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ABSTRACT
Depth recovery for active binocular vision systems is sim-
plified if the camera geometry is known and corresponding
points can be restricted to epipolar lines. Unfortunately,com-
putation of epipolar lines requires calibration which can be
complex and inaccurate. While it is possible to register im-
ages without geometric information, such unconstrained al-
gorithms are usually time consuming and prone to error. In
this paper we propose a compromise. Even without the in-
stantaneous knowledge of the system geometry, we can re-
strict the region of correspondence by imposing limits on the
possible range of configurations, and as a result, confine our
search for matching points toepipolar spaces. For each point
in one image, we define the corresponding epipolar space in
the other image as the union of all associated epipolar lines
over all possible system geometries. Epipolar spaces elimi-
nate the need for calibration at the cost of an increased search
region.

Index Terms— Stereo vision, Active vision, Image reg-
istration

1. INTRODUCTION

Active binocular vision systems (ABVS) provide a powerful
means for extracting information from a complex scene. With
a virtually unlimited field of view they have access to huge
amounts of information, yet are able to confine their resources
to specific regions of interest. Additionally, their ability to
actively analyze their environment enables them to address, in
a well-posed manner, tasks that may be ill-posed for a passive
observer [1].

ABVS are especially well suited for the recovery of depth
information. Depth recovery requires registering the two im-
ages, a notoriously difficult problem. This task can be greatly
simplified if the camera geometry is known. With geometric
knowledge of the stereo configuration, the search for corre-
sponding points can be restricted to epipolar lines [2, 3]. As-
certaining the actively changing stereo geometry requirescal-
ibration. This calibration procedure can be highly complex,

involving motorized lens calibration, kinematic calibration,
and head/eye calibration [4]. Consequently, mechanical cali-
bration requires highly accurate, often expensive equipment.
For some ABVS, such as those deployed for planetary ex-
ploration using mobile rovers, calibration may not be feasible
[5].

While it is possible to register images without calibration
information, such unconstrained algorithms [6] are usually far
more time consuming and prone to error. In this paper we
propose a compromise. Even without knowledge of the exact
stereo geometry we can restrict the region of correspondence
by imposing limits on the possible range of configurations.
That is, by restricting the range of vergence angles, baseline
distances, and focal lengths etc., we can confine our search for
matching points to what we refer to asepipolar spaces. For
each point in one image, we define the corresponding epipolar
space in the other image as the union of all associated epipolar
lines over all possible system geometries.

2. EPIPOLAR SPACES

Knowledge of the camera geometry can be extremely valu-
able in the registration process, reducing the search for match-
ing points to epipolar lines. Consider the simplified stereo
geometry in Fig. 1. Here two pinhole cameras whose optical
centers are located atCl andCr converge at the fixation point
V . Both cameras have identical focal lengthsf . The left and
right camera rotation angles areθl andθr. Each camera has an
associated right-hand coordinate system originating at its op-
tical center. Ifm̃l = [xl, yl, zl, 1]

t andm̃r = [xr, yr, zr, 1]
t

are projective world coordinates in the left and right camera
frames, respectively, then their relation ism̃r = [R |T ] m̃l,
where

R =

[

− cos (θl+θr) 0 − sin (θl+θr)
0 1 0

sin (θl+θr) 0 − cos (θl+θr)

]

(1)



Fig. 1. Stereo geometry.

is the rotation matrix and

T =

[

− sin (θr)
0

− cos (θr)

]

(2)

is the translation vector. Letml = [ul, vl, 1]
t and mr =

[ur, vr, 1]
t be projective coordinates in the left and right im-

age planes. It is well known that the equation relating corre-
sponding epipolar lines is

mt
rA

−t
r T×RA−1

l ml = 0, (3)

where, in our simplified geometry,

Al = Ar =

[

f 0 0
0 f 0
0 0 1

]

(4)

are the identical intrinsic matrices and

T× =

[

0 cos (θr) 0
− cos (θr) 1 sin (θr)

0 − sin (θr) 0

]

(5)

implements the crossproduct as a matrix. The matrixE =
T×R is the essential matrix and relates the coordinate frames.
The matrixF = A−t

r EA−1

l is the fundamental matrix [7] and
includes the intrinsic parameters of the cameras. The expres-
sion in (3) can be simplified to the following:

vl = vr

f sin (θl) + ul cos (θl)

f sin (θr) − ur cos (θr)
. (6)

That is, for a given point(ur, vr) in the right image, the
matching point in the left image (if not obscured) lies on the
line given by (6).

We now consider the situation where the camera config-
uration actively changes and we no longer know the specific
geometry. In such a situation we will not be able to restrict

our search for corresponding points to epipolar lines. How-
ever, even though we may not know the precise values of pa-
rameters such as focal length, baseline distance, and camera
rotation angles, we can establish acceptable ranges for these
values. Consequently, we can still restrict the location ofcor-
responding points across images. For a given point in one
image, the matching point in the other is confined to a region
defined by the union of all corresponding epipolar lines pro-
duced over all possible camera configurations. We call these
continuous regionsepipolar spaces.

The goal of the remainder of this section is to quantify
these epipolar spaces for a stereo rig with a fixed baseline and
fixed focal length as shown in Fig. 1. In this configuration the
only variable parameters that effect the epipolar geometryare
the rotation anglesθl andθr. Translation and rotation of the
entire stereo rig aboutO, while allowed, do not influence the
epipolar geometry. We establish the range of rotation angles
by confining them to the interval

θl, θr ∈ [θM , π − θM ] , (7)

whereθM is the minimum angle relative to the baseline.
Although theoretically a matching point can lie anywhere

on the corresponding epipolar lines, the search is usually re-
stricted to a maximum horizontal disparity. Bounding the hor-
izontal disparity has the effect of limiting the depth around the
horopter at which objects can be fused. For our purposes, we
assume a maximum horizontal disparity defined by

|d| = |ul − ur| ≤ D. (8)

For the right image pointIr Fig. 2 illustrates several cor-
responding epipolar lines in the left image. Each separate
epipolar line results from a unique geometric configuration,
i.e. a unique combination ofθl andθr The dashed vertical
lines delimit the maximum allowable horizontal disparities
defined by (8).

The restriction imposed by (8) determines the leftmost
and rightmost bounds of the epipolar spaces. The upper and
lower bounds are determined by maximizing and minimizing
(6) with respect to bothθl andθr, respectively. The maxi-
mum can be found by separately maximizing the numerator
and minimizing the denominator. Taking the derivative of the
numerator with respect toθl, setting it to zero, and solving
for θl yields the maximizing valueθl = atan (f/ul). The
denominator (which must be positive so long as the cameras
never image each other, i.e. the images do not contain the
epipoles) is minimized whenθr = θM . Inserting these re-
sults into (6), the upper bound becomes

vl,max = vr

√

f2 + u2

l

f sin (θM ) − ur cos (θM )
. (9)

The minimization of (6) is performed similarly withθl = π−
θM andθr = atan (−f/ul), producing

vl,min = vr

f sin (θM ) − ur cos (θM )
√

f2 + u2

l

. (10)
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Fig. 2. Left image epipolar lines corresponding to right image
point Ir for several unique geometric configurations. Specif-
ically, the camera rotation anglesθl andθr are each set to an
element of{π/4, π/3, π/2}, producing nine combinations.

Since the horizontal extents of these bounds are limited by
(8), f2+u2

l in the preceding equations can be rewritten as
f2 + (ur+ǫ)

2, whereǫ ∈ [−D,D]. In practicef ≫ ǫ and
f ≥ ur, allowing the following approximation:f2+u2

l ≈
f2+u2

r. Incorporating this result into (9) and (10) produces

vl,max ≈ vr

√

f2 + u2
r

f sin (θM ) − ur cos (θM )
= vrc (ur) (11)

vl,min ≈ vr

f sin (θM ) − ur cos (θM )
√

f2 + u2
r

=
vr

c (ur)
, (12)

where

c (ur) =

√

f2 + u2
r

f sin (θM ) − ur cos (θM )
. (13)

Remarkably, an epipolar space is well modeled by a rectangle.
This fact is illustrated in Fig. 3. The thick lines represent
the precise boundary of the regions described by (8), (9), and
(10). The thin lines denote the approximate upper and lower
bounds determined from (11) and (12). Epipolar spaces are
nonuniform in area, increasing in size with increasing values
of u andv.

3. CONCLUSION

In this paper we introduced the concept of an epipolar space.
For a point in one image, the epipolar space was defined as
the region in the other image formed from the union of all as-
sociated epipolar lines produced over all possible geometric
configurations. Epipolar spaces eliminate the need for cali-
bration, but at the expense of a greater search space.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ul

vl

Epipolar
Space

Ir

Approximate
Boundary

Fig. 3. Various epipolar spaces. The large dots represent
points from the right image. Each point is enclosed in its
attendant epipolar space in the left image. The thick lines
represent the precise boundaries described by (8), (9), and
(10). The thin lines denote the approximate upper and lower
bounds determined from (11) and (12).
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