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1. Introduction 
The reader will no doubt have observed that digital images and videos are playing an ever-
increasingly pervasive part in our daily lives. They are making their way into our living rooms, 
laptops, hand-held devices, and cell phones. High resolution High Definition (HD) digital 
video broadcasts, as well as lower resolution streaming video over wireless networks are here 
to stay. The popularity of video-centric websites such as Youtube and Facebook are good 
examples of how this communication medium has impacted our lives. Indeed, acronyms like 
JPEG, MPEG, and H.264, once the parlance of engineers only, have become a part of our 
common vocabulary.  
 
Given the phenomenal rate at which image and video content is being generated and 
distributed, a critical task is the evaluation of the perceptual quality of the content. For 
example, video content providers need to evaluate encoding parameters, while network 
service provider need perceptual quality scores to decide load balancing. Subjectively 
evaluating the quality of the content is an extremely difficult task due to the time and cost 
involved. Indeed, the only reliable subjective test involves using large numbers of human test 
subjects, under controlled psychometric experimental conditions, to evaluate the images 
and/or videos, resulting in statistically meaningful Mean Opinion Scores (MOS). This 
approach is of course impractical in most situations. The ideal substitutes for human 
subjectivity are objective quality assessment algorithms whose scores have been shown to correlate 
highly with human subjectivity. Perfect correlation is, of course, impossible, since human 
subjects vary in their judgment too much. There are many challenges in the design of such 
algorithms for image and video quality assessment. In this article we discuss the challenges 
involved and present some state-of-the-art image and video quality assessment algorithms. 
 
Generally, image and video quality assessment algorithms are classified into three groups – 
full-reference (FR), reduced-reference (RR), and no-reference (NR) algorithms. As their 
names suggest, the groups correspond to the amount of information available about the 
original, presumed pristine reference signal. The design of true no-reference algorithms is 
extremely challenging and little progress has been made. Reduced reference algorithms are 
somewhat easier and are interesting, but are generally specific to an application. In this article, 
we limit our discussion to full-reference image quality assessment (IQA) and video quality 
assessment (VQA) algorithms, where much progress has been made. 
 

2. Image Quality Assessment 
The primary goal is to produce automatic image and video rating that correlate well with 
MOS. A natural approach is to try to mimic the human visual system (HVS), but the HVS 
itself is still poorly understood. Several of these types of FR algorithms have been proposed, 
notably, the just noticeable difference (JND) metric. Another approach is to treat IQA as 
evaluation of an image communication system. This approach expresses the test signal as the 
reference signal distorted by an imperfect communication channel, and uses properties of 
both the source and receiver in its design. The communication system model has resulted in 



the emergence of two popular IQA algorithms called SSIM and VIF. First however, we 
discuss a very popular - but flawed - measure of quality – the mean squared error (MSE). 
 
2 (a) Mean Squared Error (MSE) 
The MSE and the related peak signal to noise ratio (PSNR) are popularly used to assess 
image quality. Given two vectors x = {xi|i =1, …, N} and y = {yi|i =1, …, N}, then 
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where L is the image dynamic range (typically [0, 255]). 
 
Of course, the MSE is easy to compute and implement in software and hardware, and has 
not suffered from any competition until recently. Moreover, it is easy to use in analysis and 
often gives closed form solutions to optimization problems. 
 
However, the MSE is a very poor measure of image quality! Specifically, it correlates very 
poorly with MOS. A simple illustration is shown in Fig. 1. A human would likely rate the 
distorted images in order (best) Fig. 1(b), 1(c), 1(d) (worst) relative to the reference. However, 
all three images have identical MSE of 235 relative to the reference! 

 

 
                          (a)     (b) 

 
(c)        (d) 

 
Fig. 1: Example of inadequacy of MSE for measuring image quality. (a) Reference “Boats” (b) Mean shifted. (c) 
Distorted with salt and pepper noise. (d) JPEG compressed. All three (b)-(d) have the same MSE = 235! 



However, the SSIM Index values for the three images are 0.98, 0.73, and 0.68, respectively. Moreover, the VIF 
Index scores are 0.99, 0.44 and 0.14, respectively. 



2 (b) Structural SIMilarity (SSIM) Index 
 
The SSIM index is a recent and very popular IQA algorithm that uses properties of source 
and the receiver in its design. The idea behind SSIM is that natural images are highly 
structured, and that the eye is sensitive to structural distortion. The SSIM index expresses 
quality by comparing local correlations in luminance, contrast, and structure between 
reference and distorted images. Given signal vectors x and y, the SSIM index is 
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where l(x, y), c(x, y) and s(x, y) compare local image luminance, contrast, and structural 
correlation respectively. Also µx, µy are sample means, σx

2, σy
2 are sample variances, and σxy is 

the sample cross-covariance between x and y. The constants C1, C2, C3 stabilize SSIM when 
the means and variances become small. A simplified form of SSIM is popularly used (C3 = 
C2/2): 

2

2

y

2

x

2xy

1

2

y

2

x

1yx

Cσσ

C2σ

Cμμ

Cμ2μ
),SSIM(









yx  

In IQA image quality assessment, local patches from reference and distorted image 
constitute x and y. The average SSIM value over the image (Mean SSIM or MSSIM) gives the 
final quality measure. The MSSIM scores are also given in Fig. 1 – clearly more in 
accordance with perception! Of course, high correlation with MOS is what counts – which 
has been shown conclusively: see the paper “Image Quality Assessment: From Error 
Visibility to Structural Similarity” (IEEE Trans. on Image Processing, vol. 13, no. 4, Apr. 2004).  
 

2 (c) Visual Information Fidelity (VIF) Index 
 
The VIF Index is another recent IQA algorithm that consistently outperforms the MSE and 
the JND metric. It uses a fundamentally different design philosophy, treating IQA problem 
as an information fidelity problem, where the image is the information source, the 
distortions modeled by a channel, and the HVS the receiver. The source is modeled as the 
output of a stochastic process, and the channel as a combination of blur plus noise. The 
receiver is assumed noisy modeled by additive white Gaussian noise. 
 
Image quality is then defined as the mutual information between the source and the 
distorted observation. Thus, image quality is a function of the distortion channel 
characteristics and mutual information is equal to the channel capacity.  
 
We describe the VIF index in detail. First and foremost, the VIF index operates in a multi-
resolution transform domain. The motivation is two-fold: (a) the HVS represents images at 
multiple resolution levels, and (b) good statistical models for multi-resolution image 
transform coefficients exist. Specifically, a Gaussian scale mixture (GSM) model is used. We 
refer to the transform coefficients as wavelet coefficients in the sequel. 
 
Source characteristics: A length-M vector c composed of neighboring wavelet coefficients of the 
reference image is modeled as a GSM using the relation c = zu, where z is a scalar random 
variable (z ≥ 0) and u ~ N(0, Cu) is a Gaussian random vector. z, u are independent.  Thus 
the conditional distribution fc(c|z) is Gaussian, which greatly simplifies the analysis. Intuitively, 



z is the local standard deviation of wavelet coefficients scaling u. Since the VIF index is a FR 
algorithm, it uses the reference image to estimate z and u. 
 
Channel characteristics: The VIF Index approximates distortions by a combination of blur plus 
noise. If c is a vector of wavelet coefficient from a given location in the reference image, and 
d is the corresponding vector from the test, then 
d = gc + v, 
where g represents blur and v is additive white Gaussian noise, v ~ N(0, σv

2I). In VIF, g and 
σv

2 are estimated from c. 
 
Receiver characteristics: The receiver model is very simple: aside from the wavelet 
decomposition, the HVS is modeled only by AWGN neural noise: n ~ N(0, σn

2I).  
 
Putting these models together, the reference image perceived by the eye is 
e = c + n, 
and the test image is 
f = d + n = gc + v + n. 
 
Finally, VIF is computed as the ratio of the mutual information between c and f and the 
mutual information between c and e for all sub-bands except the approximation sub-band. 
The mutual information is conditioned on knowledge of estimated scalar multiplier z : 
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The covariance matrix is factorized as T

u QQC  , where   is a diagonal matrix whose 

diagonal entries are the eigenvalues M ,,, 21 . The overall VIF Index is then 
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where i is the index of local coefficient patches, with all N sub-bands included. 

 

To illustrate the performance of the VIF Index, refer again to Fig. 1. The scores are again 

very much in line with subjectivity. Again, what matters is MOS. SSIM, VIF and most other 

well-known IQA algorithms were evaluated in a massive study (consisting of > 750 images 

and more than 25,000 subjective judgments) as reported in “An Evaluation of Recent Full 

Reference Image Quality Assessment Algorithms,” IEEE Trans. on Image Processing, vol. 15, 

no. 11, pp. 3440-3451, Nov. 2006. This conclusive study showed SSIM and VIF to perform 

comparably, but far better than all prior algorithms. 

 



3. Video Quality Assessment 
 
Most existing VQA algorithms are derived from IQA algorithms. Some apply still IQA 

algorithms frame by frame on a video sequence. The MSE/PSNR is such a metric that 

remains heavily used as a video quality metric, due to its simplicity and ease of use. Simple 

versions of SSIM have been used for VQA, and shown to be quite competitive with other 

VQA algorithms. Some VQA algorithms are derived from IQA algorithms by incorporating 

a temporal filtering block. Temporal filtering has also been used to extend the SSIM and VIF 

metric to the video domain. Yet, correlation of the best VQA algorithms with subjectivity is 

much lower than for IQA algorithms. 

 

No existing VQA algorithms attempt to use motion information directly. Yet motion plays a 

crucial role in perception of videos and needs to be accounted for. The HVS is quite 

sensitive to motion and can accurately judge the velocity and direction of moving objects. 

Moving objects attract our attention and play an important role in visual salience. Indeed 

considerable resources are devoted to motion perception in the HVS. Hence, simple 

extensions of IQA techniques to video are unlikely to correlate well with perceptual quality.  

 

We are trying to motivate a new paradigm for VQA that incorporates motion modeling. 

Some spatial artifacts occur within video frames that do not arise from temporal processes, 

such as blocking from DCT coefficient quantization in MPEG and H.264; ringing from 

quantization in block-free codecs such as Motion JPEG-2000; mosaic patterns; and false 

contouring. Spatio-temporal artifacts arise from spatio-temporal processes including 

ghosting behind fast-moving objects; block artifacts from faulty motion compensation; 

mosquito effect near moving edges; jerkiness from temporal aliasing or transmission delays; 

and smearing from slow acquisition. Although existing algorithms are successful in detecting 

spatial distortions, they usually fail to adequately capture the temporal distortions. 

 

We are attempting to ameliorate this by incorporating motion information in video 

sequences. We outline the new Video Structural SIMilarity (V-SSIM) Index (see “A 

Structural Similarity Metric for Video Based on Motion Models,” IEEE Int’l Conf. on Acoustics, 

Speech and Signal Processing, April 2007). In V-SSIM, short video segments are modeled as 

translating image patches. Under this assumption, the Fourier transform of the video patch 

lies in a plane in the frequency domain. The orientation of this plane is determined by the 

speed and direction of translation, while the frequencies in the plane are identical to the 

spatial frequencies contained in the image patch undergoing translation. Thus, image motion 

takes an elegant and accessible form. Decomposition using a sub-band family captures this 

form and facilitates VQA. Similar decompositions are believed to occur in the HVS. For 



these reasons, the V-SSIM index is computed using the outputs of a sub-band filter family 

operating on reference and test videos. Decomposition using a sub-band family allows 

motion estimation and quality computation as described below. 

 

V-SSIM can be described as shown in Fig. 2. Reference and test signals are decomposed by a 

family of Gabor filters forming band-pass spatio-temporal frequency channels. The center 

frequencies of all Gabor filters are at a fixed radius from the origin, lying on a sphere. Iso-

surface contours of each filter are shown in Fig. 2. The sub-band outputs on the reference 

are used to compute motion estimates. At each pixel, a 2-D vector that specifies the speed of 

movement of the pixel is obtained. Motion computation is performed using the Fleet and 

Jepson algorithm. The motion vector at each pixel is used to select a subset of the filter 

family lying in close proximity to the plane containing the local reference spectrum. We 

require the local spectral plane to lie within one standard deviation of the Gabor center 

frequency (Fig. 2). The V-SSIM Index at each pixel is then computed as the SSIM Index 

between the selected subset of sub-band coefficients of the reference and test video at that 

pixel. This filter selection rule is a form of motion compensated filtering that allows V-SSIM 

to capture spatial, temporal, and spatio-temporal distortions by computing quality along the 

motion trajectories of the reference video.  

 

The V-SSIM Indices are displayed as a quality map in Fig. 2 that pinpoints those video 

regions that suffer from poor quality. The V-SSIM Index of the entire video is obtained as 

the mean of this quality map. The V-SSIM algorithm was tested on a database created by the 

Video Quality Experts Group (VQEG) containing reference and distorted videos as well as 

quality scores assigned by human observers. The results are quite promising since the V-

SSIM outperforms prior methods including frame-by-frame SSIM. These results validate our 

claims regarding the importance of modeling motion and temporal artifacts in VQA.   

 

4. Summary 
 
We discussed recent objective algorithms that compute the perceptual quality of digital 

images or video sequences. We focused our discussion on two recent algorithms for IQA 

that represent the state-of-the-art, the SSIM and VIF quality indices. We also discussed the 

recent V-SSIM quality index and showed that incorporating motion models can result in 

significant gains in the performance of VQA algorithms.  

 
 
 



 
Fig. 2: Block diagram of V-SSIM 
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