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Contrast statistics for foveated visual systems:
fixation selection by minimizing contrast entropy
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The human visual system combines a wide field of view with a high-resolution fovea and uses eye, head, and
body movements to direct the fovea to potentially relevant locations in the visual scene. This strategy is sen-
sible for a visual system with limited neural resources. However, for this strategy to be effective, the visual
system needs sophisticated central mechanisms that efficiently exploit the varying spatial resolution of the
retina. To gain insight into some of the design requirements of these central mechanisms, we have analyzed
the effects of variable spatial resolution on local contrast in 300 calibrated natural images. Specifically, for each
retinal eccentricity (which produces a certain effective level of blur), and for each value of local contrast ob-
served at that eccentricity, we measured the probability distribution of the local contrast in the unblurred im-
age. These conditional probability distributions can be regarded as posterior probability distributions for the
“true” unblurred contrast, given an observed contrast at a given eccentricity. We find that these conditional
probability distributions are adequately described by a few simple formulas. To explore how these statistics
might be exploited by central perceptual mechanisms, we consider the task of selecting successive fixation
points, where the goal on each fixation is to maximize total contrast information gained about the image (i.e.,
minimize total contrast uncertainty). We derive an entropy minimization algorithm and find that it performs
optimally at reducing total contrast uncertainty and that it also works well at reducing the mean squared error
between the original image and the image reconstructed from the multiple fixations. Our results show that
measurements of local contrast alone could efficiently drive the scan paths of the eye when the goal is to gain
as much information about the spatial structure of a scene as possible. © 2005 Optical Society of America

OCIS codes: 330.0330, 330.6110, 330.2210, 330.4060, 330.1800, 110.2960.
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. INTRODUCTION
umans, like many other animals, have a retina with

ariable spatial resolution. Resolution is highest in a cen-
ral region, the fovea, and declines smoothly in all direc-
ions. High-speed eye movements, and slower head and
ody movements, are used to direct the fovea at poten-
ially relevant locations in the retinal image of the visual
cene. This strategy of combining a variable-resolution
etina with eye, head, and body movements is sensible be-
ause it minimizes total neural resources while providing
oth a wide field view and high spatial resolution. How-
ver, for this strategy to be effective the visual system
eeds sophisticated central mechanisms that take into ac-
ount and exploit the continuously varying spatial resolu-
ion of the retina.

There is evidence that visual systems are often
atched to the statistical properties of the natural scenes

o which they are exposed1–11 (for reviews see Simoncelli
nd Olshausen12 and Geisler and Diehl13). Therefore, to
ain some insight into the design requirements of the cen-
ral mechanisms of foveated visual systems, we analyzed
1084-7529/05/102039-11/$15.00 © 2
he effects of variable spatial resolution on the statistics
f local contrast in natural images. (Here, we define the
ocal contrast as the standard deviation of the image in-
ensities within some small region, divided by the mean
ntensity within that region, i.e., the local rms contrast.)

Contrast is arguably the most fundamental local image
roperty encoded by the retina and transmitted to the
rain, and hence its statistics have received considerable
ttention. A number of studies have been concerned with
easuring the distributions of local contrast in natural

mages and comparing these with the shape of contrast
esponse functions in the eye,1,6 lateral geniculate
ucleus,14 and primary visual cortex.15,16 Other studies
ave characterized the distributions of contrast in differ-
nt environments17 and at the center of gaze.18

Like most other image properties, contrast is encoded
ith the greatest precision at the center of the fovea and
ith decreasing precision as the distance from the center
f the fovea (the eccentricity) increases. Specifically, as ec-
entricity increases, the center sizes of ganglion cell re-
eptive fields increase, blurring the retinal image and
005 Optical Society of America
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hereby effectively reducing local contrast and increasing
ontrast uncertainty. This fact motivated us to directly
easure the effect of retinal blur on large numbers of
atural images in order to determine the statistical rela-
ionship between effective contrast and the true un-
lurred contrast at different retinal eccentricities. Here,
e show that to good approximation the mode �ĉ� of the
osterior probability distribution of the unblurred con-
rast [i.e., the maximum a posteriori (MAP) estimate] is
iven by the simple formula

ĉ = kc� + c, �1�

here � is the retinal eccentricity and k is a constant that
epends on the patch size over which the local contrast �c�
s computed. We also show that the average standard de-
iation (defined later) of the posterior probability distri-
ution is given by

�̄2 = �kc��2 + �0
2, �2�

here �0 is a small constant, and thus the contrast uncer-
ainty (the differential entropy of the posterior probability
istribution) is given by

h = 1
2log2�2�e�̄2�. �3�

hese statistical properties of natural images will be de-
ived and explained in Section 2.

As an example of how these statistical properties of
atural images might be exploited by a foveated visual
ystem, we have considered the task of selecting fixation
ocations, when the organism’s goal is to encode images as
ell as possible with just a few fixations. Specifically, us-

ng Eqs. (1)–(3), we derive and evaluate a fixation selec-
ion strategy based on the principle of picking fixation lo-
ations that minimize the total uncertainty about the
ontrasts in the image (i.e., minimize the total contrast
ntropy). We decided to explore an algorithm that mini-
izes total contrast entropy because minimizing entropy

s ideal under some circumstances and has proved useful
n other applications.19–22 We find that our algorithm
orks very well at reducing total contrast uncertainty
nd also works well at reducing the mean squared error
MSE) between the original image and the image recon-
tructed from the multiple fixations.

. METHODS AND RESULTS
his section describes the measurements of the contrast
tatistics and the algorithm for fixation selection based on
hose statistics.

. Contrast Statistics
he effects of retinal blur on local contrast were measured
sing a set of calibrated natural images. The image set
onsisted of 300 rural images (i.e., minimum of man-made
bjects or animals) obtained from a publicly available im-
ge database.7 The images were selected to be as diverse
s possible given the data set. The images were obtained
ith a Kodak DCS420 digital camera and were calibrated

o result in approximately 12 bit values that are linear
ith respect to the luminance. The 1536 by 1024 images
ere cropped to the center 1024 by 1024 pixels. Van Hat-
ren and van der Schaaf7 report that each pixel corre-
ponds to approximately 1 arc min, and thus the cropped
mages are approximately 17° �17°.

The contrast sensitivity functions of the human visual
ystem, at different retinal eccentricities, have been mea-
ured for transient stimuli.23–25 Measurements made un-
er transient stimulus conditions are appropriate in the
resent context because fixation durations are brief (200–
00 ms) under most natural viewing conditions. These
ontrast sensitivity functions are adequately described by
he formula26

C�f,�� = C0 exp�− �f
�2 + �

�2
� , �4�

here � is a constant ���0.1�, �2 is the retinal eccentric-
ty where spatial resolution falls to half of what it is in the
enter of the fovea ��2�2.3° �, and C0 is a constant that
ontrols the maximum contrast sensitivity. The contrast
ensitivity functions described by Eq. (4) are consistent
ith the increase in center size of the retinal ganglion

ells (midget ganglion cells) with eccentricity,24,25 and
ence Eq. (4) can be used to estimate the reduction in ef-
ective contrast as function of eccentricity. Note that the
lur produced by the retina (as reflected in ganglion cell
enter sizes) is a result of both optical and neural factors.

To simulate the blur produced by the retina at different
ccentricities, we filtered each of the 300 natural images
ith radially symmetric transfer functions obtained by

etting C0=1.0 and f= �f x
2+ f y

2�1/2 in Eq. (4). Specifically, for
ach image we padded it appropriately, took the Fourier
ransform, multiplied the result by Eq. (4), and then took
he inverse Fourier transform. Blurred images were ob-
ained for eccentricities ��� of 0, 1, 2, 4, 8, and 16 deg. The
ltered images at an eccentricity of 0 deg were taken to be
he unblurred reference images. This was done because
he optical transfer function of the camera is unknown
but presumably very good), and hence the raw image
annot be taken to be the effective retinal image in the
enter of the fovea. Because the unblurred image was
aken to be the filtered image with �=0, the value of C0 is
rrelevant and hence could be set to 1.0, as we did.

In order to characterize the statistical relationship be-
ween effective contrasts at different eccentricities, we
easured local contrasts in each image, for all six levels

f blur. A large number of local contrasts were sampled
andomly from each of the 300 natural images. The loca-
ions of the samples were different for each natural image
ut were the same for each level of blur. The local con-
rasts were measured in image patches formed by win-
owing with a circularly symmetric raised-cosine weight-
ng function:

wi = 0.5�cos��

p
��xi − xc�2 + �yi − yc�2	 + 1
 , �5�

here p is the patch radius, �xi ,yi� is the location of the
th pixel in the patch, and �xc ,yc� is the location of the cen-
er of the patch. (Note that the half-height diameter of the
indow equals the patch radius.) The results reported
ere are for a patch diameter of 32 pixels (0.53 deg), but
imilar results are obtained with other patch sizes. The
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ocal contrast was defined by the formula

c =� 1

�
i=1

N

wi

�
i=1

N

wi

�Li − L�2

�L + L0�2 , �6�

here N is the number of pixels in the patch; Li is the lu-
inance of the ith pixel; L is the local mean luminance,

L =
1

�
i=1

N

wi

�
i=1

N

wiLi; �7�

nd L0 is a dark light parameter, chosen to be 7 td
1 cd/m2, assuming a 3 mm pupil), based on human pho-
opic intensity discrimination data.27 (We note that L0
ad very little effect on the measured contrasts because
he mean luminances of the images were generally much
igher than 1 cd/m2.)
Figure 1 shows the estimated probability distributions

f local contrast for each level of blur. The distributions
ave been truncated at a contrast of 0.005 because hu-
ans cannot detect contrasts below that value and be-

ause the measurements become contaminated by camera
r pixel noise. Not surprisingly, as the level of blur (reti-
al eccentricity) increases, the distributions shift toward

ower contrasts. The rise in the function at low contrasts
ppears to be due to the patches of sky in many of the
atural images.
For many visual tasks (including the fixation selection

ask), one would like to estimate the unblurred contrast
rom the blurred contrast observed at the given retinal ec-
entricity. Thus, the statistics of most relevance are the
onditional probability distributions for the unblurred
ontrast given the observed contrast (i.e., the posterior
robability distributions). We computed these distribu-
ions for a wide range of blurred contrasts, for eccentrici-
ies 1, 2, 4, 8, and 16 deg. Several representative distri-

ig. 1. Probability distributions of local rms contrast for various
evels of blur based on the human contrast sensitivity function at
ifferent retinal eccentricities. These distributions were obtained
y randomly sampling small patches from 300 calibrated natural
mages.
utions are shown in Fig. 2. Each row shows the
onditional probability distributions for a different eccen-
ricity, and each plot within a row shows the distribution
or a particular value of blurred contrast observed at that
ccentricity. There are several clear trends in the data: (1)
s eccentricity increases, the peaks of the distributions
hift to the right and (2) the widths of the distributions
ncrease; and (3) as the observed blurred contrast in-
reases, the peaks of the distributions shift to the right
nd (4) the widths of the distributions increase.
To quantify these trends, we fit the empirical distribu-

ions with descriptive functions. In general, the distribu-
ions are not Gaussian, but they are nicely fit by Gaussian
istributions with different standard deviations above
nd below the mode (skewed Gaussian distributions). The
olid curves show the fits to this sample of empirical dis-
ributions; the quality of these fits is representative of the
hole set. The skewed Gaussian has three parameters:

he mode, which we will label ĉ because it is the MAP es-
imate of the unblurred contrast, and two standard devia-
ions, �l and �h. Figure 3 plots the mode and the average
tandard deviation, ��l+�h� /2, for all eccentricities and
bserved levels of blurred contrast. Measurements out-
ide these ranges were unreliable because the numbers of
amples became too small. The solid lines in the figure
re best-fitting straight lines through the origin. Al-
hough the fits are not perfect, the straight lines summa-
ize the data very well. In other words, to close approxi-
ation, both the mode and the standard deviation of all

he posterior probability distributions increase in direct
roportion to the observed blurred contrast.
What is also clear in Fig. 3 is that the slopes of the best-

tting lines (the proportionality constants) increase with
etinal eccentricity. Figure 4 plots the estimated slopes for
he modes and the average standard deviations. The
traight line in Fig. 4A is the best-fitting line with a in-
ercept of 1.0, and the straight line in Fig. 4B is the best-
tting line through the origin. Again, the fits are not per-

ig. 2. These plots show examples of the conditional probability
istributions of local rms contrast in unblurred images, given the
ocal rms contrast in the blurred versions of the images (columns)
nd given the retinal eccentricity (rows). The solid symbols are
mpirical histograms computed from 300 natural images that
ontained no man-made objects. The smooth curves are the best-
tting skewed Gaussian distribution (a Gaussian with different
tandard deviations above and below the mode).
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ect, but they do provide a very good summary of the data.
aken together, Figs. 2–4 show that the mode across all
onditions is closely approximated by Eq. (1) and the av-
rage standard deviation across all conditions is closely
pproximated by Eq. (2), where �̄= ��l+�h� /2.
Differential entropy is a fundamental measure of the

ncertainty associated with a probability distribution.28

n Appendix A we show that the differential entropy of a
kewed Gaussian distribution is equal to Eq. (3), and
ence the differential entropy of the posterior probability
istributions (the contrast uncertainty) for the range of
ccentricities considered here is closely approximated by
ubstituting Eq. (2) into Eq. (3). The constant �0

2 in Eq.
2) reflects the fact there must always be some intrinsic
ncertainty about contrast, if for no other reason than
hoton and sensor or neural noise. Although the constant
annot be estimated from the contrast measurements, it
s necessary for it to have a value greater than zero in the
xation selection algorithm; its specific value is not im-
ortant as long as it is small (see Appendix A).

. Fixation Selection
e have found a surprisingly simple statistical relation-

hip, for natural images, between the contrast observed
t a given retinal eccentricity and the posterior probabil-
ty distribution of the unblurred true contrast at that lo-
ation. This relationship, which is described by Eqs.

ig. 3. Modes and average standard deviations of the condi-
ional probability densities are plotted as a function of blurred
mage contrast and retinal eccentricity. The average standard de-
iation is the average of the two standard deviation parameters
n the skewed Gaussian distribution. See Fig. 2 for examples of
he conditional densities and fits of the skewed Gaussian distri-
ution. The curves are best-fitting straight lines through the
rigin.

ig. 4. Slopes of the linear functions in Fig. 3. A, Slope of the
ontrast versus mode plot as a function of retinal eccentricity. B,
lope of the contrast versus average standard deviation plot as a

unction of retinal eccentricity. The curves show the predictions
f the linear model: ĉ=k�c+c and �̄=k�c, where k=0.105.
1)–(3), could be exploited by a visual system to efficiently
elect fixation locations under certain circumstances. For
xample, if the goal in some situations is not to search for
particular target or set of targets but simply to gain as
uch information as possible about the image on each
xation, then a potentially effective strategy would be to
ick successive fixations that maximally reduce the total
ontrast uncertainty about the image. This strategy
ight be particularly effective if there is a strong correla-

ion between the uncertainty about local contrast and the
otal uncertainty about the local image structure. To be-
in exploring this possibility, we have developed an algo-
ithm (a model observer) that selects fixations based on
q. (1)–(3). Here, we describe the algorithm, then we de-
cribe the algorithm’s fixation selections on some example
mages, and finally we compare the algorithm’s absolute
erformance to appropriate ground-truth measurements.

. Contrast Entropy Minimization Algorithm
e assume that the first fixation is at some arbitrary im-

ge location (e.g., at the center of the image). On making
his first fixation the observer receives a foveated neural
mage, where spatial resolution is highest at the fixation
oint and falls off smoothly in all directions. From this
rst neural image the observer forms three maps that will
e updated after each fixation. The first is an eccentricity
ap, which stores, for each image pixel, the smallest dis-

ance the pixel has been from the center of the fovea. The
econd is a contrast map, which stores the local rms con-
rast measured at each pixel, when the pixel was at its
mallest distance from the center of fovea. (The contrast
t a pixel is defined to be the contrast of the patch cen-
ered on that pixel.) The third is an uncertainty map,
hich stores the contrast uncertainty (entropy) at each
ixel [given by Eq. (3)], when the pixel was at its smallest
istance from the center of fovea. These three maps cu-
ulate all the relevant information obtained during the

equence of fixations. The sum of all the uncertainties in
he uncertainty map is the total contrast uncertainty. The
im of the algorithm is to select the next fixation that will
inimize this total contrast uncertainty. To do this, the

lgorithm considers every possible next fixation location.
or each possible fixation location, the algorithm uses the
urrent maps and its knowledge of the posterior probabil-
ty distributions for contrast [Eqs. (1)–(3)] to estimate the
eduction in total contrast uncertainty. It then picks the
xation location with the largest estimated reduction. A
ormal derivation of the contrast entropy minimization
CEM) algorithm is given in Appendix A.

. Performance of the Contrast Entropy Minimization
lgorithm
he performance of the CEM algorithm was evaluated on
6 natural images selected to be representative of the van
ateren and van der Schaaf 7 data set. Thumbnails of

hese images are shown in Fig. 5.
We simulated a foveated visual system that approxi-
ately matched the human visual system by using radi-

lly symmetric transfer functions corresponding to hu-
an contrast sensitivity functions [cf. Eq. (4)]:
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F�fx,fy,�� = exp�− ��fx
2 + fy

2
�2 + �

�2
� . �8�

or each eccentricity the inverse Fourier transform of this
ransfer function specifies a linear filter kernel (a Laplac-
an function) that scales in size with eccentricity.

To speed the calculations, we made use of the fact the
esolution of the human visual system declines smoothly
s a function of eccentricity. By setting the left side of Eq.
8) to any constant resolution criterion, we see that reso-
ution follows a smooth function of the form

r��� �
�2

� + �2
.

he greatest eccentricity that needs to be considered for
ur 17° images is 12°, and hence the lowest relevant reso-
ution is approximately 17% of the resolution in the fovea.
herefore, we partitioned the 17%–100% range into eight

ig. 5. Images used to test a fixation selection algorithm based
venly spaced resolutions and then determined the eccen-
ricity corresponding to each resolution. We then created
ight transfer functions by substituting the eight eccen-
ricities into Eq. (8). Before running the algorithm on a
atural image, we used the eight transfer functions to ob-
ain eight different resolution versions of the natural im-
ge. During the simulation, the foveated (neural) image
t any given retinal eccentricity was obtained by linearly
nterpolating the two images whose resolutions bracketed
he resolution at that eccentricity.

On each fixation during the simulation, the local con-
rasts in the neural image were measured using Eq. (6)
or a patch diameter of 32 pixels. To speed the calcula-
ions, we sampled the local contrasts on a square lattice
ith a spacing of 16 pixels (the radius of the raised-cosine
indow). The overlap of the samples ensured that all im-
ge pixels contributed to the local contrast measurements
however, the algorithm performs similarly if there is no
verlap between samples). The possible fixation locations

principle of minimizing contrast entropy.
on the
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nd the three maps (contrast, eccentricity, and uncer-
ainty) also corresponded to the same square lattice (i.e.,
096 possible fixation locations).
Figures 6A and 6C show the first nine fixations for two

f the natural images. (Recall that the first fixation was
lways at the center of the image.) There are several
rends evident in these fixation patterns. First, the fixa-
ions tend to land in or near relatively high-contrast re-
ions. Notice, for example, how there are no fixations into
he sky region of the image in Fig. 6A and how the second
xation is near a bright flower in Fig. 6B. This occurs be-
ause contrast uncertainty is greater in regions where the
ffective contrast is higher [see Eqs. (2) and (3)]. Second,
he saccade lengths tend to be relatively large and vari-
ble in size; the mean and standard deviation of the sac-
ade length for the 16 test images are 8.9° and 2.5°, re-
pectively. The large saccades occur because contrast

ig. 6. Fixation points selected by the principle of minimizing
ontrast statistics of natural images. A, Sequence of nine fixation
, Relative contrast entropy as a function of fixation number for

he fixation was made (solid circles), and optimal relative contra
xations (eight saccades) for a close-up image containing foliage.
ncertainty increases with eccentricity [see Eqs. (2) and
3)]. Third, there are few fixations near the edge of the im-
ge. This occurs because fixating near the image bound-
ry tends to reduce the total number of image pixels that
enefit from being seen at a smaller eccentricity. For ex-
mple, a fixation on the boundary implies that half the
ovea falls outside the image, which tends to reduce the
umber of image pixels that can benefit from foveal view-

ng.
Figures 6B and 6D show quantitatively how well the

lgorithm performs in reducing total contrast uncer-
ainty. The solid circles show the total contrast entropy
redicted by the algorithm before the fixation was made,
here the total contrast entropy has been normalized by

ts value after the first fixation in the center of the image.
he open circles show the actual total contrast entropy
bserved after the fixation selected by the algorithm is

ontrast entropy (contrast uncertainty), using the average local
t saccades) for a distant image containing sky, ground, and trees.
age in A (open circles), predicted relative contrast entropy before
opy that could be obtained (open triangles). C, Sequence of nine
me type of plot shown in B.
total c
s (eigh
the im
st entr
D, Sa
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ade. In other words, the predicted entropy is the en-
ropy estimated before the next eye movement is made,
nd the observed entropy is the entropy observed or com-
uted after the next eye movement is made. As can be
een, the predicted and observed entropies are very simi-
ar. The open triangles show the lowest possible total con-
rast entropy that could have been obtained on the fixa-
ion. It was determined by literally making every possible
xation and computing the observed entropy. The actual
bserved entropy obtained by the algorithm is almost in-
istinguishable from optimal. The average results for all
6 images are shown in Fig. 7A. In general, the reduction
n contrast entropy obtained by the CEM algorithm is es-
entially optimal. This is even more clearly illustrated by
he solid circles in Fig. 7B, which plot the ratio of the op-
imal and observed entropies in Fig. 7A (the first fixation
s excluded from the plot because the ratio is necessarily
.0).
An obvious question is how well the CEM algorithm

ompares with alternatives. We consider two. The first al-

ig. 7. Average fixation selection performance for the 16 test i
umber (open circles), predicted relative contrast entropy before
ropy that could be obtained (open triangles). B, Ratio of the optim
as obtained: CEM algorithm (solid circles), tiling algorithm (ope

rror (MSE) between the original (unblurred) image and the im
umber given on the horizontal axis: CEM algorithm (solid circ
ained to the MSE that was obtained: CEM algorithm (solid circ
orithm tiles the image in a random order without re-
lacement. Specifically, the image is divided into nine
quare regions (a 3�3 grid), and only fixations at the cen-
ers of these regions are allowed. During the scan, each
quare region is fixated only once, with the order of fixa-
ions being random. The average performance of this til-
ng algorithm is given by the open circles in Fig. 7B. It
erforms substantially worse than entropy minimization.
he second alternative is purely random fixation (fixa-

ions are selected randomly from the 4096 possible loca-
ions). The performance of this algorithm is given by the
pen triangles in Fig. 7B. The random algorithm performs
orse than the tiling algorithm. We conclude that the
EM algorithm does, in fact, optimally reduce the total
ontrast entropy on successive fixations for natural im-
ges and that it substantially outperforms some obvious
lternatives.
We have demonstrated that the average contrast statis-

ics of natural images can be used to sequentially select
xations that optimally reduce the total contrast uncer-

in Fig. 5. A, Relative contrast entropy as a function of fixation
ation was made (solid circles), and optimal relative contrast en-
trast entropy that could be obtained to the contrast entropy that
s), random algorithm (open triangles). C, Relative mean squared
constructed from the fixations up to and including the fixation
timal (open circles). D, Ratio of optimal MSE that could be ob-
ing algorithm (open circles), random algorithm (open triangles).
mages
the fix
al con

n circle
age re

les), op
les), til



t
a
s
u
a
l
f
a
i
l
o
s
e
t
s
T
t
a

e
t
a
s
(
h
p
g
t
s
t
n
w
t
s
�

p
v
i
n
t
b
m
n
o
M
F
s
a
h
t
w
t
0
s
a

3
T
t
b

a
r
j
t
o
t
t
fi
w
d
t
o
t
e
c
l

l
E
d
p
t

e
e
t
a
t
w
a
s
g
s
a
a
i
w
a
a
a
c
C
t
s
t
C
c
a

b
w
m
b
a
r
g
s
a
p
c

s

2046 J. Opt. Soc. Am. A/Vol. 22, No. 10 /October 2005 Raj et al.
ainty for individual images. Although this is a remark-
ble fact, contrast is just one local image property. Pre-
umably, humans make fixations not just to reduce
ncertainty about contrast but also to reduce uncertainty
bout many of the other image properties that determine
ocal image structure (e.g., orientation, phase, and spatial
requency). It is not possible to measure the statistics for
ll local image properties in natural images, and hence it
s not practical to develop a rigorous algorithm that se-
ects fixations to reduce total image uncertainty. On the
ther hand, it is possible that uncertainty in contrast is
trongly correlated with uncertainty for other image prop-
rties. For example, Schwartz and Simoncelli29 found
hat the variances of many local image properties are
trongly correlated, even for orthogonal image properties.
herefore, it is possible that minimizing contrast uncer-
ainty would do a good job of minimizing uncertainty
bout many local image properties.
To evaluate this possibility, we used the mean squared

rror (MSE), between the original (unblurred) image and
he image reconstructed from the sequence of fixations, as

measure of the total image uncertainty. The recon-
tructed image was obtained using the eccentricity map
the map showing the smallest distance that each pixel
as been from the center of the fovea). Specifically, each
ixel in the reconstructed image was set to the image
ray level that was observed at that pixel for the eccen-
ricity given in the eccentricity map. Thus, in the recon-
tructed image, every pixel keeps the highest resolution
hat has occurred so far in the sequence of fixations. (We
ote that for image reconstruction the eccentricity map
as computed for all the 1024�1024 pixels’ locations in

he image; also, the MSE between the original and recon-
tructed images was computed over all 1024
1024 pixels.)
For each fixation made by the CEM algorithm, we com-

uted the relative MSE (the MSE after the fixation di-
ided by the MSE after the first fixation). The solid circles
n Fig. 7C show the relative MSE as a function of fixation
umber, averaged across the 16 test images. For ground-
ruth comparison, we determined, for each fixation made
y the CEM algorithm, the fixation that would have mini-
ized the MSE (this was done by making every possible

ext fixation and computing the resulting MSE). The
pen circles in Fig. 7C show the optimal values of the
SE that could have been obtained. The solid circles in
ig. 7D show the ratios of the optimal MSE to the ob-
erved MSE obtained with the CEM algorithm. The aver-
ge ratio is 0.9 (i.e., the obtained MSE is about 10%
igher than optimal). The open circles and triangles show
hat the tile and random algorithms perform considerably
orse than the CEM algorithm; the average ratio for the

ile algorithm is 0.72 and for the random algorithm is
.59. Thus, it appears that the CEM algorithm does a re-
pectable job of selecting fixations that minimize total im-
ge uncertainty.

. DISCUSSION
o gain insight into the design requirements of visual sys-
ems with foveated retinas, we measured the joint distri-
ution of the local contrast in 300 natural images before
nd after blurring by amounts corresponding to different
etinal eccentricities in the human visual system. The
oint distribution at each retinal eccentricity is given by
he marginal distribution of the blurred contrast (e.g., one
f the distributions in Fig. 1) and by the distributions of
he unblurred contrast conditional on the blurred con-
rast (e.g., one of the rows of distributions in Fig. 2). We
nd that the conditional distributions are described quite
ell by very simple formulas: The mode of the conditional
istribution increases in proportion to the blurred con-
rast and the eccentricity [Eq. (1)], the average variance
f the conditional distribution increases in proportion to
he square of the blurred contrast and the square of the
ccentricity [Eq. (2)], and the differential entropy of the
onditional distribution increases in proportion to the
ogarithm of the average variance [Eq. (3)].

The image statistics reported here are for one particu-
ar analysis patch size (a width of 32 pixels). We find that
qs. (1)–(3) also summarize the conditional probability
istributions for other patch sizes quite well. However, as
atch size decreases, the estimated value of the propor-
ionality constant k in Eqs. (1)–(3) increases.

To explore how these natural scene statistics might be
xploited by central perceptual mechanisms, we consid-
red the task of selecting successive fixation points to op-
imize the total contrast information gained about the im-
ge (i.e., minimize total contrast entropy). On the basis of
he average scene statistics represented by Eqs. (1)–(3),
e derived a novel fixation selection algorithm: the CEM
lgorithm. Remarkably, we found that the average scene
tatistics for natural images (represented in the CEM al-
orithm) are sufficient to achieve nearly optimal fixation
equences for individual natural images (see Figs. 6, 7A,
nd 7B). Presumably, this optimal performance is
chieved because each fixation is based on a global pool-
ng of local contrasts from the entire image. In other
ords, even though there is considerable uncertainty
bout how much the contrast entropy will be reduced at
ny particular image location, there is little uncertainty
bout how much the average contrast entropy from all lo-
ations will be reduced. We also examined how well the
EM algorithm performed at reducing the MSE between

he original image and the image reconstructed from the
equence of fixations. The MSE serves as a measure of to-
al uncertainty about the original image. We find that the
EM algorithm also does quite well at reducing total un-
ertainty in individual images: The MSE values average
bout 10% higher than optimal (see Figs. 7C and 7D).
Although the CEM algorithm is quite simple and is

ased only on contrast statistics, it performs remarkably
ell at reducing total image uncertainty, and hence it
ay be of practical value in certain surveillance and ro-

otic applications involving foveated imaging. For ex-
mple, if there is time to make only a few fixations with a
emote robotic or surveillance camera, then the CEM al-
orithm could be used to select those few fixations, as-
uming the goal is to reconstruct the image as accurately
s possible. The algorithm is amenable to parallel com-
uting and runs at a respectable speed (a fixation every
ouple of seconds) on a standard personal computer.

What are the implications of our results for under-
tanding human fixation patterns? The first thing to point



o
p
t
p
c
s
s
t
d
g
f
p

p
m
m
t
l
t
f
r
o
i
t
e
i
w
c
m
i
r
i
a
a
m
a
z

t
t
t
p
l
c
o
t
c
g
l
s
t
r
h
f
t

t
t
f
a
m
T

t
s
t
e

A
1
W
f
m

2
D
T
i

S


s

Raj et al. Vol. 22, No. 10 /October 2005 /J. Opt. Soc. Am. A 2047
ut is that human fixation patterns are highly task de-
endent. In reading, saccade lengths tend to be short and
he fixation patterns stereotypical because, for the most
art, words must be read sequentially for the communi-
ation to be understood.21 In search tasks where the ob-
erver is trying to find a specific target or class of targets,
accade lengths tend to be longer and the fixation pat-
erns more random than in reading because the eye is
rawn to any likely target location in the image.30,31 In
eneral, human fixation patterns are probably different
or every kind of perceptual or cognitive task that is
erformed.32

A class of tasks where the CEM algorithm might be a
lausible model of human fixation patterns is scene
emorization tasks. In such tasks, the goal is to learn as
uch as possible about a scene in a few fixations, so that

he scene can be distinguished from other scenes at a
ater time. Picking fixations that minimize contrast en-
ropy is a relatively simple and efficient way to gain in-
ormation about the scene because the fixation selection
equires no encoding of spatial structure, no pattern rec-
gnition, and little other high-level processing. Minimiz-
ng contrast entropy involves only encoding local con-
rasts and pooling them in a way that is weighted by the
ccentricity and the contrast. This is the kind of process-
ng that could be done in a fairly low level and automatic
ay, without placing great demands on high-level pro-

esses that require more attentional resources. What
akes minimizing contrast entropy particularly appeal-

ng for this class of task is that it also does a good job of
educing total uncertainty about the image. Thus, select-
ng fixations by minimizing contrast entropy will, to good
pproximation, maximize the amount of image structure
vailable to the cortex for extraction and storage in
emory. The CEM algorithm makes detailed predictions

bout the statistics of fixation patterns in scene memori-
ation tasks, and hence it should be testable.

A rational survival strategy for an organism might be
o continuously work at gaining as much general informa-
ion as possible about the local environment until situa-
ions arise where the organism needs to be engaged in a
articular task or until the organism detects a particu-
arly significant object. This background of information
ould provide the grist for efficient performance in many
f the organism’s specific tasks. If this principle is correct,
hen a fixation selection mechanism based on minimizing
ontrast entropy might work well as an automatic back-
round or default mechanism that is overridden or modu-
ated by more specific task demands or by particularly
ignificant high-level content extracted during the fixa-
ions. Obviously, this is speculation, but it points to the
eal possibility that, in many cases, adequate models of
uman fixation patterns will require two or more very dif-
erent fixation selection modules that interleave over
ime.

A primary aim of this study was to measure the con-
rast statistics of natural images for foveated visual sys-
ems. We have focused on the relevance of these statistics
or fixation selection, but it is obvious that they must be of
t least some relevance for many tasks that involve infor-
ation integration or comparison across the visual field.
he fact that the posterior probability distribution of the
rue unblurred local contrast is characterized by very
imple formulas should make it possible to incorporate
hese natural scene statistics into various Bayesian mod-
ls of perceptual performance.

PPENDIX A
. Skewed Gaussian Probability Function
e define the skewed Gaussian to be a Gaussian with dif-

erent standard deviations above ��h� and below ��l� the
ode �u�:

g�x;u,�l,�h� =�
1

�2���l + �h

2
�exp�− �x − u�2

2�l
2 	 x � u

1

�2���l + �h

2
�exp�− �x − u�2

2�h
2 	 x � u .

�A1�

. Differential Entropy of the Skewed Gaussian
istribution
he differential entropy of a probability density function

s defined by the integral

h�p� =�
−	

	

p�x�ln�p�x��dx. �A2�

ubstituting Eq. (A1) into Eq. (A2) and letting 
l�x� and
h�x� be Gaussian density functions with means u and
tandard deviations of �l and �h, we have

h�g� =
2�l

��l + �h��−	

u


l�x��ln� ��l + �h�

2�l
	 + ln��2��l�

+
�x − u�2

2�l
2 
dx +

2�h

��l + �h��u

	


h�x��ln� ��l + �h�

2�h
	

+ ln��2��h� +
�x − u�2

2�h
2 
dx,

h�g� =
�l

��l + �h��ln� ��l + �h�

2�l
	 + ln��2��l

2� +
1

2

+

�h

��l + �h��ln� ��l + �h�

2�h
	 + ln��2��h

2� +
1

2
 ,

h�g� =
�l

��l + �h��ln��2���l + �h�

2
	 +

1

2



+
�h

��l + �h��ln��2���l + �h�

2
	 +

1

2

 ,

h�g� = ln��2���l + �h�

2
	 +

1

2
,

h�g� = 1
2log2�2�e�̄2�.
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. Contrast Entropy Minimization Algorithm
ere we formalize the CEM algorithm. To begin with, let

xi ,yi� represent the location of the ith pixel in the image,
nd let Ci be the true (unblurred) rms contrast at that lo-
ation. We note that the term image location refers to a
cene location expressed in degrees of visual angle in the
orizontal and vertical directions.
Consider a series of fixations, t=1, 2,…. Let the location

f fixation number t be xt, yt, and let the observed local
ms contrast at the ith pixel, on that fixation, be cit. The
etinal eccentricity, �it, of the ith pixel location is

�it = ��xi − xt�2 + �yi − yt�2. �A3�

hus, if the observer is currently on fixation number T,
hen the current eccentricity map is given by

�i�T� = min
t�T

�it. �A4�

Note that new values appear in the eccentricity map only
f a new fixation happens to bring a pixel closer to the
ovea than it has been before.) The current contrast map,
i�T�, is defined to be the contrast that was observed when
he eccentricity was at its minimum value, as given by the
ccentricity map [Eq. (A4)]. The uncertainty map is given
y

hi�T� = 1
2log2„2�e��k�i�T�ci�T��2 + �0

2�…. �A5�

he total uncertainty after fixation number T is made is

U�T� = �
i=1

n

hi�T�. �A6�

To select the next fixation, the observer considers each
ossible location �xT+1,yT+1� for fixation T+1, estimates
he total contrast uncertainty that will be obtained if that
xation is made, and then picks the location �x̂T+1, ŷT+1�
ith the minimum estimated total uncertainty:

�x̂T+1, ŷT+1� = arg max
xT+1,yT+1

�Û�T + 1,xT+1,yT+1��, �A7�

here

Û�T + 1,xT+1,yT+1� = �
i=1

n

ĥi�T + 1,xT+1,yT+1�, �A8�

ˆ
i�T + 1,xT+1,yT+1� = 1

2log2„2�e��k�i�T + 1,xT+1,yT+1�

�ĉi�T + 1,xT+1,yT+1��2 + �0
2�…. �A9�

o evaluate Eq. (A9), we note that the eccentricity map
i�T+1,xT+1,yT+1� for fixation location �xT+1,yT+1� is ob-
ained directly from Eqs. (A3) and (A4). The estimated
ontrast map, ĉi�T+1,xT+1,yT+1�, can be obtained from
ext equation (1). Specifically, Eq. (1) gives the maximum
posteriori (MAP) estimate of the true contrast, Ĉi�T�, for

ach location in the current contrast map:

Ĉi�T� = kci�T��i�T� + ci�T�. �A10�

f this MAP estimate is relatively stable and unbiased,
hen approximately the same MAP estimate will be ob-
ained after the next fixation is made,
Ĉi�T� � kci�T + 1,xT+1,yT+1��i�T + 1,xT+1,yT+1�

+ ci�T + 1,xT+1,yT+1�, �A11�

nd therefore our prediction of the observed contrast after
he next fixation is

ĉi�T + 1,xT+1,yT+1� =
Ĉi�T�

k�i�T + 1,xT+1,yT+1� + 1
. �A12�

n sum, Eq. (A3), (A4), (A7)–(A9), and (A12) can be used to
stimate the fixation that will maximally reduce the total
ontrast uncertainty. In practice, we find that this esti-
ate of the optimal fixation location is quite accurate.
A minor technical issue that arises in evaluating the

EM algorithm is that differential entropy can be nega-
ive. Therefore, we convert the differential entropy into
iscrete entropy by finely sampling the Gaussian distri-
ution to obtain a discrete probability distribution. Using
his discrete distribution guarantees that the uncertainty
ap is always nonnegative.

CKNOWLEDGMENTS
ilson S. Geisler’s research was supported by NIH grant
01EY11747.

Correspondence should be addressed to Wilson S. Gei-
ler (geisler@psy.utexas.edu).

EFERENCES
1. S. B. Laughlin, “A simple coding procedure enhances a

neuron’s information capacity,” Z. Naturforsch. C 36,
910–912 (1981).

2. D. J. Field, “Relations between the statistics of natural
images and the response properties of cortical cells,” J. Opt.
Soc. Am. A 4, 2379–2394 (1987).

3. D. J. Tolhurst, Y. Tadmor, and T. Chao, “Amplitude spectra
of natural images,” Ophthalmic Physiol. Opt. 12, 229–232
(1992).

4. J. J. Atick and A. N. Redlich, “What does the retina know
about natural scenes?” Neural Comput. 4, 196–210 (1992).

5. J. H. van Hateren, “Real and optimal neural images in
early vision,” Nature 360, 68–70 (1992).

6. D. L. Ruderman, “The statistics of natural images,”
Network Comput. Neural Syst. 5, 517–548 (1994).

7. J. H. van Hateren and A. van der Schaaf, “Independent
component filters of natural images compared with simple
cells in primary visual cortex,” Proc. R. Soc. London, Ser. B
265, 359–366 (1998).

8. A. J. Bell and T. J. Sejnowski, “The ‘independent
components’ of natural scenes are edge filters,” Vision Res.
37, 3327–3338 (1997).

9. B. A. Olshausen and D. J. Field, “Sparse coding with an
overcomplete basis set: a strategy by V1?” Vision Res. 37,
3311–3325 (1997).

0. W. S. Geisler, J. S. Perry, B. J. Super, and D. P. Gallogly,
“Edge co-occurrence in natural images predicts contour
grouping performance,” Vision Res. 41, 711–724 (2001).

1. D. Purves and R. B. Lotto, Why We See What We Do: An
Empirical Theory of Vision (Sinauer, 2003).

2. E. P. Simoncelli and B. A. Olshausen, “Natural image
statistics and neural representation,” Annu. Rev. Neurosci.
24, 1193–1215 (2001).

3. W. S. Geisler and R. Diehl, “Bayesian natural selection and
the evolution of perceptual systems,” Philos. Trans. R. Soc.
London, Ser. B 357, 419–448 (2002).

4. Y. Tadmor and D. J. Tolhurst, “Calculating the contrasts



1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

Raj et al. Vol. 22, No. 10 /October 2005 /J. Opt. Soc. Am. A 2049
that retinal ganglion cells and LGN neurones encounter in
natural scenes,” Vision Res. 40, 3145–3157 (2000).

5. N. Brady and D. J. Field, “Local contrast in natural images:
normalization and coding efficiency,” Perception 29,
1041–1055 (2000).

6. P. L. Clatworthy, M. Chirimuuta, J. S. Lauritzen, and D. J.
Tolhurst, “Coding of the contrasts in natural images by
populations of neurons in primary visual cortex (VI),”
Vision Res. 43, 1983–2001 (2003).

7. R. M. Balboa and N. M. Grzywacz, “Power spectra and
distribution of contrasts of natural images from different
habitats,” Vision Res. 43, 2527–2537 (2003).

8. P. Reinagel and A. M. Zador, “Natural scene statistics at
the centre of gaze,” Network Comput. Neural Syst. 10,
1–10 (1999).

9. D. Geman and B. Jedynak, “An active testing model for
tracking roads in satellite images,” IEEE Trans. Pattern
Anal. Mach. Intell. 18, 1–14 (1996).

0. T. S. Lee and S. Yu, “An information-theoretic framework
for understanding saccadic behaviors,” in Advances in
Neural Information Processing Systems, S. A. Solla, T. K.
Leen, and K.-R. Muller, eds. (MIT Press, 2000) Vol. 12, pp.
834–840.

1. G. E. Legge, T. A. Hooven, T. S. Klitz, J. G. Mansfield, and
B. S. Tjan, “Mr. Chips 2002: new insights from an ideal
observer model of reading,” Vision Res. 42, 2219–2234
(2002).

2. L. W. Renninger, J. Coughlan, P. Verghese, and J. Malik,
“An information maximization model of eye movements,” in
Advances in Neural Information Processing Systems 17,
L. K. Saul, Y. Weiss, and L. Bottou, eds. (MIT Press, 2005),
pp. 1121–1128.

3. J. G. Robson and N. Graham, “Probability summation and
regional variation in contrast sensitivity across the visual
field,” Vision Res. 21, 409–418 (1981).

4. M. S. Banks, A. B. Sekuler, and S. J. Anderson, “Peripheral
spatial vision: limits imposed by optics, photoreceptors, and
receptor pooling,” J. Opt. Soc. Am. A 8, 1775–1787 (1991).

5. T. L. Arnow and W. S. Geisler, “Visual detection following
retinal damage: predictions of an inhomogeneous retino-
cortical model,” Proc. SPIE 2674, 119–130 (1996).

6. W. S. Geisler and J. S. Perry, “A real-time foveated multi-
resolution system for low-bandwidth video
communication,” Proc. SPIE 3299, 294–305 (1998).

7. D. C. Hood and M. A. Finkelstein, “Sensitivity to light,” in
Handbook of Perception and Human Performance, K. R.
Boff, L. Kaufman, and J. P. Thomas, eds. (Wiley, 1986), Vol.
1.

8. T. Cover and J. Thomas, Elements of Information Theory
(Wiley, 1991).

9. O. Schwartz and E. P. Simoncelli, “Natural signal statistics
and sensory gain control,” Nat. Neurosci. 4, 819–825
(2001).

0. U. Rajashekar, L. K. Cormack, and A. C. Bovik, “Visual
search: structure from noise,” in Proceedings of Eye
Tracking Research & Applications, ACM SIGGRAPH 2002,
A. T. Duchowski, ed. pp. 119–123 (www.siggrraph.org).

1. J. Najemnik and W. S. Geisler, “Optimal eye movement
strategies in visual search,” Nature 434, 387–391 (2005).

2. A. L. Yarbus, Eye Movements and Vision (Plenum, 1967).


