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ABSTRACT tion algorithms remains unsatisfactory due to pose and illu
p_'lination limitations inherent irtD images [1]. These lim-

Interest in face recognition systems has increased signif]-_ . ) o
cantly due to the emergence of significant commercial Opl_tauons were made public by Face Recognition Vendor Test

portunities in surveillance and security applications.tHis (FR¥T) ZOtOZd[Z] ) in th di ional technol
paper we propose a novel technique to extract features from q ecen ka Vg?feﬁ n l_[ee |m_e_r:_s 'Ogj?) fsenslor ?c nology
3D face representations. In this technique, first the nosis tip made guick and figh quality acquisition acial surfaces

automatically located on the range image, then the range da?oss'tf)lfh' 'fA 3D m:jage“ 's a th:jee c:;mensmnarll refpre;etnta-
from a hexagonal region of interest around this landmark ié'on of the face and can be rendered byfamesh of points

decomposed using Barycentric wavelet kernels. The dimerﬁ-_r ? rang]? |mat%e. Ina rafgi'mage %'XEI \;aluesFreerct the
sionality of the extracted coefficients at each resolutexel IStance Trom the sensor to the imaged surlace. Face recog-

is reduced using principal component analysis (PCA). ThesB' . .
new features are tested on 206 range images, and a high cl ar among researchers because of its potential to overcome
' the pose and illumination limitations @D images.

sification accuracy is achieved using a small number of fea- . . .
In recent years multiresolution surface representati@n ha

tures. The obtained accuracy is competitive to that of other . , , )
techniques in literature. gained a lot of attention for geometric modeling, computer

N _ ~graphics, and surface compression; however, this importan
Index Terms— 3D face recognition, Triangular B-spline trend that is based on wavelet functions, has never been used

wavelets, Biometry in 3D object identification or face recognition applications.
In this paper, we present new features that are based on
1. INTRODUCTION 3D wavelet coefficients computed on range images. The re-

mainder of this paper is organized as follows: In Section 2 we

Although face recognition research first surfaced in the-midpresent an overview of multiresolution surface represmmta
1950s in the psychology and neuroscience communities, ising triangular B-spline wavelets. A detailed descriptid
was not till the 1970s that engineers started to investithgge our feature extraction method is given in Section 3. In Secti
feasibility of automatic face recognition systems. Ins¢tie 4, face recognition accuracies are shown, followed by discu
using biometrics like face images, fingerprints, and irsnsc  sion and conclusion in Sections 5 and 6.
for personal identification has increased since the 1998s du
to emergence of commercial opportunities; advances in bio-
metric acquisition hardware; and most importantly incesas
surveillance and security applications. Even though btemezll_ B-splines
rics such as fingerprints and iris scans currently are mdire re
able for personal identification, the human face remaing-an aB-splines are useful mathematical tools for curve modeling
tractive biometric because it is easily accessible, ugandiy  and editing applications. Forseyt al. [3] extended this
and requires minimum cooperation. concept to surface modeling by constructing hierarchies of

Almost all face recognition research in the early days wa$-Spline bases and using their tensor products to approxi-
focused on using portrait images of the face. These portraihate surfaces at different level of details. Alternatiyebr
images (which we refer to a®D images”) capture texture searchers like Staadt al. [4] have constructed B-spline
and facial color information but do not provide much infor- wavelets from tensor products of one dimensional B-spline
mation about the three dimensionaD| structure of the face. wavelets and used them for multiresolution surface represe
The efforts of researchers over the past 30 years haveedsulttation and compression. Unfortunately, tensor product B-
in many sophisticated and matuzB face recognition algo- splines (bases or wavelets) suffer limitations in searhess
rithms. Unfortunately, the performance 2 face recogni- representing complicated surfaces [5]. Hence, reseacher

2. BACKGROUND CONCEPTS



V3
Fig. 2. A hexagonal mesh representing vertices of Barycentric
filter kernels.

Fig. 1. 2D Barycentric plane shown i8D cartesian space. 2.2. Barycentric Filter Kernels

have focused on construction of B-splines (wavelets orsbase.l.he complexity of discrete convolution algorithms incresas

on triangular domains. o . with the dimension of the data. In order to avaiB mul-

In [6], de Boor constructed bivariate B-spline bases onjresolution analysis, Dregett al. [7] developed hexagonal
regular triangular domains, by projecting a trivariates®n  garycentric filters from a two-scale relationship betw&en
product of one dimensional B-spline bases on the Barycengnsor product wavelets. Fig. 2 illustrates the structidra o
tric plane parameterized by Barycentric coordindte, w),  hexagonal filter and the relative vertex locations.
whereu+v+w = 1. A Barycentric plane is 8D subspace of Table 1 presents the coefficients of linear hexagonal
3D Cartesian space, spanning a diagafiaplane P, sShown gy cantric filters resulting from the projection B tensor

on Fig. 1. products of Haar scaling and wavelet functions. We have used

Inspired by this idea, Dreget al. [7] constructed trian-  these filters to directly perform wavelet transformatiortios
gular B-spline scaling functions and wavelets based 8D a triangular mesh.

tensor product ofiD B-spline wavelets (Chui [8]). Unlike

typical 2D wavelet constructions that have one scaling func- Vi V2 V3 V4] Vs ] Ve | V7
tion aqd three wavelets, one scalln_g fgnctlon and 7 indepen- = 121 1/8| 18| 18| 1/8 | 1/8 | 1/8
dent triangular wavelets from a projection3i tensor prod- bl 0| Us| 18| us|-1/8| -18| -18
uct wavelets are created. This higher number of wavelets tha

usual along with the 4:1 subsampling scheme employed in the b | O |-1/8 -1/8| 1/8 | 1/8 | 1/8 | -1/8
implementation (section 2.3) results in an over-represemt by | 0 | 1/8|-1/8|-1/8|-1/8 | 1/8| 1/8
of surface in the wavelet domain. by | 1/4 | -1/8 | -1/8 | 1/8 | -1/8 | -1/8 | 1/8

In order to project a tensor product basis onto the | b5 | 1/4 | 1/8 | -1/8 | -1/8 | 1/8 | -1/8 | -1/8
Barycentric domain, that basis should be integrated along a | p4 | 1/4 | -1/8 | 1/8 | -1/8 | -1/8 | 1/8 | -1/8
Iing t_whi_ch is pgrpen_di_cular to the Barycentric dom_ain [7]- b, | 0 18| -1/8| 1/8 | -1/8| 1/8 | -1/8
This line integration will increase the degree and contjnoi . — —
the resulting wavelets. For example, in our implementation Table 1. Linear Barycentric filter coefficients.
we have usedD tensor products of Haar scaling functigs) (
and Haar wavelety() to generate a set of eight linear trian- 2.3. Barycentric Convolution and Sub-sampling
gular spline bases. These linear triangular bases inclode o
scaling function § = o) and seven waveletd( = o), Usipg hexagonal filterg, a wavelet depomposition of sudace
by = obp,... by = b ). Here the notation = ey deﬂned over regulgr trlangplar domains can be performed on
implies that the linear triangular B-spline scaling funatie- a triangular domain. Similar to conventional schemes, tri-

sulted from the tensor product of three one dimensional Hag#"gular wavelet decompositions consist of convolution and
scaling functions) along each axis, y, . sub-sampling steps. Assuming thgt represents a set of

Assuming that the input surfaces are defined over a un{_unc-tlonal ve}lges flt the vertices of a t“a“‘?!“_'ar mesh, the
ling coefficients,, . ; and the wavelet coefficientg( 1

form triangular grid, Multiresolution Analysis (MRA) careb S¢@
implemented in two alternative fashions. The first scheme ig+1:-- - din+1) fOr @ subset of vertices present at the next
to map functional values defined over the vertices of a regucoarser level mesh are computed as follows:

lar triangular mesh onto an equally spad# grid (Fig. 1)

and perform3D-MRA by sequentially convolving and sub- e Place the Barycentric filters over each vertex to calcu-
sampling along the axes y, z. Alternatively, multiresolution late eight coefficients,, 1, cf}nﬂ, anﬂ,. . ,JZRH at
analysis can take place directly on the triangular meshgusin that vertex by multiplying the corresponding filter ker-
hexagonal Barycentric filters (Barycentric-MRA). Baryeen nel coefficients (Table 1) and scaling function coeffi-
tric filter kernels and convolution procedure are explaiimed cients ¢,,S) of the current vertex and its neighboring

Sections 2.2 and 2.3. vertices followed by summation.



wavelet decomposition technique (section 2.3). It should
be noted that the transformation coefficients were caledlat
only at regular vertices (vertices with 6 neighbors). Table
shows the total coefficients extracted at each refinemeeit lev
For example at level 2 there aré9 regular vertices available
and at each vertex coefficients have been extracted.

LNN/NNININES
ANAVAVAVAVAVANAS

N\ VAVAVAVAVAY -/
NN NNNN/
WA/ \/\/\/ Level1 | Level2 | Level3 | Level4 | Level5
\VAVAVA Coefficients | 8+ 721 | 8+160 | 8#37 | 87 | 8x1

Table 2. Number of coefficients calculated at each decompo-

]
‘Ea) Mesh subsampling  (b) Region of Interest sition level.

Fig. 3. Triangular Mesh a) Example of mesh subsampling: 4. RESULTS

Vertices marked by blue circles are those that remain aft
one subsampling step. b) The displayed hexagonal region
interest represents the coarsest level of decomposition.

e(\);}/e tested our algorithms o206 range images correspond-

ing to 103 individuals from Advanced Digital Imaging Re-

search’s database. Each subject has two range images of size

e Subsample the triangular mesh and save the computed1 x 751 with 256 gray level scales. Available range images
coefficients’,, 1, d%, 1 a2, Tl T 41 onlyatthose are partitioned into two mutually exclusive sets, “gallery
vertices that remain after subsampling. and “probe”. Barycentric features were extracted from ev-

ery range image in these data sets by using the procedure ex-
Fig. 3(a) depicts an example of triangular mesh subsanpiained in Sections 3.1 and 3.2.

pling. Vertices marked by blue circles are those that remain  Eventually all the coefficients extracted from each re-

after one subsampling step. finement level were separately concatenated to createy-
mented Barycentric feature vectors. As made clear by Table
3. METHODS 2, each augmented feature vector represent a range image in a
very high dimensional feature space. In order to decrease th
3.1. Region of Interest Selection dimensionality of these feature spaces, we used the Paincip

. Component Analysis (PCA).
In order to extract Barycentric wavelet features from range o : .
The basic idea is to create five new spaces and represent

:;n&gseesié:tzf); ?s :je(?r:(;nb of ||2(t;(iar:esa: c(eRrng;I?/Z?tL:alg (%earskeelgcvt/ic*eatures extracted at each resolution level with lower dime
yp 9 sional feature vectors. The final decision on the best featur

a blue circle) of a hexagonal mesh depicted in Fig. 3(b) on thget is then made by comparing the performance accuracy.

nose tip. The classification task is done using a nearest neighbor

The nose tip is defined to be th_e closest point toibe classifier (NN) with Euclidean distancé{ Minkowski met-
sensor and consequently has the highest range value. i prac . . . . -
. ) ; . . .. TIt) serving as the desired distance metric. Each curvegn Fi
tice, the highest value of the range images is not just linite

: . : . . - 4 describes the variation of classification performancédar
to one point. Instead it comprises a region of pixels. In thi

. C : idures extracted at various decomposition levels underferdif
case the centroid of that region is considered as the desire . ; . : : .
fiducial point ent PCA feature dimensionality. It is evident that by insrea

. . ing the feature dimensionality, the classification perfance
The mesh shown on Fig. 3(b) represents the vertices used:. . .
: initially improves and then saturates. Using oBliPCA fea-
for the coarsest level wavelet transformation. It consist o

. : : L . tures from the first decomposition leved].5% accuracy is
vertices and equilateral triangles with sides equald pix- b 1.5% y

, hi . Byi ing th f PCA f f
els. The subsequent finer level meshes are created by sequaﬁ- leved. By increasing the number of PCA features from

: e : . , e first level, correct classification rate reach22% which
tially refining this hexagonal mesh. During mesh refmementis more than anv combination of PCA features from hiaher
each triangle of the mesh will be divided inonew trian- y g

les by simplv connecting midpoints of each trianale’s ed decomposition levels. Finally the recognition rate of thstfi
9 y Ply C 9 b . 9 Yevel decomposition features saturate94tl 7% when the
as depicted in Fig. 3(a). The finest triangular mesh used

i . ) o
this experiment is created by refining the original mesh sixE’CA dimensionality iS0.

successive times. This mesh includas9 vertices andi144
triangles. 5. DISCUSSION

Our system'’s performance is promising and competitiveeo th
existing3D face recognition algorithms. For example, Late

Starting from the finest level, the face region surroundedl. [9] implemented 8D face recognition system by extract-
by the region of interest is decomposed using Barycentriing face contours at different depth values with respedudo t

3.2. Feature Extraction
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Fig. 4. Recognition performance under different dimension- 2]

ality of features presented for different decompositiorels.

nose tip. They have evaluated their system using a database
of 70 range images from5 individuals and reportef4.3%
correct recognition at rank-five (target individul is amdng

five matches). It should be noted that our system has bee 3]

evaluated on a much larger database and also our recognitio
rates are of first rank rather than rank five recognition. The
recognition rate changes dramatically between rank one and
rank five.
Tsalakanidouet al.
eigenfaces from corresponding range and portrait images. A
database consisting of 80 images from 40 individuals were
used for evaluation. Recognition rates as high3s for 3D
data alone, an€l9% for combination oD and3D data were
achieved. Considering the performance3of features, our

system performs better. It is expected that by incorpagatin (5]

other features, even higher performances will be achieved.
Finally, these novel features were extracted using a low

computational scheme and performed satisfactory in matchTG]

ing 3D faces by comparing onl$5 features. Thus, they are

desirable for a real time face recognition system. These fea
tures are expression invariant because they are extraoted f

a hexagonal area around the nose tip which is rigid and does
not change much by changes in facial expression. Likewise,
more Barycentirc features can be extracted from other fidu-
cial points such as the eye corners. Combining features from

other parts of the face with those computed from nose tip will 8

further improve the accuracy.

[10] performed PCA and extract [4]

osf de ok K m e e K A e K A cients in a simple nearest neighbor classifier, recognitites
2 as high a94.17% are achievable. In the future, it is desir-
¥ able to research the performance of higher order Baryeentri
/ filters, rather than linear ones. Improving the classifarati
/ and discrimination method is another research topic for fu-
ture work.
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