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Abstract—We develop a mathematical framework for quantifying and understanding multidimensional frequency modulations in digital

images. We begin with the widely accepted definition of the instantaneous frequency vector (IF) as the gradient of the phase and define

the instantaneous frequency gradient tensor (IFGT) as the tensor of component derivatives of the IF vector. Frequency modulation

bounds are derived and interpreted in terms of the eigendecomposition of the IFGT. Using the IFGT, we derive the ordinary differential

equations (ODEs) that describe image flowlines. We study the diagonalization of the ODEs of multidimensional frequency modulation on

the IFGT eigenvector coordinate system and suggest that separable transforms can be computed along these coordinates. We illustrate

these new methods of image pattern analysis on textured and fingerprint images. We envision that this work will find value in applications

involving the analysis of image textures that are nonstationary yet exhibit local regularity. Examples of such textures abound in nature.

Index Terms—Theory and models, image processing and computer vision, image models.

Ç

1 INTRODUCTION

NONSTATIONARY texture analysis remains an important
and unresolved research problem in image analysis.

One of the most challenging aspects is the development of
numerical measures that can capture and quantify both the
texture patterns as well as information-bearing spatial
variations in the patterns. An important tool that has been
developed for this purpose is the Image Modulation model,
also termed the Amplitude-Modulation Frequency-Modu-
lation (AM-FM) image model, which models nonstationary
image content using an AM-FM expansion.

By way of example, consider the two images in Fig. 1.
The Fig. 1a shows a piece of a fingerprint, while Fig. 1b
shows a woodgrain. Both images are excellent examples of
emergent AM-FM patterns.

Nonstationarity in the fingerprint image manifests as
variations in both the ridge orientations and in the ridge
spacings. In the core region of the fingerprint—the upper-
middle region of Fig. 1a—the ridges are closely packed.
Away from the core region, the spacing between the ridges
increases. There is also significant variation in the ridge
orientation throughout the image.

The nonstationarities present in the woodgrain image of
Fig. 1b are significantly more variable than those in the
fingerprint. There are clear breaks and discontinuities in the
grain. There is considerable variation in the grain spacing,
grain orientation, and grain width.

To reveal the underlying image structure, we propose a
simple image model, where the textured pattern can be

thought of as a harmonic image that is coordinate transformed
into the observed texture. We consider the following
approximation:

IðxÞ � aðxÞ cos’ðxÞ: ð1Þ

In (1), an image IðxÞ is approximated by an AM-FM image
aðxÞ cos’ðxÞ. The AM function aðxÞ is assumed to be
nonnegative, slowly varying functions which correspond to
the component texture envelopes or contrasts. The phase
’ðxÞ of the FM function cos’ðxÞ captures the pattern
variation, which is more intuitively expressed by the
instantaneous frequency vector (IF)

r’ðxÞ ¼ @’

@x1
ðxÞ; @’

@x2
ðxÞ

� �T
; ð2Þ

where r is the gradient operator.
In order to utilize the model (1) to analyze an image IðxÞ,

it is first necessary to compute the AM-FM component
images. Previous papers have detailed methods for achiev-
ing relevant AM-FM demodulation, namely, computation
of the amplitude function, the phase function, and/or the
instantaneous frequency vector function.

More complicated textured images may also be analyzed
through the model in (1), but the relationship of the single
dominating component to the underlying image structure
will be much more complicated. Furthermore, for more
complex images, continuity, and differentiability conditions
will need to be enforced for the instantaneous frequency
vector estimates.

In this paper, we explore how the spatial variations of the
instantaneousfrequencyvectorcanbeusedtocharacterize the
underlyingpatterns intexturedimages.Wedevelopanumber
of new texture feature measures and show how complex
patterns reveal themselves through the new measures.
Geometric interpretations are given of how the proposed
methods can be used to analyze complex patterns. Our
primary focus is on developing the underlying theory while
exploringsomebasicapplications.Wewillalsoreviewseveral
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existing applications of the underlying theory and review
how they can benefit from the work that we present here.

For developing the underlying theory, we note that the
local variations in the instantaneous frequency vectors form
flowlines that are revealed by the ordinary differential
equations (ODEs) of the frequency modulation. The collec-
tion of image flowlines provides an intuitive global picture of
how the underlying image patterns vary continuously
through an image. We also show how a significant simplifica-
tion of the ODEs can be obtained by diagonalizing them along
the directions of maximum and minimum FM.

It is important to note that our local flowline approach
cannot be extended at a global level. As shown by Penrose
in [1, p. 438], for ridge-rich images such as fingerprints and
palm-prints, there is no hope of developing global
topological models assuming continuous ridge orientations.
Similarly, there is no hope of imposing a globally contin-
uous instantaneous frequency vector field on fingerprints
since ridge directions are not directed [1]. In addition, in
general, there is no hope of defining ridge lines globally, as
constant image intensity lines [1, p. 439]. Several difficulties
associated with defining ridges for general problems in
image processing and computer vision are described in [2].

Early work on the importance of phase in both 1D and
multidimensional signal processing was explored in [3]. In
[3], Oppenheim and Lim derived conditions that allow
approximate and exact reconstructions of a signal using
only phase information. In [4], Fleet and Jepson developed
phase-based methods for motion estimation. The authors
used velocity tuned Gabor filters to show that phase-based
methods can provide robust velocity estimates at a better-
resolution, with subpixel accuracy.

Significant work has been done on 1D AM-FM signal
analysis, particularly for application to speech signal
analysis [5], [6], [7], [8], [9]. Multidimensional AM-FM
demodulation methods have been studied in [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24],
[25], [26], [27], [28]. Other related research includes bounds
on demodulation accuracy for discrete modulated signals
[29], and Cramer-Rao bounds on AM-FM estimates [30].

AM-FM models have been used in many image pattern
analysis applications, including shape from shading [31],
image interpolation [32], fingerprint classification [33],
image retrieval in digital libraries [34], image segmentation
[35], [36], [37], and video segmentation [38].

The paper is organized as follows: Section 2 summarizes
methods for 2D AM-FM demodulation. Section 3 provides a
framework for understanding and interpreting multidimen-
sional frequency modulation in images in terms of the
instantaneous frequency gradient tensor (the Hessian of the
phase). Section 4 derives ordinary differential equations
(ODEs) that describe image flowlines, which result from
solving the ODEs associated with the instantaneous fre-
quency vectors. Expressions are also derived for the phase
and the instantaneous frequency vectors. Section 5 presents
geometric conditions for diagonalizing the ODEs along the
eigenvector directions of the instantaneous frequency gra-
dient tensor. Results on real patterned images are presented
in Section 6, and concluding remarks are given in Section 7.

2 METHODS FOR IMAGE DEMODULATION

We summarize methods for demodulating multidimen-
sional AM-FM images. A large number of 1D and 2D AM-
FM demodulation algorithms have been developed. The
best-known of these methods are based either on the
Teager-Kaiser (T-K) Operator or on the analytic signal.

2.1 AM-FM Demodulation Using Teager-Kaiser
Operators

Given an image IðxÞ, the Teager-Kaiser energy operator is
defined as:

�cfIgðxÞ � jjrIðxÞjj2 � IðxÞr2IðxÞ; ð3Þ

where r2 ¼ @2=@x2
1 þ @2=@x2

2 is the Laplacian operator. The
AM and FM estimates are:

�̂i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c

�
@I

@xi

�
=�cfIg

s
; i ¼ 1; 2 ð4Þ

â ¼ �cfIg=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c

�
@I

@x1

�
þ�c

�
@I

@x2

�s
: ð5Þ

Note that the equations given by (4) only estimate the
magnitude of the components of the instantaneous fre-
quency vector. One method of estimating the correct signs
is to form local, single harmonic images with the two
possible spatial frequencies ð�̂x1

;��̂x2
Þ, and compute the

local input image projection on the single harmonic images.
The instantaneous frequency estimate which gives the
corresponding largest projection is then used.

Method (3), (4), and(5) were developed for relatively noise-
free images. To extend the method to noisy,wideband images,
a multichannel filterbank may be deployed, applying (3), (4),
and (5) at the output of each channel filter. For our examples,
we use a Gabor Filter bank at 11 orientations (uniformly
sampled) with constant-Q frequency-domain spacing.

In this work, we will assume that the image to be analyzed
contains a single AM-FM component. Thus, we shall utilize
AM-FM estimates that correspond to the dominant oriented
image structure. This is accomplished by a technique called
Dominant Component Analysis (DCA) (see [17]). In DCA, the
image energy estimates coming from each channel are
compared at each pixel, and the maximum-energy responses
used in subsequent calculations. For single AM-FM compo-
nent images, an alternative to Dominant Component Analysis
is to use the Gabor filter outputs to compute local spectral
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Fig. 1. Two examples of nonstationary images that can be analyzed with

the proposed methods. (a) Fingerprint image. (b) Woodgrain image. The

fingerprint image is the second image in the National Institute of

Standards (NIST) database.



moments and then use the moments to estimate the
instantaneous frequency [23], [31]. In our case, we use a
filterbank to separate out the dominant AM-FM component
from the possible presence of multiple components (see [16]
and [12] for an alternative treatment). Recently, extensions to
the Teager-Kaiser operator include the work of Larkin for
uniformorientationestimation [26]andthe GEToperator [27].

A common feature for most AM-FM demodulation
methods, including the ones based on energy operators, is
that they work very well with narrow-band signals. An
advantage of prefiltering with the single-sided Gabor
filterbank is that it provides suitable input signals to the
AM-FM demodulation algorithms for accurate estimation
(but see [15] for wideband signals).

2.2 Image Demodulation Based on the Analytic
Image

Alternatively, analytic image methods for AM-FM demodu-
lation are based on extending the notion of the 1D analytic
signal to 2D or simply to provide a Hilbert-based extension of
the 1D Hilbert-based demodulation approach. Early work
can be found in [17]. In [24] and [25], the authors introduce the
phase quadrature transform for extending the Hilbert trans-
form into two dimensions. In [28], Felsberg and Sommer
introduced the monogenic signal, a nice extension of the
analytic signal to images. The monogenic signal is a three-
dimensional representation that combines an image with its
Riesz transform to yield a sophisticated 2D analytic signal.
Some related work on image demodulation based on the
analytic image includes [20], [21], [22], [28].

3 INSTANTANEOUS FREQUENCY GRADIENT TENSOR

In order to develop a general model for describing complex,

nonstationary textures, we use the concept of directional

instantaneous frequency. Given an FM image cos�ðxÞ, the

instantaneous frequency is given in terms of the gradient

of the phase r�ðxÞ ¼ ½ @�@x1
; @�@x2
�T . The instantaneous frequency

vectorr�ðxÞ is always orthogonal to the equi-intensity lines

of both the phase �ðxÞ ¼ c and of the original image

cos�ðxÞ ¼ c. The magnitude of the instantaneous frequency isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
@�

@x1

�2

þ
�
@�

@x2

�2
s

:

In what follows, we define the instantaneous frequency
gradient tensor (IFGT) as the Hessian of the phase or,
equivalently, in terms of the component derivatives of the
instantaneous frequency vector

Fðx1; x2Þ ¼
@O1=@x1 @O1=@x2

@O2=@x1 @O2=@x2

� �
; where

O ¼
O1

O2

� �
¼

@�=@x1

@�=@x2

� �
:

ð6Þ

Note that the instantaneous frequency gradient tensor is real
and symmetric with real eigenvalues and orthonormal
eigenvectors [39]: F ¼ E��ET , where E is the eigenvector
matrix. We note that E is an orthogonal matrix with unit
columns. It may thus be considered as a rotation matrix. The
eigen decomposition reveals the essential, local character-
istics of the multidimensional frequency modulation. As we

describe in Lemma 1, the instantaneous frequency undergoes
its greatest change in the spatial direction of the dominant
eigenvector direction, corresponding to the largest eigenva-
lue. Furthermore, the minimum change occurs in the spatial
direction that is orthogonal to the dominant eigenvector.
Later, we will find that it is useful to analyze the eigenvector
directions at each image pixel.

In the analysis that follows, we assume the usual matrix
norm defined for a matrix F using jjFjj � maxx6¼0 jjFxjj=jjxjj,
where: jjxjj �

ffiffiffiffiffiffiffiffiffi
xTx
p

.

Lemma 1 (Frequency modulation bounds). The differential
increase in the magnitude of the instantaneous frequency
vector is always bounded as:

j�2jjjdxjj � jjdOjj � j�1jjjdxjj; j�1j � j�2j: ð7Þ

The upper bound is achieved for the first eigenvector:

dx ¼ c½e1;1; e1;2�T , where c is a scalar constant. The lower

bound is achieved for the second eigenvector: dx ¼ c½e2;1; e2;2�T .

Clearly, when �1 ¼ �2, then jjdOjj ¼ j�1jjjdxjj.
Proof. See Appendix A. tu

From (7), the maximum change in the instantaneous
frequency vector magnitude is in the eigenvector direction
corresponding to the largest magnitude eigenvalue. By
contrast, the minimum change in the instantaneous fre-
quency vector magnitude is in the eigenvector direction
corresponding to the smallest magnitude eigenvalue.

We can use the IFGT to understand the local image phase
structure. Expand �ðxÞ into the Taylor series expansion
about x0 [39, p. 327]:

�ðxÞ � �ðx0Þ þ ðx� x0ÞTr�ðx0Þ

þ 1

2
ðx� x0ÞTFðx0Þðxx0Þ;

ð8Þ

where the approximation is of order jjx� x0jj3. Equation (8)
provides a quadratic, local chirp-like approximation to the
underlying texture patterns. The coefficients of the quad-
ratic terms are the matrix components of the IFGT.

The complex FM image may be thought of as a local
product of two 1D signals, defined along the eigenvector
directions. To show this, for x0 given, define the eigenvector
coordinates in terms of the eigenvector matrix ET

zðxÞ ¼ ET ðxÞðx� x0Þ ð9Þ

on the rectangular Cartesian coordinates x. We will use ~
over a symbol to denote that it is defined on the eigenvector
coordinate system. Thus, ~�ðzÞ, ~OðzÞ, and ~FðzÞ denote the
phase, instantaneous-frequency, and IFGT defined on the
eigenvector coordinate system. Around each point in the
image, the phase is separable, meaning that it can be
expressed as a sum of two one-dimensional functions. To
see this, let z0 ¼ ½a1; a2�T , and note that

~�ðzÞ � ~�ða1; a2Þ þ ~�1ðz1Þ þ ~�2ðz2Þ; ð10Þ

where:

~�iðziÞ ¼
@ ~�

@zi
ða1; a2Þðzi � aiÞ þ

�iða1; a2Þ
2

ðzi � aiÞ2; i ¼ 1; 2;

ð11Þ
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where �1; �2 denote the eigenvalues of ~F. Note that the
approximation holds when z is near the origin. In what
follows, without loss of generality, we take z0 ¼ ½0; 0�T . We
also note that the complex FM function is locally approxi-
mated by a product of two 1D FM functions defined on the
eigenvector coordinate directions:

exp j ~�ðz1; z2Þ
	 


� exp j�1ðz1Þ½ �exp j�2ðz2Þ½ �: ð12Þ

The result in (12) can be directly extended to any finite
number of dimensions.

The approximation (12) suggests that we can locally
describe multidimensional frequency modulation as a
product of 1D frequency modulation processes that are
defined along the eigenvector directions.

4 THE ODES OF MULTIDIMENSIONAL FREQUENCY

MODULATION

We now develop nonlocal methods for characterizing multi-
dimensional frequency modulation. In an FM image, the
instantaneous frequency vector remains orthogonal to the
image equi-intensity lines. To track changes in intensity due
to FM, we analyze the image in the direction of the
instantaneous frequency vector. This is accomplished
through the use of the FM ODEs.

To clarify the method, we suggest an analogy from fluid
mechanics, wherein we interpret instantaneous frequency
vectors as velocity vectors. We are given:

. F is the instantaneous frequency gradient tensor
(similar to the velocity gradient tensor in fluid
mechanics).

. The initial conditions: 1) an image point x0,
2) Oðx0Þ, the initial instantaneous frequency vector,
and 3) �ðx0Þ, the initial value of the phase function.
For selecting suitable initial points x0, in the
presence of FM (nonzero IFGT), we note that
flowline computation amounts to gradient ascent
to a stationary point of the phase.

We can think of x0 as a reference point, at which the phase
function assumes a reference value �ðx0Þ. At the reference
point x0, we need to compute: 1) xðtÞ, the image flow line,
2) OðxðtÞÞ, the instantaneous frequency vector along the flow
line, and 3) �ðxðtÞÞ, the phase function along the trajectory.

The following theorem provides the ODEs for the
instantaneous frequency and the flowlines:

Theorem 1. (General FM ODEs). Assume that the instanta-
neous frequency vector OðxÞ is continuously differentiable and
tangent to a continuous flowline path xðtÞ

dx

dt
ðtÞ ¼ OðxðtÞÞ: ð13Þ

Then, the flowline is

xðtÞ ¼ x0 þ
Z t

0

Oðxð�ÞÞd�: ð14Þ

Along the flowline, the instantaneous frequency is

OðxðtÞÞ ¼ Oðx0Þ þ
Z t

0

Fðxð�ÞÞOðxð�ÞÞd� ð15Þ

and the phase is

�ðxðtÞÞ ¼ �ðx0Þ þ
Z t

0

Oðxð�ÞÞ2
�� ��d�: ð16Þ

Proof. See Appendix B. tu
We now provide geometric interpretations of multi-

dimensional frequency modulation along the image flow-
lines. We view image flowlines as trajectories that describe
image flow throughout the image. To see what happens to a
neighborhood of image points that follow these trajectories,
consider the deformation of a small circular disc neighbor-
hood subjected to image flow. As the disc moves along the
flowline, it is deformed into a new ellipsoidal disc. The
eigenvectors are in the directions of the principal axes of
this ellipsoidal disc [40]. Thus, we term the eigenvectors the
principal axes of frequency modulation. The eigenvalues are
relatively proportional to the axes of the ellipse [39]. At any
particular point in the image, the divergence of the vector
measures the relative expansions in the area of the disc [41].
If the disc is of area S and t denotes the time along the
trajectory, the relative rate of change of S comes from

div OðxÞ ¼ @O1

@x1
þ @O2

@x2
ð17Þ

¼ tracefFg ð18Þ
¼ �1 þ �2: ð19Þ

¼ 1

S

dS

dt
: ð20Þ

The curl of the instantaneous frequency is

rOðxÞ ¼
�
@O2

@x1
� @O1

@x2

�
a!3; ð21Þ

where a!3 denotes the unit vector along the axis

perpendicular to the image-plane. From (21), assuming

that we have continuity up to the second derivatives, we

note that @O2=@x1 ¼ @2�=@x2@x1 ¼ @2�=@x1@x2 ¼ @O1=@x2

which implies that the curl of the instantaneous frequency

will be zero, except at points of discontinuity where the

second partials are not equal: @2�=@x2@x1 6¼ @2�=@x1@x2.

At singular points in the image, such as object boundaries,

the instantaneous frequency vector field will be discontin-

uous, and the curl will assume significant, nonzero values.

The curl is associated with strong rotations in the direction

of the instantaneous frequency vector field. For flowline

computation, we take the average of the mixed-partial

estimates ð d@O1=@x2 þ d@O2=@x1Þ=2 and set both estimates to

this average value. This enforces the required symmetry of

the IFGT.

4.1 Flowline Parameters for Constant IFGT

As a useful and instructive example, we shall compute the
flowline xðtÞ, the instantaneous frequency OðxðtÞÞ, and the
phase �ðxðtÞÞ for the special case of a constant, invertible
IFGT. We will also solve the ODEs for this case.

For constant F

dO

dt
ðxðtÞÞ ¼ F OðxðtÞÞ; ð22Þ
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which yields the following simplified expression for the
instantaneous frequency vector along the flowline:

OðxðtÞÞ ¼ expðFtÞOðx0Þ: ð23Þ

On the flowline, substitute (23) into (14) and integrate to get:

xðtÞ ¼ x0 þ F�1 expfFtÞ � I½ �Oðx0Þ; ð24Þ

that can also be expressed as:

xðtÞ ¼ x0 þ F�1 OðxðtÞÞ �Oðx0Þ½ �: ð25Þ

To compute the phase along the flowline, begin with the
general expression given in (16) in Appendix B, substitute
(23), and use the symmetry of F to get [42, p. 167]:

�ðxðtÞÞ ¼ �ðx0Þ þ
1

2
OT ðx0ÞF�1 expð2FtÞ � I½ �Oðx0Þ: ð26Þ

To interpret (26), we note from (16) that the phase will
always increase along the flowline. This is to be expected
since flowlines follow the direction of steepest ascent:
r�ðxÞ. We know from (23) that OðxðtÞÞk k ! 0 implying
that r�ðxðtÞÞk k ! 0 as t!1 and, thus, the terminal point
for this case is a stationary point for the phase. Since the
Hessian of the phase F has negative eigenvalues, we also
conclude that this point is a local maximum.

4.2 ODEs in the Eigenvector Coordinate System

Assuming constant IFGT, separable solutions to (14), (15),
and (16) are obtained in the eigenvector coordinate system.
Separability greatly simplifies the computation by reducing
a two-dimensional problem to two one-dimensional pro-
blems. Along the eigenvectors of the IFGT, it is easy to show
that the instantaneous frequency vector is given by

r ~�ðzðtÞÞ ¼ expð~�1tÞð@ ~�=@z1Þðz0Þ
expð~�2tÞð@ ~�=@z2Þðz0Þ

" #
: ð27Þ

To obtain expressions for the flowlines and the phase,
substitute (27) into (25), (26) to get: which gives

zðtÞ ¼ z0 þ
ð1=~�1Þðexpð~�1tÞ � 1Þð@ ~�=@z1Þðz0Þ
ð1=~�2Þðexpð~�2tÞ � 1Þð@ ~�=@z2Þðz0Þ

" #
ð28Þ

and

~� zðtÞ½ � ¼ ~�ðz0Þ þ
1

2 ~�1

expð2 ~�1tÞ � 1
	 
 @ ~�

@z1
ðz0Þ

" #2

þ 1

2 ~�2

expð2 ~�2tÞ � 1
	 
 @ ~�

@z2
ðz0Þ

" #2

:

ð29Þ

4.3 Bifurcations of Multidimensional Frequency
Modulation

Understanding the topology of the instantaneous frequency
(IF) vector field is extremely interesting, since non-topologi-
cal variations in the IF vector field can be modeled as
coordinate transformations of the underlying image coordi-
nate system, while topological changes cannot be introduced
through changes in the image coordinate system. The goal of
the following discussion is to understand the kinds of real-life
image patterns that can be explained by our differentiable
model of frequency modulation flow. At points where the

IF vector is zero, we have that the phase is stationary. We note
that the topology of the IF vector field can only be changed at
these stationary points. We thus examine the structure of an
FM image around the neighborhood of such points, in order
to understand the types of topological points in real-world
images that can be explained from such an FM model. Beyond
the topological points of the IF field, we are also interested at
termination points, where image flowlines terminate. As we
shall see below, bifurcation points of multidimensional FM
include the topological points of the IF field.

In the terminology of nonlinear dynamics, a bifurcation
point occurs where the solution to a dynamical system is
stationary: dOðxðtÞÞ=dt ¼ 0. Begin with the ODE for the
instantaneous frequency vector

dO

dt
ðxðtÞÞ ¼ FðxðtÞÞOðxðtÞÞ: ð30Þ

Clearly, if O is constant, F is the zero matrix and dO=dt ¼ 0.

We will not examine this trivial case.
First, we ask: What is the physical meaning of a

bifurcation point? At bifurcation points the RHS of (30) is
zero. From the local Taylor series expansion in the
eigenvector coordinate system, this means

0
0

� �
¼ �1O1

�2O2

� �
: ð31Þ

The bifurcation points are evident from (31). Next, we
will list the possible instances of bifurcation points. We
will use an ongoing example to help visualize the
bifurcation points and their effects on local image
structure. Fig. 2 depicts the synthetic image Iðx; yÞ ¼
cos�ðx; yÞ with �ðx; yÞ ¼ x3 þ y3 � 9x� 9y. The instanta-
neous frequency is r�ðx; yÞ ¼ ð3x2 � 9; 3y2 � 9Þ and the
IFGT is

F ¼ 6x 0
0 6y

� �
:

The possible bifurcation points are:

. �1 ¼ �2 ¼ 0. In this case, the IFGT is zero, namely,
the instantaneous frequency is constant and the local
pattern structure looks like a sinusoid

cos�ðzb þ �zÞ ¼ cos�ðzbÞ
� r� 	 �z sin�ðzbÞ þOðj�zj3Þ:

ð32Þ

In the example in Fig. 2, the sinusoidal structure

around ð0; 0Þ is clearly evident.
. �1 ¼ 0, O2 ¼ 0. Since j�1j � j�2j, this case is identical

to �1 ¼ �2 ¼ 0, which we have just described.
. �2 ¼ 0, O1 ¼ 0. In this case, @�ðzbÞ=@z1 ¼ 0, the

quadratic term in the first eigenvector coordinate
dominates causing the image to appear compressed
along the dominant eigenvector direction. In this
direction, the image appears as a quadratic

cos�ðzb þ �zÞ ¼ cos�ðzbÞ �
@�

@z2
ðzbÞ�z2 sin�ðzbÞ

� 1

2
cos�ðzbÞ�z2

1 þOðj�zj
3Þ:

ð33Þ
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In Fig. 2, �2 ¼ 0 and O1 ¼ 0 at the points ð0;�
ffiffiffi
3
p
Þ

and ð�
ffiffiffi
3
p

; 0Þ. The local quadratic structure is
qualitatively evident at these points.

. O1 ¼ O2 ¼ 0. Note that these bifurcation points of
frequency modulation are also bifurcation points of
phase modulation since the phase ODE is (74)

d�

dt
ðxðtÞÞ ¼ jjOðx ðtÞÞjj2; ð34Þ

which is zero whenever O is zero. There are only
two types of bifurcation points in this case [43]:
1) The eigenvalues are of the same sign and 2) the
eigenvalues are of different signs. We consider the
cases of having two negative or two positive
eigenvalues to be identical; this arises from the
ambiguity between r� and �r�, both of which
correspond to the same FM function cos�.

In Fig. 2, the instantaneous frequency vector becomes
zero at the four points ð�

ffiffiffi
3
p

;�
ffiffiffi
3
p
Þ, at which the eigenva-

lues maintain the same signs as the rectangular Cartesian
coordinate system points: ð�;�Þ. By inspecting these four
points in Fig. 2, it becomes apparent that there are only two
distinct types to consider, as expected.

If the eigenvalues are of the same sign, a local, chirp-like
image occurs. In Fig. 2, such a structure occurs about the
bifurcation points at ð

ffiffiffi
3
p

;
ffiffiffi
3
p
Þ and ð�

ffiffiffi
3
p

;�
ffiffiffi
3
p
Þ. When the

eigenvalues are of opposite sign, a saddle point occurs, with

the instantaneous frequency locally increasing away from
the bifurcation point.

From our discussion, it is clear that image points where
the instantaneous frequency vector has a zero magnitude
are the most interesting ones. In the image processing
literature, points where the gradient of image intensity is
zero are known as critical points [44], [45]. Here, we
consider critical points as a special case of bifurcation points
where the flowline computation must be terminated. We
refer to [44] for the topology of such systems, but also to [46]
for global methods for extracting boundaries defined from
these critical points. In image regions without critical
points, it is possible to model multidimensional frequency
modulation in terms of a coordinate transformation of a
simple sinusoid. We will demonstrate an application of this
principle in Section 6.4.

5 DIAGONALIZATION THE ODES OF

MULTIDIMENSIONAL FREQUENCY MODULATION

When the ODEs can be diagonalized, the complexity of

analyzing multidimensional frequency modulation can be

significantly reduced by using 1D differential equations in

each direction. We seek general, global conditions for
diagonalization that do not require a constant IFGT. Follow-

ing our previous discussion, we seek such approximations in

the coordinate systemdefinedbythe eigenvectors of the IFGT.
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Fig. 2. The bifurcation points computed for � ¼ x3 þ y3 � 9x� 9y. The background image is I ¼ cos�, while the instantaneous frequency (IF) vectors

are overlaid on the image. The bifurcation points are marked (see text for details). We use “+” to mark the FM bifurcation points where the IF vectors

are nonzero, and “*” to mark the bifurcation points where the IF vector is zero.



We thus investigate the approximations

d ~OiðzðtÞÞ
dt

� ~�iðzðtÞÞ ~OiðzðtÞÞ; i ¼ 1; 2; ð35Þ

which leads to the phase function being approximately
separable

~�ðzÞ � ~�1ðz1Þ þ ~�2ðz2Þ:

We will derive some error bounds related to these
approximations and also approximate solutions for the
phase and the instantaneous frequency vectors.

First, we state two fundamental approximations which
assume that the eigenvector matrix is slowly varying:

Assumption 1 (Slowly varying eigenvector approxima-
tions). Recall the definition of the eigenvector coordinate
system z ¼ ETx, where E is also a function of x. Define the
slowly varying eigenvector approximations:

dz

dt
� ET dx

dt
ð36Þ

and

d2z

dt2
� ET d

2x

dt2
: ð37Þ

Using ~O zðtÞð Þ ¼ dz=dt and O xðtÞð Þ ¼ dx=dt, rewrite (36)
and (37) as:

~O zðtÞð Þ � ET OðxðtÞÞ; ð38Þ

d ~OðzðtÞÞ
dt

� ET dOðxðtÞÞ
dt

: ð39Þ

We assume that each eigenvalue changes in the direction of
its corresponding eigenvector direction, as defined next.

Assumption 2. (Eigenvalue separability approximation).
Let ~�1ðzðtÞÞ and ~�2ðzðtÞÞ denote the eigenvalues of the IFGT.
Assume that the eigenvalues vary along the direction of their
corresponding eigenvectors

~�iðzðtÞÞ � ~�iðziðtÞÞ; i ¼ 1; 2: ð40Þ

Next, we obtain intuitive error bounds on the approx-
imations in terms of the eigenvectors. Since E depends on
FðxðtÞÞ, it varies continuously along the flow line. In
addition, note that ET is a rotation matrix since its rows
are unit eigenvectors. Thus,

ET ðxðtÞÞ ¼ cos �ðxðtÞÞ sin �ðxðtÞÞ
� sin �ðxðtÞÞ cos �ðxðtÞÞ

� �
; ð41Þ

which gives an expression for dET =dt:

dET

dt
¼ U1

d�

dt
; ð42Þ

where U1 is a unitary matrix. The second derivative is

d2ET

dt2
¼ dU1

dt

d�

dt
þU1

d2�

dt2
; ð43Þ

where

dU1

dt
¼ U2

d�

dt
; and U2 is unitary: ð44Þ

Using (44), (43) may be rewritten:

d2ET

dt2
¼ U2

d�

dt

� �2

þU1
d2�

dt2
: ð45Þ

We are now ready to provide an intuitive interpretation
of the error in terms of the eigenvectors.

Theorem 2 (Error bounds on separability approximation).

The error in the approximation (36) is given by

jj"1jj ¼
dz

dt
�ET dx

dt

���� ���� ð46Þ

¼ d�

dt

���� ���� xk k; ð47Þ

while the error in (37) is bounded as

jj"2jj ¼
d2z

dt2
�ET d

2x

dt

���� ���� ð48Þ

� d�

dt

� �2

jjxjj þ d2�

dt2

���� ���� jjxjj þ 2
d�

dt

���� ���� jjOðxðtÞÞjj: ð49Þ

Proof. The proof is given in Appendix C. tu
In both expressions (47)and(49), the errors aresmall provided
that the eigenvectors rotate sufficiently slowly along the
flow line, i.e., jd�=dtj and jd2�=dt2j are sufficiently small. The
slowly varying assumption is demonstrated in Fig. 3.

We now show that the instantaneous frequency vector
ODE is diagonalized under the slowly varying eigenvector
approximation.

5.1 Diagonalization of the Instantaneous Frequency
Vector ODE

Consider again, the instantaneous frequency ODE

dOðxðtÞÞ
dt

¼ FðxðtÞÞOðxðtÞÞ: ð50Þ

Under the slowly varying eigenvector approximation (given

in (36) and (37)), (50) is diagonalized into

d ~OiðzðtÞÞ
dt

� ~�iðzðtÞÞ ~OiðzðtÞÞ; i ¼ 1; 2; ð51Þ

where the equations in (51) are approximations to the

flowline equations in the eigenvector coordinate system.

The validity of (51) is established as follows: Multiply both

sides of (50) by ET , then rewrite (50) as
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Fig. 3. The assumption of slowly varying eigenvectors. The eigenvectors

e1 and e2 are carried into a new state at time t ¼ t0 þ �t. For slowly varying

eigenvectors, the rates of rotation ��=�t and �2�=�t2 are expected to be

small.



ET dOðxðtÞÞ
dt

¼ ET ðE��ET ÞOðxðtÞÞ: ð52Þ

Using (38) and (39), then yields

d ~OðzðtÞÞ
dt

� ��ðzðtÞÞ ~OðzðtÞÞ; ð53Þ

where ��ðzðtÞÞ ¼ diagð�1ðz1ðtÞÞ; �2ðz2ðtÞÞÞ which establishes
(51).

We are now ready to show how the phase function can
be separated into two functions defined on a single
eigenvector coordinate.

Lemma 2 (Phase separability in the eigenvector coordinate

system). Consider an image regionS. Assume that each interior
point of S can be reached from a flow line originating from the
boundary of S. Assume that both the slowly varying eigenvector
approximation and the eigenvalue separability approximation
hold (Definitions 1 and 2). Then, the phase function is separable
in the eigenvector coordinate system

~�ðzÞ � ~�1ðz1Þ þ ~�2ðz2Þ: ð54Þ

Furthermore, the instantaneous frequency components are
given by

~OiðziðtÞÞ � aiexp

Z t
~�iðzið�ÞÞd�

� �
; i ¼ 1; 2: ð55Þ

Proof. See Appendix C. tu

6 COMPUTATIONAL EXAMPLES

We present sample applications of the ODEs of multi-
dimensional frequency modulation. In Section 6.1, we present
results for flowline computation on chirp images using the
proposed method and compare against three Runge-Kutta
methods, to demonstrate that the proposed method is
significantly more accurate. In Section 6.2, we present
FM flowline computation and ridge extraction on a finger-
print image. In Section 6.3, we compute several of the
proposed FM model measures from a woodgrain image,
and use them to explain how they reflect the underlying
image structures. In Section 6.4, we show an example of how
diagonalizing the ODEs of FM can be used to reveal the
underlying structure of a woodgrain image. In particular, we
show how the FM ODEs can be used to model a rather
complex part of the woodgrain image as a coordinate-
transformed version of a simple harmonic image.

6.1 FM Flowline Computation on Chirp Images:
Comparative Examples

In this section, we provide comparative examples with the
proposed flowline computation approach and well-estab-
lished Runge-Kutta methods. We present results for chirp
images for which we can solve the underlying differential
equations analytically.

We consider a simple chirp image with:

�ðx1; x2Þ ¼ aðx1 � xc1Þ2 þ bðx� xc2Þ2; a; b � 0:

The instantaneous frequency vector field is given by
r�ðx1; x2Þ ¼ 2aðx1 � xc1Þ; 2bðx2 � xc2Þð Þ.

In this separable example, the autonomous equations for
the flowlines become:

dx2

dx1
¼ �x2

ðx2Þ
�x1
ðx1Þ

¼ bðx2 � xc2Þ
aðx1 � xc1Þ

: ð56Þ

To solve (56), fix the initial point at ðx1;0; x2;0Þ so that x1;0 >
xc1 and x2;0 > xc2 (other cases are easy to handle). We
integrate (56) to get

x2ðx1Þ ¼ eðx1 � xc1Þb=a þ xc2 with e ¼ ðx2;0 � xc2Þ
ðx1;0 � xc1Þb=a

ð57Þ

for x2 � xc2; x1 � xc1. In (56), it is important to identify that
b=a can be any real number without being restricted to the
integers. Thus, numerical methods that are based on
polynomial approximations can never provide exact solu-
tions for chirp images. The same applies for Runge-Kutta
methods [47, pp. 420-424]. On the other hand, we note that
(25) is exact for all real values of a and b.

The proposed algorithm used for flowline computation
is given in Fig. 4. It is based on a piecewise-constant IFGT
approximation. For updating the IF and IFGT estimates, we
use nearest neighbor interpolation (see Fig. 4).

We present three examples in Fig. 5. We compare our
proposed method against the Runge-Kutta ð4; 5Þ formula
method (ode45ð:Þ, [48]), the modified Runge-Kutta ð2; 3Þ
pair for moderately stiff problems (ode23ð:Þ, [49]), and a stiff
solver (ode23sð:Þ, [50]). For all methods, we assume that the
instantaneous frequency vectors are available at each pixel.
From the results in Figs. 5b and 5d, it is clear that all
methods achieved unbiased (except possibly for a positive
bias in ode23sð:Þ), subpixel accuracy. Furthermore, it is also
clear that the proposed method is significantly more
accurate, in orders of magnitude, than all the other
methods.

8 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 5, MAY 2007

Fig. 4. Basic flowline computation algorithm. Note that round is used to round-up flowline computation to the nearest pixel. This is used to provide

nearest-neighbor interpolation values for the IF and IFGT. Furthermore, the IF direction may have to be reversed to deal with sign ambiguities (see

text). We refer to this as direction correction.



6.2 FM Flowline and Ridge Computation in
Fingerprint Images

We recall from our discussion that image flowlines follow the
direction of steepest ascent r�. We thus expect that image
flowlines originating from any point in the image, will follow
a path of steepest ascent to a local maximum or local saddle
point of the phase function. Based on these observations, we
consider flowlines originating from the inside of the image,
10 pixels from the outside border, uniformly sampling the
inside border every four pixels (see Fig. 6c).

For computing the IF vectors, we use the Teager-Kaiser
operator with a constant-Q filterbank, as described in
Section 2. For computing the IFGT, after sign-unwrapping
described below, we convolve the IF vector field with
derivatives of Gaussians with � ¼ 4:25 of size 17
 17 pixels.

To show how direction correction (see Fig. 4) affects
flowline computation, compare the flowlines computed in
Figs. 6d and 6e. For these examples, we used the Runge-
Kutta ð4; 5Þ formula method (ode45ð:Þ [48]). It is clear that
the orientation discontinuity in the middle of the image has
caused flowline computation to break down in the right

part of Fig. 6d. By contrast, in Fig. 6e, flowlines converge
toward the center of the image.

Even though direction correction appears to have
worked here, recall that we cannot always produce
continuous IF vector fields [1]. Furthermore, note that our
direction correction algorithm cannot produce stable,
converging flowlines. In our example in Fig. 6, the direction
of all direction-corrected IF vectors was strongly affected by
the fact that the upper left IF estimate was pointing toward
the center of the image. If it was pointing outside the image,
then the sign-unwrapped IF vectors would all point
outwards (see, for example, all the flowlines computed
from points in the lower right and bottom right of Fig. 6d).

The results for the proposed approach are shown in Fig. 6c.
In comparison, we recall the results from the Runge-Kutta
ð4; 5Þ formula method (ode45ð:Þ, [48]) shown in Fig. 6e and a
stiff solver (ode23sð:Þ, [50]) shown in Fig. 6f. From the results,
we can infer that the flowlines look similar from the three
methods, except for the noisy flowline line segments seen in
Fig. 6e in the upper-right to middle-right parts of the
fingerprint. These noisy flowline segments are missing from
Figs. 6c and 6f. It also appears that the flowlines computed
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Fig. 5. Flowline computation examples over chirp images. We present results from computing a single flowline over chirp images Iðx1; x2Þ ¼ cos�ðx1; x2Þ
with �ðx1; x2Þ ¼ aðx1 � xc1Þ2 þ bðx� xc2Þ2(see (57)). In all examples, we set ðxc1; xc2Þ ¼ ð50; 50Þ; ðx1;0; x2;0Þ ¼ ð90; 90Þ for all cases. (a) Flowline
computation for a ¼ 0:02; b ¼ 0:01. (b) Error for a ¼ 0:02; b ¼ 0:01. (c) Flowline computation for a ¼ 0:02; b ¼ 0:03. (d) Error for a ¼ 0:02; b ¼ 0:03. For the
proposed method, we used �t ¼ 0:01. The proposed method exhibits significantly reduced error in all cases, at a reduced computational cost.



with the proposed method (Fig. 6c) appear to cover the image
plane more densely in the upper-right region. Thus, overall,
especially given the well-known inaccurate estimates of stiff
solvers (here, forode23sð:Þ, [50]), we believe that the proposed
method provides more accurate flowline estimates (also see
the error curves in Fig. 5).

Using the same fingerprint, we also present ridge-
extraction results in Fig. 6b. To compute the ridges, we detect
image intensity minima along flowlines. To do this, at each
pixel, we use a constant IF vector estimate to approximate the
flowline through that pixel (extended to 32 pixels long). The
sampled image intensity along the line segment is then
filtered using a 1D Gabor bandpass filter to eliminate noise,
and the filtered 1D signal is then used to determine image
intensity minima. The image intensity minima are then

mapped backed to their corresponding pixel coordinates and
marked as ridge candidate points. All pixels that have been
selected as ridge candidate points more than five times are
designated as ridge points. This approach tends to reduce the
number of false positive points (for ridge points). The
extracted ridges in Fig. 6b indicate that the underlying ridge
structure has been successfully extracted using this approach,
except possibly for the lack of horizontal connectivity in the
middle-right of the image (due to the single-sided filterbank
used in the demodulation).

6.3 FM Analysis Example

We demonstrate several concepts developed in this paper
using the woodgrain image examples of Figs. 7 and 8. In the
divergence image of Fig. 7b, points of significant compression
in the woodgrain are captured by the dark islands throughout
the image. By contrast, the curl measure is maximized when
the woodgrain is locally characterized by significant curva-
tures. The curl of a gradient field is always zero. If a nonzero
curl occurs, it is either due to 1) numerical measurement
errors in the demodulation algorithm, or 2) actual disconti-
nuities in the instantaneous frequency vector field. In the
woodgrain image, when the grain makes very sharp corners,
it is reasonable to think of the sharp corners as points where
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Fig. 6. Flowline and ridge extraction on a National Institute of
Standards (NIST) fingerprint (second fingerprint). (a) Central part of
the fingerprint. (b) Ridge detection on the FM image. Flowlines
computed using: (c) the proposed method, (d) ode45(.) without
direction correction, (e) ode45(.) with direction correction, and
(f) ode23s(.) after direction correction.

Fig. 7. Estimates of the divergence and curl for a woodgrain image.
(a) Woodgrain image with instantaneous frequency estimates,
(b) divergence, and (c) curl. For (a), the orientation vector magnitudes
were plotted using logð1þ 100 �MÞ, where M denotes the vector
magnitude. For (b) and (c), the absolute values of the divergence and
the z-component of the curl vector are shown. For computing derivatives,
we use convolution with derivatives of Gaussians. We note that dark
regions correspond to high magnitude values, while white regions
correspond to low (near-zero) values. Furthermore, the distinct white
lines in (b) and (c) can be used to mark the regions where both the
divergence and curl approach zero values. These lines can also be used
to designate regions where there are sign changes in the divergence
and the curl images.



the instantaneous frequency vectors change orientation
sharply, namely, where there are orientation discontinui-
ties.The principal axes of deformation, described by “shape
vectors” �iei, are shown in Fig. 8. Assuming that the
eigenvalues are of the same sign (refer to Fig. 2), compare
the local woodgrain structure to that of a chirp image with
quadratic phase. The longest “shape vector” defines the line
direction of maximum woodgrain compression, while the
shortest “shape vector” defines the line direction of minimum
woodgrain compression (as in Figs. 8b and 8d). Note that the
signs of the eigenvalues are not depicted in these figures and
also note that FM is only a function of their magnitude (see
Lemma 1). The signs of the eigenvalues are also a function of
the chosen IF direction since�r’will have an IFGT trace that
has opposite sign than the sign of of the IFGT for r’. Also,
when the eigenvectors are of opposite sign, we have a saddle
point of the phase (see Fig. 2), and the shape vectors are still
aligned with the directions of minimum and maximum
compression. Furthermore, we note that the due to averaging
and downsampling, the shape vectors are used to character-
ize relatively large neighborhoods (especially for Fig. 8d).

Two good examples are shown in Fig. 8b. In the middle-
left of the image (near row 45, column 20), for the elongated
ellipsoidal chirp-like deformations, the dominant shape
vector �1e1 is aligned with the horizontal direction,
indicating substantial grain compression along this line,

while a short �2e2 correctly indicates smaller compression
in the orthogonal direction. In the same image, in the lower-
right image (near row 65, column 35), for the circular chirp-
like deformations, the shape vectors �1e1; �2e2 are of similar
length, as expected. Similarly, in Fig. 8d, there are long
shape vectors in the line-directions of maximal grain
compression. Here, we use the term line-direction to refer
to lines that extend in both the �iei and ��iei directions. In
Fig. 8c, the shape vectors are overlaid on the absolute value
of the divergence image (which is equal to the sum of the
eigenvalues). In general, long shape vectors are character-
ized by dark regions indicating that the eigenvalues may
share the same sign. Note that the signs of the eigenvalues
cannot be uniquely determined since both cos� and cosð��Þ
represent the same function.

We have thus developed several FM measures that allow
us to quantify changes in the local spatial-frequency content.
We believe that such FM measures can serve several
important purposes in image analysis. At a very basic level,
the discussion motivates the use of continuous-scale methods
in image processing. By continuous-scale, we suggest that
resolution requirements in image analysis vary continuously
in space, as quantified by the FM measures presented here. As
examples, we note that the eigenvalues provide measures of
spatial-scale changes, while the eigenvectors also provide the
directions of such changes. The divergence gives us a
measure of scale-changes within the neighborhood, while
the curl can be used to detect image singularities.

6.4 FM-Based Coordinate System

In this simple example, we selected the lower-middle portion
of the woodgrain image of Fig. 8a. We see that the IF is never
zero in the subimage of Fig. 8a. From our discussion on
bifurcation points in Section 4.3, we can thus expect that a
coordinate transformation must exist that can transform this
subimage to a fixed frequency sinusoid. To compute such a
coordinate transformation, we note that from a careful
inspection of the IF vector field in Fig. 9a, we see that each
point in the interior of the subimage can be reached by a
flowline starting at the boundary of the subimage. We
consider the simple, separable coordinate system, in terms
of the vertical and horizontal components of the IF, starting
from the boundary of the subimage:
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Fig. 8. Estimates of the IFGT components for a woodgrain image.
(a) Woodgrain image with shape vectors estimates (see text), (b) zoom
in on “ellipsoidal” deformations, (c) zoom in on divergence and shape
vectors estimates, and (d) zoom in on image region corresponding to (c).
In (a), one set of shape vectors are shown for every four pixels. In (b)
and (c), one set of shape vectors is shown for every other pixel. Vector
magnitudes were plotted using logð1þ 100 �MÞ, where M denotes the
vector magnitude.

Fig. 9. An AM-FM harmonic image example, showing that a woodgrain
texture can be approximated by a sinusoidal image that is coordinate
transformed through a frequency modulation process. We have (a) the
extracted woodgrain image with instantaneous frequency estimates.
Every other instantaneous frequency vector is shown. Each vector
magnitude M is rescaled using logð1þ 100 �MÞ. (b) The original image
resampled in the inverse coordinate system (see text).



s1ðx; yÞ �
Z x

x0

@�

@x
ð�; yÞ

���� ���� d�; ð58Þ

and

s2ðx; yÞ �
Z y

y0

@�

@y
ðx; �Þ

���� ���� d�: ð59Þ

We note that along each coordinate axis, (58) and (59)
measure the total phase increase. Thus, in the new
coordinate system of s1 and s2, we expect that the phase
would appear to be changing at a more uniform rate than its
rate of change in the original subimage. To check the
validity of this claim, we invert the curvilinear coordinate
system as demonstrated in Fig. 9b. From Fig. 9b, we note
that this simple approximation appears to hold.

7 CONCLUSION AND FUTURE WORK

We have developed a theory and have shown some
applications of multidimensional frequency modulation
models for image analysis. We believe that a wide variety
of future image and video processing applications can be
built on the theory presented here.

A number of new local texture measures were proposed
for characterizing and understanding local spatial fre-
quency content. At a more global level, the ODEs suggest
themselves in the computation of coordinate systems that
can be used to transform complex textured patterns to
simple harmonics.

There is a wide range of applications, ranging from new
image segmentation methods to image and video coding,
that can benefit from the use of these new spatial frequency
content measures and the ODES of frequency modulation.
We have shown promising results on image segmentation
(ridge extraction) and on the computation of curvilinear
coordinate systems. In future work, it will be quite natural
to explore global coordinate systems for developing image
and video processing methods over well-suited, curvilinear
coordinate systems defined in terms of multidimensional
frequency modulation. We are currently investigating the
use of spatial frequency content for scalable image and
video coding applications, where we use the local spatial
frequency content to control the number of nodes in
globally defined, image-adaptive mesh systems.

APPENDIX A

Proof of Lemma 1. We have:

jjdOjj2

jjdxjj2
¼ dO

TdO

dxTdx
ð60Þ

¼ dx
TFTFdx

dxTdx
ð61Þ

¼ dx
T ðE��ET ÞðE��ET Þdx

dxT dx
ð62Þ

¼ dx
T ðE��2ET Þdx
dxTdx

: ð63Þ

Going from (62) to (63) follows from the orthogonality of

the eigenvectors: ETE ¼ I. We recognize (63) as a

Rayleigh Quotient for which (see [42, p. 111, (5)):

�2
1 �

dxT ðE��2ET Þdx
dxTdx

� �2
2; �2

1 > �2
2 ð64Þ

which, using (60), can be rewritten as:

�2
1 �
jjdOjj2

jjdxjj2
� �2

2: ð65Þ

After multiplying each term by jjdxjj2, and taking square

roots, (7) follows: Now, let dx ¼ c½e1;1; e1;2�T , where c is a

scalar constant and ½e1;1; e1;2�T denotes the first eigenvec-

tor. Using the orthonormality of the eigenvectors,

evaluate (63) to get equality for the upper bound:

jjdOjj2

jjdxjj2
¼ dx

T ðE��2ET Þdx
dxTdx

ð66Þ

¼ c 	 1 	 �
2
1 	 1 	 c
c2

ð67Þ

¼ �2
1: ð68Þ

Equality for the lower bound for the second eigenvector

follows similarly. tu

APPENDIX B

ODE PROOF FOR MULTIDIMENSIONAL FM

Proof of Theorem 1 for general FM ODEs. From (13), it

follows immediately that the flowline is given by (14).
For the instantaneous frequency vector along the

flowline, we begin by differentiating the instantaneous
frequency vector OðxðtÞÞ with respect to time:

dO1=dt
dO2=dt

� �
¼ @O1=@x1 @O1=@x2

@O2=@x1 @O2=@x2

� �
dx1=dt
dx2=dt

� �
: ð69Þ

Next, substitute (13) in (69) to obtain:

dOðxðtÞÞ
dt

¼ @O1=@x1 @O1=@x2

@O2=@x1 @O2=@x2

� �
OðxðtÞÞ: ð70Þ

Using the definition of the IFGT

dO

dt
ðxðtÞÞ ¼ FðxðtÞÞOðxðtÞÞ; ð71Þ

which immediately gives (15).
For the phase, differentiate �ðxðtÞÞwith respect to time

d�ðxðtÞÞ
dt

¼ @�=@x1 @�=@x2½ � dx1=dt
dx2=dt

� �
: ð72Þ

Substitute (13) into (72) to get

d�ðxðtÞÞ
dt

¼ r�ðxðtÞÞ 	OðxðtÞÞ: ð73Þ

By applying the definition of the instantaneous fre-

quency (O ¼ r�), it follows that

d�

dt
ðxðtÞÞ ¼ jjOðxðtÞÞjj2; ð74Þ

which yields the general expression given in (16). tu
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APPENDIX C

DIAGONALIZATION OF THE ODES AND PHASE

SEPARABILITY

Proof of Theorem 2. Using the linearity property [42, p. 161]:

dz

dt
¼ dE

T

dt
xþET dx

dt
: ð75Þ

Since U is unitary, we get the norm of the error:

jj"1jj ¼
dz

dt
�ET dx

dt

���� ���� ð76Þ

¼ dET

dt
x

���� ���� ð77Þ

¼ U1
d�

dt
x

���� ���� ð78Þ

¼ d�

dt

���� ���� jjxjj: ð79Þ

Next, we differentiate (75) to get:

d2z

dt2
¼ d

2ET

dt2
xþ 2

dET

dt

dx

dt
þET d

2x

dt2
: ð80Þ

Using (80), for the second error bound we get:

jj"2jj ¼
d2z

dt2
�ET d

2x

dt

���� ���� ð81Þ

¼ d2ET

dt2
xþ 2

dET

dt

dx

dt

���� ����: ð82Þ

Next, we separate the terms inside the norm of (82) to get
(see [42, p. 162]):

jj"2jj �
d2ET

dt2
x

���� ����þ 2
dET

dt

dx

dt

���� ����: ð83Þ

We then use (45) to get

jj"2jj � U2
d�

dt

� �2

x

�����
�����þ U1

d2�

dt2
x

���� ����þ 2 jU1
d�

dt

dx

dt

���� ���� ð84Þ

� d�

dt

� �2

jjxjj þ d2�

dt2

���� ����jjxjj þ 2
d�

dt

���� ����jjOðxðtÞÞjj:
ut

Proof of Lemma 2 on Phase Separability. We begin with
the expressions for the instantaneous frequency compo-
nents. From [47, p, 21], the solution to (51) is given by:

~O1ðzðtÞÞ � a1exp

Z t
~�1ðzð�ÞÞd�

� �
; ð86Þ

~O2ðzðtÞÞ � a2exp

Z t
~�2ðzð�ÞÞd�

� �
: ð87Þ

Under the eigenvalue separability assumption, it is clear
that we get (55) from (86) and (87).

Now, let z be any point in the interior of S. Then, by
assumption, we can write (using the phase ODE (16)):

~�ðzðtÞÞ ¼ ~�ðz0Þ þ
Z t

0

~Oðzð�ÞÞ
�� ��2

d�; ð88Þ

where z0 is a point on the boundary of S. It is clear that

the boundary phase value may always be expressed as a

function of a single coordinate (z1 or z2):

~�ðz0Þ ¼

~�ðz1; z2;minÞ; if z0 2 z1;min; z1;max

	 


 z2;min

 �
;

~�ðz1; z2;maxÞ; if z0 2 z1;min; z1;max

	 


 z2;max

 �
;

~�ðz1;min; z2Þ; if z0 2 z1;min

 �

 z2;min; z2;max

	 

;

~�ðz1;max; z2Þ; if z0 2 z1;max

 �

 z2;min; z2;max

	 

:

8>>>><>>>>:
ð89Þ

Next, we substitute (55) into (88) to get:

~�ðzðtÞÞ � ~�ðz0Þ þ
Z t

0

~O1ðz1ð�ÞÞ
�� ��2d� þ Z t

0

~O2ðz2ð�ÞÞ
�� ��2d�:

ð90Þ

From (90), we directly get (54). tu
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