade
and spatial frequency dependence into our analysis. Our results agree with the
findings that short saccades are more image feature dependent than long sac-
cades. Long range saccades, in the case of foveated analysis, land of patches
that are blurred so strongly, that eventually the ratios should tend to 1.0.
Using increasingly larger patch sizes reduces the ratios towards 1.0 (as seen
for luminance and RMS contrast) suggesting that the effect of the image fea-
tures might be local around the fixation point. Increasing the patch size can
also results in a greater overlap between image content at human and random
fixations, thus creating smaller differences in feature values in the two image
ensembles.

These eccentricity-dependent statistics could be incorporated into the design
of an automatic Bayesian foveated fixation algorithms that uses low-level im-
age features to guide fixations as follows. Given a novel scene, the algorithm
would begin by selecting the first fixation point at the center of image and
foveating the scene around this point. Using local image features and the em-
pirical distribution of foveated image features that actually drew fixations at
various eccentricities, the algorithm would then create a saliency map that
captures the probability that a region in the image will be the next to attract
the fixation can be created. A greedy algorithm can be used to select the peak
in the resulting saliency map as the next fixation point. The image will then
be foveated at the new fixation point and the process repeated. As more image
features that differentiate human and random fixations are discovered, the se-
lection mechanism would be able to pool the saliency maps from each of these
feature layers and select peaks from this combined saliency map. While it has
been shown that luminance and contrast in natural scenes are statistically in-
dependent of each other (Mante, Frazor, Bonin, Geisler, and Carandini, 2005),
further analysis is needed before we can consider the other features to con-
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tribute independently to the saliency maps. Finally, in addition to image fea-
tures, the model will also incorporate the statistics of human eye movements,
such as the distributions of saccade magnitudes and saccade orientation, inhi-
bition of return, and the tendency of observers to fixate at the image center.
Initial simulations using bandpass contrast as the relevant feature for fixation
selection highlights regions that correlate well with fixations recorded from ob-
servers Rajashekar et al (2007). A Matlab implementation of this algorithm
will be made available at http://live.ece.utexas.edu/research/gaffe

shortly. Our analysis for bandpass contrast in this paper quite simplistic. In-
stead of using patch gradients for contrast measures, one could analyze the
local image contrast at a given patch size, and evaluate the frequency varia-
tions at that patch size to design a better bandpass contrast kernel. We also
note that the bandpass kernels could also be designed by bootstrapping the
DFT ratios, and selecting those spatial frequencies that are statistically dif-
ferent from 1.0. The resulting band of frequencies could also be modeled as
Gabor filters if necessary. In this analysis, we use a single patch size across all
eccentricities. It would be interesting to vary the patch size to match the size
of receptive fields at various eccentricities and recompute the scene statistics.

In conclusion, analysis of the statistics of image features at point-of-gaze must
incorporate foveation to facilitate a better understanding of their impact on
gaze prediction. We use a foveated framework for analyzing the statistics of
image patches at the resolution at which they were perceived and showed
that foveated analysis reveals an influence of RMS contrast and bandpass
contrast that is statistically more significant than that obtained using the
full-resolution analysis. The large number of subjects and images, the high
accuracy of recorded eye movements, and the careful selection of natural cal-
ibrated images in this experiment makes this dataset a very useful tool to
evaluate the influences of other low-level fixation attractors in still images.
In the near future, as a service to the vision community, we will be provid-
ing free access to the entire collection of eye movements. The accompanying
manuscript, DOVES: A Database of Visual Eye Movements, is currently un-
der review. In addition to evaluating the statistics of disparity and motion
primitives at observers’ fixations, our group is also looking into information-
theoretic approaches to selecting visual fixations (Raj et al., 2005).
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Fig. 1. Examples of images used in the experiment.
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Fig. 2. Subject performance as a function of number of images viewed. Performance
was measured as the number of correct responses minus the number of incorrect
responses to the patch detection task.
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Fig. 3. Example of an observer’s eye movement trace superimposed on the image
stimulus. The dots are the computed fixations. The square in the center of the image
is the first fixation.

0.5 1 1.6 2.1 2.6 3.2 3.7 4.2
86

88

90

92

94

96

98

100

Patch Size (degrees)

%
 o

f p
at

ch
es

 u
se

d 
fo

r 
an

al
ys

is

Fig. 4. Effect of patch size on the percentage of total fixations used for analysis.
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Fig. 5. Distribution of saccade magnitudes for human observers (solid line) and uni-
formly distributed fixations (dotted line). The vertical lines indicated the boundary
of saccade bins used for the eccentricity-based analysis. Each bin contains approxi-
mately 6000 fixations.

(a) Original Image (b) Foveated Image

Fig. 6. Example of a full-resolution image (a) that has been foveated (b) about the
fixation point indicated by the white dot.
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Fig. 7. Eccentricity-based analysis of ratios of mean luminance at observers’ fixa-
tions to random fixations. Each panel plots the values of the ratio as a function of
saccade eccentricity. Solid lines denote full-resolution analysis and the dashed lines
indicate foveated analysis. Error bars signify 95% confidence intervals. Each panel
corresponds to the patch diameter (indicated in degrees by the title for the panel)
that was used to compute the mean luminance.
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Fig. 8. Eccentricity-based analysis of ratios of RMS contrast at observers’ fixations
to random fixations. Each panel plots the values of the ratio as a function of saccade
eccentricity. Solid lines denote full-resolution analysis and the dashed lines indicate
foveated analysis. Error bars signify 95% confidence intervals. Each panel corre-
sponds to the patch diameter (indicated in degrees by the title for the panel) that
was used to compute the RMS contrast.
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Fig. 9. Ratios of RMS contrast (at observers’ fixations to random fixations) as a
function of patch size. Solid lines denote full-resolution analysis and the dashed lines
indicate foveated analysis. Error bars signify 95% confidence intervals.
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Fig. 10. Center-surround (bandpass) kernels can be used to detect luminance (left)
and contrast (right) variations

Fig. 11. Design of Bandpass kernels. The figure shows plots of Fratio for full-resolu-
tion (top row) and foveated (bottom row) patches as a function of saccade magni-
tude for a patch size of 1.6◦ × 1.6◦ pixels. Each column corresponds to the saccade
bin in which the DFT analysis was performed (the bins are indicated on the title).
The x and y axis on these plots correspond to cycles per degree. All plots have been
plotted using the same colormap.The white circle in each panel indicates the spatial
frequency cut off given by (1).
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Fig. 12. Eccentricity-based analysis of ratios of bandpass luminance at observers’
fixations to random fixations. The panel shows the values of the ratio as a function
of saccade eccentricity. Solid lines denote full-resolution analysis and the dashed
lines indicate foveated analysis. Error bars signify 95% confidence intervals. The
patch diameter was 1.6◦ × 1.6◦.
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Fig. 13. Eccentricity-based analysis of ratios of bandpass contrast of image patches
at observers’ fixations to random fixations. The panel shows the values of the ratio as
a function of saccade eccentricity. Solid lines denote full-resolution analysis and the
dashed lines indicate foveated analysis. Error bars signify 95% confidence intervals.
The patch diameter was 1.6◦ × 1.6◦.
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Fig. 14. Plots of the four foveated local image features as a function of saccade
magnitude for a patch diameter of 1.6◦ × 1.6◦. Error bars signify 95% confidence
intervals on the sample mean.
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