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Abstract

Measurement of visual quality is of fundamental importance for numerous image and video pro-

cessing applications, where the goal of quality assessment (QA) algorithms is to automatically assess

the quality of images or videos in agreement with human quality judgments. Over the years, many

researchers have taken different approaches to the problem and have contributed significant research in

this area, and claim to have made progress in their respective domains. It is important to evaluate the

performance of these algorithms in a comparative setting and analyze the strengths and weaknesses of

these methods. In this paper, we present results of an extensive subjective quality assessment study in

which a total of 779 distorted images were evaluated by about two dozen human subjects. The “ground

truth” image quality data obtained from about 25,000 individual human quality judgments is used to

evaluate the performance of several prominent full-reference (FR) image quality assessment algorithms.

To the best of our knowledge, apart from video quality studies conducted by the Video Quality Experts

Group (VQEG), the study presented in this paper is the largest subjective image quality study in the

literature in terms of number of images, distortion types, and number of human judgments per image.
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Moreover, we have made the data from the study freely available to the research community [1]. This

would allow other researchers to easily report comparative results in the future.

Index Terms

Image quality assessment performance, subjective quality assessment, image quality study.

I. I NTRODUCTION

Machine evaluation of image and video quality is important for many image processing systems, such

as those for acquisition, compression, restoration, enhancement, reproduction etc. The goal of quality

assessment research is to design algorithms forobjectiveevaluation of quality in a way that is consistent

with subjective human evaluation. By “consistent” we mean that the algorithm’s assessments of quality

should be in close agreement with human judgements, regardless of the type of distortion corrupting the

image, the content of the image, or strength of the distortion.

Over the years, a number of researchers have contributed significant research in the design of full

reference image quality assessment algorithms, claiming to have made headway in their respective

domains. The QA research community realizes the importance of validating the performance of algorithms

using extensive ground truth data, particularly against the backdrop of the fact that a recent validation

study conducted by the video quality experts group (VQEG) discovered that the nine video QA methods

that it tested, which contained some of the most sophisticated algorithms at that time, were “statistically

indistinguishable” from the simple peak-signal-to-noise-ratio (PSNR) [2]. It is therefore imperative that

QA algorithms be tested on extensive ground truth data if they are to become widely accepted. Further-

more, if this ground truth data, apart from being extensive in nature, is also publicly available, then other

researchers can report their results on it for comparative analysis in the future.

Only a handful of QA validation literature has previously reported comparative performance of different

image QA algorithms. In [3], [4] and [5], a number of mathematical measures of quality have been

evaluated against subjective quality data. In [6], two famous visible difference predictors, by Daly [7],

and Lubin [8], have been comparatively evaluated. In [9] three image quality assessment algorithms are

evaluated against one another. In [10], and interesting new approach to IQM comparison is presented that

compares two IQMs by using one IQM to expose the weaknesses of the other. The method is limited to

differentiable IQMs only, and needs human subjective studies albeit of a different nature.

The reasons for conducting a new study were manifold. Firstly, a number of interesting new QA

algorithms have emerged since the work cited above, and it is interesting to evaluate the performance of
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these new algorithms as well. Secondly, previous studies did not contain some new, and important, image

distortion types, such as JPEG2000 compression or wireless transmission errors, and were seldom diverse

enough in terms of the distortion types or image content. In [3], the entire dataset was derived from only

three reference images and distorted by compression distortion only, with a total of 84 distorted images.

In [5], only 50 JPEG compressed images derived from a face database were used. The study presented in

[9] also consisted of JPEG distortion only. The comparative study of [6] consisted of constructing visible

difference maps only, and did not validate the ability of these algorithms to predict a graded loss of image

quality. Thirdly, few studies in the past have presented statistical significance testing, which has recently

gained prominence in the QA research community. Fourthly, in the context of statistical significance,

the number of images in the study needs to be large so that QA algorithms can be discriminated with

greater resolution. For example, if a QA metricA reports a linear correlation coefficient of, say, 0.93,

on some dataset, while another metricB claims a correlation coefficient of 0.95 on the same set of

images, then one can claim superiority of metricB over A with 95% confidence only if the data set

had at least 260 images1. The number of images required is larger if the difference between correlation

coefficients is smaller or if a greater degree of statistical confidence is required. Lastly, it is important to

have large public-domain studies available so that researchers designing new QA algorithms can report

the performance of their methods on them for comparative analysis against older methods. The public

availability of VQEG Phase I data [12] has proven to be extremely useful for video QA research.

In this paper we present our results of an extensive subjective quality assessment study, and evaluate

the performance of ten prominent QA algorithms. The psychometric study contained 779 images distorted

using five different distortion types and more than 25,000 human image quality evaluations. This study

was diverse in terms of image content, distortion types, distortion strength, as well as the number of

human subjects ranking each image. We have also made the data set publicly available [1] to facilitate

future research in image quality assessment.

This paper is organized as follows: Section II gives the details of the experiment, including the

processing of raw scores. Section III presents the results of the study, which are discussed in Section

III-C. We conclude our paper in Section IV.

1This assumes a hypothesis test done using Fisher’s Z-transformation [11].
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Fig. 1. Some source images used in the study.

II. D ETAILS OF THE EXPERIMENT

A. The Image Database

1) Source Image Content:The entire image database was derived from a set of source images that

reflects adequate diversity in image content. Twenty-nine high resolution and high quality color images

were collected from the Internet and photographic CD-ROMs. These images include pictures of faces,

people, animals, close-up shots, wide-angle shots, nature scenes, man-made objects, images with distinct

foreground/background configurations, and images without any specific object of interest. Figure 1 shows

a subset of the source images used in the study. Some images have high activity, while some are mostly

smooth. These images were resized (using bicubic interpolation2) to a reasonable size for display on a

screen resolution of1024 × 768 that we had chosen for the experiments. Most images were768 × 512

pixels in size. All distorted images were derived from the resized images.

2) Image Distortion Types:We chose to distort the source images using five different image distortion

types that could occur in real-world applications. The distortion types are:

• JPEG2000 compression: The distorted images were generated by compressing the reference images

(full color) using JPEG2000 at bit rates ranging from 0.028 bits per pixel (bpp) to 3.15 bpp. Kakadu

version 2.2 [13] was used to generated the JPEG2000 compressed images.

• JPEG compression: The distorted images were generated by compressing the reference images (full

color) using JPEG at bit rates ranging from 0.15 bpp to 3.34 bpp. The implementation used was

MATLAB’s imwrite function.

2Since we derive a quality difference score (DMOS) for each distorted image, any loss in quality due to resizing appears both

in the reference and the test images and cancels out in the DMOS scores.
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• White Noise: White Gaussian noise of standard deviationσN was added to the RGB components of

the images after scaling the three components between 0 and 1. The sameσN was used for R, G,

& B components. The values ofσN used were between 0.012 and 2.0. The distorted components

were clipped between 0 and 1, and re-scaled to the range 0 to 255.

• Gaussian Blur: The R, G, and B components were filtered using a circular-symmetric 2-D Gaussian

kernel of standard deviationσB pixels. The three color components of the image were blurred using

the same kernel. The values ofσB ranged from 0.42 to 15 pixels.

• Simulated Fast Fading Rayleigh (wireless) Channel: Images were distorted by bit errors during

transmission of compressed JPEG2000 bitstream over a simulated wireless channel. Receiver SNR

was varied to generate bitstreams corrupted with different proportion of bit errors. The source

JPEG2000 bitstream was generated using the same codec as above, but with error resilience features

enabled, and with64× 64 precincts. The source rate was fixed to 2.5 bits per pixel for all images,

and no error concealment algorithm was employed. The receiver SNR used to vary the distortion

strengths ranged from 15.5 to 26.1 dB.

These distortions reflect a broad range of image impairments, from smoothing to structured distortion,

image-dependent distortions, and random noise. The level of distortion was varied to generate images at

a broad range of quality, from imperceptible levels to high levels of impairment. Figure 4 shows how the

subjective quality (after outlier removal and score processing as mentioned in Section II-C) varies with

the distortion strength for each of the distortion types. Figure 5 shows the histogram of the subjective

scores for the entire dataset.

B. Test Methodology

The experimental setup that we used was a single-stimulus methodology in which the reference images

were also evaluated in the same experimental session as the test images. A single-stimulus setup was

chosen instead of a double-stimulus setup because the number of images to be evaluated was prohibitively

large for a double-stimulus study (we evaluated a total of 779 distorted images)3. However, since the

reference images were also evaluated by each subject in each session, a quality difference score can be

derived for all distorted images and for all subjects.

1) Equipment and Display Configuration:The experiments were conducted using identical Microsoft

Windows workstations. A web-based interface showing the image to be ranked and a Java scale-and-slider

3A double-stimulus procedure typically requires 3-4 times more time per image than a single-stimulus procedure.
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Session Number of images Number of subjects

JPEG2000 #1 116 29

JPEG2000 #2 111 25

JPEG #1 116 20

JPEG #2 117 20

White noise 174 23

Gaussian blur 174 24

Fast-fading wireless 174 20

Total 982 22.8 (average)

Alignment study 50 32
TABLE I

SUBJECTIVE EVALUATION SESSIONS: NUMBER OF IMAGES IN EACH SESSION AND THE NUMBER OF SUBJECTS

PARTICIPATING IN EACH SESSION. THE REFERENCE IMAGES WERE INCLUDED IN EACH SESSION. THE ALIGNMENT STUDY

WAS A DOUBLE-STIMULUS STUDY.

applet for assigning a quality score was used. The workstations were placed in an office environment with

normal indoor illumination levels. The display monitors were all 21-inch CRT monitors displaying at a

resolution of1024× 768 pixels. Although the monitors were not calibrated, they were all approximately

the same age, and set to the same display settings. Subjects viewed the monitors from an approximate

viewing distance of 2-2.5 screen heights.

The experiments were conducted in seven sessions: two sessions for JPEG2000, two for JPEG, and one

each for white noise, Gaussian blur, and channel errors. Each session included the full set of reference

images randomly placed among the distorted images. The number of images in each session is shown in

Table I.

2) Human Subjects, Training, and Testing:The bulk of the subjects taking part in the study were

recruited from the Digital Image and Video Processing (undergraduate) and the Digital Signal Processing

(graduate) classes at the University of Texas at Austin, over a course of two years. The subject pool

consisted of mostly male students inexperienced with image quality assessment and image impairments.

The subjects were not tested for vision problems, and their verbal expression of the soundness of their

(corrected) vision was considered sufficient. The average number of subjects ranking each image was

about 23 (see Table I).

Each subject was individually briefed about the goal of the experiment, and given a demonstration of
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the experimental procedure. A short training showing the approximate range of quality of the images

in each session was also presented to each subject. Images in the training sessions were different from

those used in the actual experiment. Generally, each subject participated in one session only. Subjects

were shown images in a random order; the randomization was different for each subject. The subjects

reported their judgments of quality by dragging a slider on a quality scale. The position of the slider was

automatically reset after each evaluation. The quality scale was unmarked numerically. It was divided into

five equal portions, which were labeled with adjectives: “Bad”, “Poor”, “Fair”, “Good”, and “Excellent”.

The position of the slider after the subject ranked the image was converted into a quality score by linearly

mapping the entire scale to the interval[1, 100], rounding to the nearest integer. In this way, the raw

quality scores consisted of integers in the range1− 100.

3) Double Stimulus Study for Psychometric Scale Realignment:Ideally, all images in a subjective

QA study should be evaluated in one session so that scale mismatches between subjects are minimized.

Since the experiment needs to be limited to a recommended maximum of thirty minutes [14] to minimize

effects of observer fatigue, the maximum number of images that can be evaluated is limited. The only

way of increasing the number of images in the experiment is to use multiple sessions using different sets

of images. In our experiment, we used seven such sessions. While we report the performance of IQMs

on individual sessions, we also report their performance on aggregated datapoints from all sessions. The

aggregation of datapoints from the seven sessions into one dataset requires scale realignment.

Since the seven sessions were conducted independently, there is a possibility of misalignment of their

quality scales. Thus, it may happen that a quality score of, say, 30 from one session may not be subjectively

similar to a score of 30 from another session. Such scale mismatch errors are introduced primarily because

the distribution of quality of images in different sessions is different. Since these differences are virtually

impossible to predict before the design of the experiment, they need to be compensated for by conducting

scale realignment experimentsafter the experiment.

In our study, after completion of the seven sessions, a set of 50 images was collected from the seven

session and used for a separate realignment experiment. The realignment experiment used a double-

stimulus methodology for more accurate measurement of quality for realignment purposes. Five images

were chosen from each session for JPEG2000 and JPEG distortions, and ten each from the other three

distortion types. The images chosen from each session roughly covered the entire quality range for that

session. The double-stimulus study consisted ofview A view B score A score Bsequence where A and B

were (randomly) the reference or the corresponding test images. DMOS scores for the double-stimulus

study were evaluated using the recommendations adapted from [15] on a scale of 0-100. Details of
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processing of scores for realignment are mentioned in Section II-C.

C. Processing of Raw Data

1) Outlier Detection and Subject Rejection:A simple outlier detection and subject rejection algorithm

was chosen. Raw difference score for an image was considered to be an outlier if it was outside an

interval of width ∆ standard deviations about the mean score for that image, and for any session, all

quality evaluations of a subject were rejected if more thanR of his evaluations in that session were

outliers. This outlier rejection algorithm was run twice. A numerical minimization algorithm was run

that varied∆ andR to minimize the average width of the 95% confidence interval. Average values of

∆ andR were2.33 and16 respectively. Overall, a total of four subjects were rejected, and about 4% of

the difference scores were rejected as being outliers (where we count all datapoints of rejected subjects

as outliers).

2) DMOS Scores:For calculation of DMOS scores, the raw scores were first converted to raw quality

difference scores:

dij = riref(j) − rij (1)

where rij is the raw score for thei-th subject andj-th image, andriref(j) denotes the raw quality

score assigned by thei-th subject to the reference image corresponding to thej-th distorted image. The

raw difference scoresdij for the i-th subject andj-th image were converted into Z-scores (after outlier

removal and subject rejection) [16]:

zij = (dij − di)/σi (2)

wheredi is the mean of the raw difference scores over all images ranked by the subjecti, andσi is the

standard deviation. The Z-scores were then averaged across subjects to yieldzj for the j-th image.

The results of the realignment experiment were used to map the Z-scores to DMOS. Figure 2 shows

the Z-scores and the DMOS for the 50 images that were used in the realignment study, together with the

confidence intervals. To obtain DMOS values for the entire database, we assume a linear mapping between

Z-scores and DMOS:DMOS(z) = p1z+p2. The values forp1 andp2 are learned by minimizing the error

between theDMOS(zj) andDMOSj , whereDMOSj values were obtained from the realignment study.

Seven such mappings were learned for the seven sessions and applied to the Z-scores of all images in

the respective sessions to yield the realigned DMOS for the entire database. Figure 3 shows the mapping

between the Z-scores and the final realigned DMOS for the entire dataset.
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Fig. 2. Z-scores and DMOS values for images used in the realignment study: JPEG2000 #1 (◦), JPEG2000 #2 (¦), JPEG #1

(¤) , JPEG #2 (∗), White noise (5), Gaussian blur (4), Fast-fading wireless (.)
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Fig. 3. Z-scores to DMOS mapping.

D. Quality Assessment Algorithms

The image quality metrics (IQMs) tested in this paper are summarized in Table II. The implementations

of the algorithms were either publicly available on the Internet or obtained from the authors. Although

all of the methods in [5] were tested using the code available at the author’s website [17], only the

blockwise spectral distance measure (S4 and derivatives) performed better than PSNR. Similarly, all

similarity measures presented in [18] were tested, but only the highest performing similarity measure,
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QA

Algorithm

Remarks

PSNR Luminance component only

Sarnoff

JND

Metrix

[19]. Based on the well-known work [8]. Works

on color images.

DCTune [20]. Originally designed for JPEG optimization.

Works on color images.

PQS [21]. Public C implementation available at [22].

Works with luminance only.

NQM [23]. Works with luminance only.

Fuzzy S7 [18]. Works with luminance only.

BSDM (S4) S4 in [5]. Works on color images.

Multiscale

SSIM

[24]. Works with luminance only.

IFC [25]. Works with luminance only.

VIF [26]. Works with luminance only.
TABLE II

QA ALGORITHMS TESTED IN THIS PAPER. EXTENDING IQMS THAT OPERATE ON LUMINANCE ONLY TO COLOR MAY

IMPROVE THEIR PERFORMANCE, BUT THE INVENTORS REPORTED RESULTS ON LUMINANCE COMPONENTS ONLY.

Sn
7 is presented here.

Although the list of algorithms reported in this paper is not exhaustive, it is representative of many

classes of QA algorithms: HVS model based (JND), feature based (PQS), HVS models combined with

application specific modeling (DCTune, NQM), mathematical distance formulations (Fuzzy S7, BSDM),

structural (SSIM(MS)), and information-theoretic (IFC, VIF) frameworks. The public availability of the

database easily allows future researchers to evaluate their methods and put them in context with prior

work, including the methods evaluated in this paper.

III. R ESULTS

A. Performance Metrics

We have chosen three performance metrics for this paper. The first metric is the linear correlation

coefficient (CC) between DMOS and algorithm score after non-linear regression. The nonlinearity chosen

for regression for each of the methods tested was a 5-parameter logistic function (a logistic function with
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JP2K#1 JP2K#2 JPEG#1 JPEG#2 WN GBlur FF All data

PSNR 0.9332 0.8740 0.8856 0.9167 0.9859 0.7834 0.8895 0.8709

JND 0.9649 0.9734 0.9605 0.9870 0.9687 0.9457 0.9129 0.9266

DCTune 0.8486 0.7834 0.8825 0.9418 0.9288 0.7095 0.7693 0.8046

PQS 0.9391 0.9364 0.9320 0.9777 0.9603 0.9216 0.9317 0.9243

NQM 0.9508 0.9463 0.9387 0.9783 0.9885 0.8858 0.8367 0.9075

Fuzzy S7 0.9360 0.9133 0.9134 0.9509 0.9038 0.5975 0.9120 0.8269

BSDM (S4) 0.9144 0.9450 0.9199 0.9747 0.9559 0.9619 0.9596 0.9335

SSIM(MS) 0.9702 0.9711 0.9699 0.9879 0.9737 0.9487 0.9304 0.9393

IFC 0.9421 0.9626 0.9209 0.9744 0.9766 0.9691 0.9631 0.9441

VIF 0.9791 0.9787 0.9714 0.9885 0.9877 0.9762 0.9704 0.9533
TABLE III

L INEAR CORRELATION COEFFICIENT AFTER NONLINEAR REGRESSION.

an added linear term, constrained to be monotonic):

Quality(x) = β1logistic (β2, (x− β3)) + β4x + β5 (3)

logistic(τ, x) =
1
2
− 1

1 + exp(τx)
(4)

This nonlinearity was applied to the IQM score or its logarithm, whichever gave a better fit for all

data. The second metric is root-mean-squared-error (RMSE) between DMOS and the algorithm score

after nonlinear regression. The third metric is Spearman rank order correlation coefficient (SROCC). The

results, presented in Tables III through V, are reported for the different methods on individual datasets

as well as on the entire dataset.

B. Statistical Significance and Hypothesis Testing

In order to ascertain which differences between IQM performance are statistically significant, two

hypothesis test were conducted. These tests tell us whether our confidence in the estimate of an IQM’s

performance, based on the number of sample points used, allows us to make a statistically sound

conclusion of superiority or inferiority of an IQM. A variance-based hypothesis test (HT) using the

residuals between DMOS and the quality predicted by the IQM (after the nonlinear mapping), and another

variance-based test was conducted using the residuals between the IQM (after nonlinear mapping) and

the individual subject ratings [15].
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JP2K#1 JP2K#2 JPEG#1 JPEG#2 WN GBlur FF All data

PSNR 8.4858 12.7437 10.7793 13.5633 4.6689 11.4402 12.9716 13.4265

JND 6.1989 6.0092 6.4629 5.4507 6.9217 5.9812 11.5860 10.2649

DCTune 12.4881 16.2971 10.9168 11.4089 10.3340 12.9712 18.1366 16.2150

PQS 8.1135 9.2064 8.4146 7.1305 7.7803 7.1445 10.3119 10.4221

NQM 7.3167 8.4762 8.0004 7.0336 4.2250 8.5413 15.5467 11.4698

Fuzzy S7 8.3102 10.6828 9.4481 10.5070 11.9316 14.7596 11.6437 15.3544

BSDM (S4) 9.5533 8.5797 9.1009 7.5826 8.1888 5.0336 7.9907 9.7934

SSIM(MS) 5.7214 6.2584 5.6575 5.2729 6.3577 5.8225 10.4023 9.3691

IFC 7.9184 7.1050 9.0470 7.6267 5.9990 4.5380 7.6398 9.0007

VIF 4.7986 5.3864 5.5083 5.1274 4.3598 3.9905 6.8553 8.2459
TABLE IV

ROOT-MEAN-SQUARED-ERROR AFTER NONLINEAR REGRESSION.

JP2K#1 JP2K#2 JPEG#1 JPEG#2 WN GBlur FF All data

PSNR 0.9263 0.8549 0.8779 0.7708 0.9854 0.7823 0.8907 0.8755

JND 0.9646 0.9608 0.9599 0.9150 0.9487 0.9389 0.9045 0.9291

DCTune 0.8335 0.7209 0.8702 0.8200 0.9324 0.6721 0.7675 0.8032

PQS 0.9372 0.9147 0.9387 0.8987 0.9535 0.9291 0.9388 0.9304

NQM 0.9465 0.9393 0.9360 0.8988 0.9854 0.8467 0.8171 0.9049

Fuzzy S7 0.9316 0.9000 0.9077 0.8012 0.9199 0.6056 0.9074 0.8291

BSDM (S4) 0.9130 0.9378 0.9128 0.9231 0.9327 0.9600 0.9372 0.9271

SSIM(MS) 0.9645 0.9648 0.9702 0.9454 0.9805 0.9519 0.9395 0.9527

IFC 0.9386 0.9534 0.9107 0.9005 0.9625 0.9637 0.9556 0.9459

VIF 0.9721 0.9719 0.9699 0.9439 0.9828 0.9706 0.9649 0.9584
TABLE V

SPEARMAN RANK ORDER CORRELATION COEFFICIENT.

1) Hypothesis Testing Based on DMOS:The test is based on an assumption of Gaussianity of the

residual differences between the IQM prediction and DMOS, and uses the F-statistic for comparing the

variance of two sets of sample points [27]. The test statistic on which the hypothesis test is based is the

ratio of variances (or equivalently, the standard deviation), and the goal is to determine whether the two

sample sets come from the same distribution or not. The Null Hypothesis is that the residuals from one

IQM come from the same distribution and are statistically indistinguishable (with 95% confidence) from
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PSNR JND DCTune PQS NQM Fuzzy S7 BSDM (S4) SSIM(MS) IFC VIF

PSNR -------- 000010-0 11--1-11 -0001000 -000-010 ---011-1 -0-01000 00001000 -0-01000 0000-000

JND 111101-1 -------- 11111111 1111-1-- -1110111 111111-1 1111100- -------0 1-110000 0---0000

DCTune 00--0-00 00000000 -------- 00000000 00000000 00--1-0- 00000000 00000000 00000000 00000000

PQS -1110111 0000-0-- 11111111 -------- ----0111 ---111-1 -----000 000000-0 -0--0000 00000000

NQM -111-101 -0001000 11111111 ----1000 -------- -1-11101 1---1000 00001000 ----1000 0000-000

Fuzzy S7 ---100-0 000000-0 11--0-1- ---000-0 -0-00010 -------- -0-00000 000000-0 -0-00000 00000000

BSDM (S4) -1-10111 0000011- 11111111 -----111 0---0111 -1-11111 -------- 0000011- 00--0--0 00000000

SSIM(MS) 11110111 -------1 11111111 111111-1 11110111 111111-1 1111100- -------- 1-11-00- ----0000

IFC -1-10111 0-001111 11111111 -1--1111 ----0111 -1-11111 11--1--1 0-00-11- -------- 00000--0

VIF 1111-111 1---1111 11111111 11111111 1111-111 11111111 11111111 ----1111 11111--1 --------

TABLE VI

STATISTICAL SIGNIFICANCE MATRIX BASED ON IQM-DMOS RESIDUALS. EACH ENTRY IN THE TABLE IS A CODEWORD

CONSISTING OF EIGHT SYMBOLS. THE POSITION OF THE SYMBOL IN THE CODEWORD REPRESENTS THE FOLLOWING

DATASETS (FROM LEFT TO RIGHT): JPEG2000 #1, JPEG2000 #2, JPEG #1, JPEG #2, WHITE NOISE, GAUSSIAN BLUR,

FAST-FADING WIRELESS, ALL DATA . EACH SYMBOL GIVES THE RESULTS OF THE HYPOTHESIS TEST ON THE DATASET

REPRESENTED BY THE SYMBOL’ S POSITION: 1 MEANS THAT THE IQM FOR THE ROW IS STATISTICALLY BETTER THAN THE

IQM FOR THE COLUMN, 0 MEANS THAT IT IS STATISTICALLY WORSE, AND ‘-’ MEANS THAT IT IS STATISTICALLY

INDISTINGUISHABLE.

the residuals from another IQM. Based on the number of distorted images in each dataset, the threshold

ratio of standard deviations below which the two sets of residuals are statistically indistinguishable can

be derived using the F-distribution [27]. In this paper, we use a simple Kurtosis-based criterion for

Gaussianity: if the residuals have a kurtosis between 2 and 4, they are taken to be Gaussian. The results

of the hypothesis test using the residuals between DMOS and IQM predictions are presented in Table

VI, whereas the results of the Gaussianity test are given in Table VII.

2) Hypothesis Testing Based on Individual Quality Scores:We also present results of statistical analysis

based on individual quality scores, that is, without averaging across subjects. This allows us to compare

IQM’s against the theoretical best method, or the Null Model, which predicts the DMOS values exactly,

that is, IQM=DMOS. The goal is to determine whether any IQM is statistically indistinguishable from

the Null Model. Table VIII presents the standard deviation of the residuals between different IQMs (after

nonlinear mapping) and individual subjective scores. The individual scores were obtained by applying the

same scale transformations (see Section II-C) on the Z-scoreszij as were used for the averaged Z-scores

zj . A variance based Hypothesis test was conducted using the standard deviations shown in Table VIII,

while Table X shows which residuals can be assumed to have a Gaussian distribution. Table IX shows
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JP2K#1 JP2K#2 JPEG#1 JPEG#2 WN GBlur FF All data

PSNR 1 1 1 0 1 1 1 1

JND 1 1 1 1 1 1 0 0

DCTune 0 1 1 0 1 0 1 0

PQS 1 1 0 0 1 1 1 1

NQM 1 1 1 1 1 1 1 0

Fuzzy S7 1 1 1 0 1 1 1 1

BSDM (S4) 1 1 1 1 1 1 0 1

SSIM(MS) 1 1 1 1 1 1 0 1

IFC 1 1 1 1 1 1 0 1

VIF 1 1 0 1 1 1 0 1
TABLE VII

GAUSSIANITY OF IQM-DMOS RESIDUALS. ‘1’ MEANS THAT THE RESIDUALS CAN BE ASSUMED TO HAVE AGAUSSIAN

DISTRIBUTION SINCE THEKURTOSIS LIES BETWEEN2 AND 4.

JP2K#1 JP2K#2 JPEG#1 JPEG#2 WN GBlur FF All data

Data points 2398 1879 1504 1579 3311 3403 2878 16952

PSNR 14.0187 17.7418 16.0393 17.6145 12.5156 14.7832 18.4089 17.4095

JND 12.7536 13.6865 13.4591 12.4137 13.5250 11.0678 17.4220 15.2179

DCTune 16.8368 20.4284 16.1153 15.9592 15.5692 15.9808 22.3555 19.6881

PQS 13.8184 15.4409 14.5328 13.2059 13.9788 11.7365 16.6407 15.3918

NQM 13.3480 14.9805 14.2746 13.1875 12.3555 12.6605 20.2826 16.0460

Fuzzy S7 13.9155 16.2779 15.1627 15.3378 16.6603 17.4870 17.5017 19.0501

BSDM (S4) 14.7145 15.0257 14.9488 13.4766 14.2101 10.5723 15.3048 14.9935

SSIM(MS) 12.5328 13.8039 13.0988 12.3362 13.2394 10.9694 16.6708 14.7366

IFC 13.7056 14.2344 14.9091 13.4828 13.0657 10.3416 15.1184 14.4437

VIF 12.1360 13.4389 13.0252 12.2638 12.4004 10.1183 14.7365 14.0411

NULL 11.1208 12.2761 11.7833 11.1437 11.6034 9.2886 13.0302 11.4227
TABLE VIII

STANDARD DEVIATIONS OF THE RESIDUALS BETWEEN DIFFERENTIQMS AND SUBJECT SCORES. THE TABLE ALSO GIVES

THE NUMBER OF INDIVIDUAL SCORES IN EACH DATASET.
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PSNR JND DCTune PQS NQM Fuzzy S7 BSDM (S4) SSIM(MS) IFC VIF NULL

PSNR -------- 00001000 11-01111 -0001000 0000-010 -0001101 10001000 00001000 -0001000 0000-000 00000000

JND 11110111 -------- 11111111 1111110- 11110111 111111-1 11111000 ------00 11110000 0---0000 00000000

DCTune 00-10000 00000000 -------- 00000000 00000000 000-1100 00000000 00000000 00000000 00000000 00000000

PQS -1110111 0000001- 11111111 -------- 0---0111 -1-11111 1----000 000000-0 -0--0000 00000000 00000000

NQM 1111-101 00001000 11111111 1---1000 -------- 11111101 1-1-1000 00001000 -01-1000 0000-000 00000000

Fuzzy S7 -1110010 000000-0 111-0011 -0-00000 00000010 -------- 10-00000 00000000 -0-00000 00000000 00000000

BSDM (S4) 01110111 00000111 11111111 0----111 0-0-0111 01-11111 -------- 00000110 00--0--0 00000000 00000000

SSIM(MS) 11110111 ------11 11111111 111111-1 11110111 11111111 11111001 -------- 1-11-000 ----0000 00000000

IFC -1110111 00001111 11111111 -1--1111 -10-0111 -1-11111 11--1--1 0-00-111 -------- 00000--0 00000000

VIF 1111-111 1---1111 11111111 11111111 1111-111 11111111 11111111 ----1111 11111--1 -------- 00000000

NULL 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 --------

TABLE IX

IQM COMPARISON AND STATISTICAL SIGNIFICANCE MATRIX USING A95% CONFIDENCE CRITERION ONIQM-SUBJECT

SCORE RESIDUALS. SEE CAPTION OFTABLE VI FOR INTERPRETATION OF THE TABLE ENTRIES. THE NULL MODEL IS THE

DMOS.

the results of the hypothesis tests.

C. Discussion

1) IQM Evaluation Criteria: The results presented in Tables III and IV are essentially identical, since

they both are measuring the correlation of an IQM after an identical non-linear fit. However, RMSE is a

more intuitive criterion of IQM comparison than the linear correlation coefficient because the latter is a

non-uniform metric, and it is not easy to judge the relative performance of IQMs especially if the metrics

are all doing quite well. The QA community is more accustomed to using the correlation coefficient, but

RMSE gives a more intuitive feel of the relative improvement of one IQM over another. Nevertheless,

one can derive identical conclusions from the two tables.

The Spearman rank order correlation coefficient merits further discussion. SROCC belongs to the

family of non-parametric correlation measures, as it does not make any assumptions about the underlying

statistics of the data. For example, SROCC is independent of the monotonic non-linearity used to fit the

IQM to DMOS. However, SROCC operates only on the rank of the data points, and ignores the relative

distance between datapoints. For this reason, it is generally considered to be a less sensitive measure of

correlation, and is typically used only when the number of datapoints is small [28]. In Table V, although

the relative performance of IQMs is essentially the same as in Table III, there are some interesting

exceptions. For example, one can see that on JPEG #2 dataset, Sarnoff JNDMetrix performs almost as

good as SSIM (MS) or VIF (in fact, it is statistically indistinguishable from VIF or SSIM (MS) on this
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JP2K#1 JP2K#2 JPEG#1 JPEG#2 WN GBlur FF All data

PSNR 1 1 0 0 1 1 1 1

JND 1 1 0 1 1 1 1 1

DCTune 1 1 0 0 1 1 1 1

PQS 1 1 0 1 1 1 1 1

NQM 1 1 0 1 1 1 1 1

Fuzzy S7 1 1 0 1 1 1 1 1

BSDM (S4) 1 1 0 1 1 1 1 1

SSIM(MS) 1 1 0 1 1 1 1 1

IFC 1 1 0 1 1 1 1 1

VIF 1 1 0 1 1 1 1 1

NULL 1 1 0 1 1 1 1 1
TABLE X

GAUSSIANITY OF IQM-SUBJECT SCORE RESIDUALS. ‘1’ MEANS THAT THE RESIDUALS CAN BE ASSUMED TO HAVE A

GAUSSIAN DISTRIBUTION SINCE THEKURTOSIS LIES BETWEEN2 AND 4.

dataset), but the SROCC shows a different conclusion, that is, JND is much worse than SSIM (MS) or

VIF. A further analysis of the data and the non-linear fits reveals that the fits of the three methods are

nearly identical (see Figure 6), and the linear correlation coefficient, or RMSE is indeed a good criterion

for comparison. It is also easy to see why SROCC is not a good criterion for this dataset. One can note

that many datapoints lie in that region of the graph where the DMOS is less than 20 (high quality), and

all of these images are high quality with approximately the same quality rank. The difference between

DMOS of these images is essentially measurement noise. Since SROCC ignores the relative magnitude

of the residuals, it treats this measurement noise with the same importance as datapoints in other parts

of the graph, where the quality rank spans a larger range of the measurement scale. Thus, in this case,

the nature of the data is such that SROCC is not a good measure of IQM performance, and leads to

misleading conclusions.

We believe that when the underlying quantity exhibits a qualitative saturation, such as when image

quality is perceptually the same for many distortion strengths, SROCC is not a good validation criterion,

and RMSE is more suitable.

2) Cross-distortion Validation:Table III through V also allow us to compare different IQM’s against

one another on individual distortion types as well as on all data. We see that while some metrics perform

very well for some distortions, their performance is much worse for other distortion types. PSNR for
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example, is among the best methods for the white noise distortion, but its performance for other distortion

types is much worse than other IQMs. Moreover, all of the methods perform better than PSNR on at

least one of the datasets using at least one of the criteria! This underlies the importance of extensive

validation of full reference IQM’s over distortion types as well as statistical significance testing.

3) Statistical Significance:We have devoted a large portion of our paper to presenting results of

statistical significance tests as this topic has recently gained importance in the quality assessment research

community. The two types of tests presented in this paper are the same as used by the Video Quality

Experts Group (VQEG) in their Phase-II report [15], which also discusses the merits and demerits of

tests based on DMOS versus tests based on subject score residuals. The results allow us to conclude

whether the numerical differences between IQM performance is statistically significant or not. Note that

this assessment is purely from the standpoint of the number of samples used in the experiments.

Statistical significance testing allows one to make quantitative statements about the soundness of the

conclusion of the experiment solely from the point of view of the number of sample points used in making

the conclusion. It is different frompractical significance, that is, whether a difference in performance

is of any practical importance. One IQM may be statistically inferior, but it may be computationally

more suited for a particular application. Another IQM may be statistically inferior only when tested on

thousands of images. Moreover, the selection of the confidence criterion is also somewhat arbitrary and

it obviously affects the conclusions being drawn. For example, if one uses a 90% confidence criterion,

then many more IQMs could be statistically distinguished from one another.

From Tables VI and IX, it may seem that the HT using DMOS should always be less sensitive than

HT using IQM-subject score residuals since the latter has far greater number of data points. This is not

necessarily the case since the averaging operation in the calculation of DMOS reduces the contribution of

the variance of subject scores. Thus, depending upon the standard deviation of the subject scores, either

of the two variance based HT may be more sensitive.

The HTs presented in the paper rely on the assumption of Gaussianity of the residuals. We see from

Tables VII and X that this assumption is not always met. However, we still believe that the results

presented in Tables VI and IX are quite representative. This is because for the large number of sample

points used in the HT, Central Limit Theorem comes into play and the distribution of the variance

estimates (on which the HTs are based) approximates the Gaussian distribution. We verified this hypothesis

by running two Monte-Carlo simulations. In the first simulation, we drew two sets of DMOS residual

samples randomly from two Gaussian distributions corresponding to two simulated IQM’s. The variance

of the two sets was chosen to approximately reflect SSIM versus VIF comparison for the JPEG2000
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#1 dataset (36 and 25 respectively). With 90 samples in both sets, we ran the HT multiple times and

discovered that the Null Hypothesis (the two variances are equal) was rejected about 51% of the time. In

the second simulation, we repeated the same procedure with samples drawn from a Uniform distribution

with the same variance, and found that the Null hypothesis was rejected about 47% of the time, thereby

suggesting that the underlying distribution had little effect due to the large number of sample points used.

However, with only 10 sample points, the Null hypothesis was rejected 38% of the time in the case of

Normal distribution versus about 20% for the Uniform distribution.

This leads us into a discussion of the design of experiments and the probability of detection of an

underlying difference in IQM performance. As it is apparent from the above simulations, it is not always

possible to detect a difference in the IQM performance using a limited number of observations, and

one can only increase the likelihood of doing so by using a large number of samples in the design of

the experiment. Thus, anyone designing an experiment to detect the difference between the performance

of SSIM and VIF for the JPEG2000 #1 dataset (assuming that the numbers in Table IV represent the

standard deviations of the true distributions of residuals) has only about 50% chance of detecting the

difference if he chooses to use 100 sample points (distorted images in the dataset). He or she may increase

this probability to about 75% by using 200 samples in the study [27]. Obviously, it is not possible to

increase this number arbitrarily in one session due to human fatigue considerations. Experts agree that the

duration of the entire session, including training, should not exceed 30 minutes to minimize the effects

of fatigue in the measurements. This poses an upper limit on how many images can be evaluated in one

session. More sessions may be needed to construct larger datasets.

4) Comparing IQMs using data aggregated from multiple sessions:The use of aggregated data from

multiple sessions has two advantages. It allows greater resolution in statistical analysis due to a large

number of datapoints, and it allows us to determine if an IQM’s evaluation for one distortion type is

consistent with another. For example, an IQM should give similar score to two images that have the same

DMOS but for which the underlying distortion types are different.

Such aggregation of sample points has its limitations as well. Each set of images used in a session

establishes its own subjective quality scale which subjects map into quantitative judgments. This scale

depends upon the distribution of quality of images in the set. Since it is virtually impossible to generate

two different sets of images with the same distribution of subjective quality (note that subjective quality

cannot be known untilafter the experiment, a classical chicken-and-egg problem!), the quality scales

corresponding to two data sets will not properly align by default. Without this realignment, experts

generally do not agree that data from multiple sessions can be combined for statistical analysis [2], and
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only the results on the seven individual sessions presented in this paper would be strictly considered

justified. In this paper, we attempt a new approach to compensate for the difference between quality

scales by conducting a scale-realignment experiment, and it is quite obvious from Figure 3 that the

realignment procedure does modify the quality scales to a significant degree. Nevertheless, the residual

lack of alignment between scales or the variability in the realignment coefficients is difficult to quantify

statistically.

There could be other reasons for conducting multiple sessions for subjective quality studies apart from

the need for greater statistical resolution, such as resource constraints, and the need to augment current

studies by adding in new data reflecting possible different distortion types or image content. Calibration

and realignment experiments should, in our view, be given due resources in future studies.

5) Final note on IQM performance:One important finding of this paper is that none of the IQMs

evaluated in this study was statistically at par with the Null model on any of the datasets using a 95%

confidence criterion, suggesting that more needs to be done in reducing the gap between machine and

human evaluation of image quality.

Upon analyzing Tables VI and IX one can roughly classify the IQM performance based on the overall

results as follows. DCTune performs statistically worse than PSNR4, while all other methods perform

statistically better than PSNR on a majority of the datasets. JND, SSIM (MS), IFC, and VIF perform much

better than the rest of the algorithms, VIF being the best in this class. The performance of PQS, NQM,

and BSDM is noticeably superior to PSNR, but generally worse than the best performing algorithms.

The performance of VIF is the best in the group, never ‘losing’ to any algorithm in any testing on any

dataset.

Another interesting observation is that PSNR is an excellent measure of quality for white noise

distortion, its performance on this dataset being indistinguishable from the best IQMs evaluated in this

paper.

IV. CONCLUSIONS

In this paper we presented a performance evaluation study of ten image quality assessment algorithms.

The study involved 779 distorted images that were derived from twenty-nine source images using five

distortion types. The data set was diverse in terms of image content as well as distortion types. We have

also made the data publicly available to the research community to further scientific study in the field of

image quality assessment.

4Note that DCTune was designed as part of JPEG optimization algorithm.
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Fig. 4. Dependence of quality on distortion parameters for different distortion types.

DRAFT



EVALUATION OF IMAGE QUALITY ASSESSMENT ALGORITHMS 23

0 20 40 60 80 100 120
0

20

40

60

80

100

120

DMOS

F
re

qu
en

cy

Fig. 5. Histogram of subjective quality (DMOS) of the distorted images in the database.
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Fig. 6. Non-linear fits for VIF and Sarnoff’s JND-Metrix for the JPEG #2 dataset. Note that while the fits are nearly identically

good, as also quantified by CC and RMSE in Tables III and IV, the SROCC leads to a much different conclusion (in Table V).
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