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ABSTRACT 

 
In this paper we address the problem of visual 
surveillance, which we define as the problem of optimally 
extracting information from the visual scene with a 
fixating, foveated imaging system. We are explicitly 
concerned with eye/camera movement strategies that 
result in maximizing information extraction from the 
visual field. Here we demonstrate how a novel 
characterization of the contrast statistics of natural images 
can be used for selecting fixation points that minimize the 
total contrast uncertainty (entropy) of natural images. We 
demonstrate the performance of the algorithm and 
compare its performance to ground truth methods. The 
results show that our algorithm performs favorably in 
terms of both efficiency and its ability to find salient 
features in the image. 
 

1. INTRODUCTION 
 
The Human Visual System (HVS) samples the visual field 
with a spatially non-uniform resolution such that the 
sampling density is maximal at the point of fixation and 
decreases radially away from the fixation point. This non-
uniform sampling of the visual field is called foveation. 
By adopting such a strategy (in conjunction with head and 
body movements), the HVS minimizes total neural 
resources, while providing both a wide field view and 
high spatial resolution. However, for this strategy to be 
effective the visual system needs sophisticated central 
mechanisms, which take into account and exploit the 
continuously varying spatial resolution of the retina. 
Understanding the mechanisms that underlie eye 
movements is important not only for vision research but 
also (as we shall see) for the development of visual 
surveillance algorithms for foveated machine vision 
systems, wherein the task is to optimally survey the visual 
scene with the goal of extracting as much information 
from the image as possible. 

To gain insight into some of the design requirements 
of these mechanisms, we have analyzed the effects of 
variable spatial resolution on local contrast in natural 
images.  Here, we define the local contrast as the standard 
deviation of the image intensities within some small 

region, divided by the mean intensity within that region 
(i.e., the local RMS contrast). 

Contrast is arguably the most fundamental local 
image property encoded by the retina and transmitted to 
the brain [1].  Like most other image properties, contrast 
is encoded with the greatest precision at the center of the 
fovea and with decreasing precision as the distance from 
the center of the fovea (the eccentricity) increases. 
Specifically, as eccentricity increases, the center sizes of 
the ganglion cell receptive fields increase, blurring the 
retinal image, and thereby effectively reducing local 
contrast and increasing contrast uncertainty. To analyze 
the role of contrast in visual surveillance we characterize 
the contrast statistics of natural images parameterized by 
eccentricity so that this knowledge can be exploited in 
devising information maximizing surveillance algorithms. 
While there has been much prior work on the contrast 
statistics of natural scenes [2, 3, 4], we demonstrate that 
our novel characterization of contrast statistics is well 
suited for addressing the problem of optimum fixation 
point selection. 

Despite a long standing interest in eye movements [5] 
our understanding of the factors that underlie them in 
search and surveillance tasks is still limited. The reason is 
that eye movements are influenced by both low-level and 
high-level factors. High-level factors include cognitive 
strategies and complex representations of the features and 
objects that define the search targets [6]. Low level factors 
include foveation and simple image features, such as local 
contrast and spatial frequency content. The importance of 
these low level factors in simple search tasks has been 
demonstrated in [7].  In [8] it is shown that high contrast 
regions tend to attract human fixations. A more 
quantitative study [9] using point of gaze analysis reveals 
other simple statistical features that attract human 
fixations in surveillance tasks. 

In this paper we explicitly demonstrate that the 
contrast statistics of natural images can be used very 
effectively in visual surveillance tasks. Given the close 
connection between natural scene statistics and the design 
of perceptual systems [10], our results suggest potentially 
important mechanisms that may be used by the HVS in 
performing visual surveillance.  

Futhermore, given the promising role of foveated 
image processing in accommodating the competing 



demands of high data rate and low channel bandwidth that 
are typical of most image and video processing systems of 
practical interest [11,12], an efficient means of 
automatically determining optimal fixation points—such 
as the one we have proposed in this paper—is important 
for realizing practical implementations of such foveated 
image processing systems. 
 

2. CONTRAST STATISTICS OF NATURAL 
IMAGES 

 
The first goal of this paper is to characterize the local 
contrast statistics of natural images relevant for the 
selection of fixation locations in foveated visual systems. 

The local contrast function of an image is defined as 
follows:   
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where, ( )rmsC j  is the RMS (root mean square) contrast at 
pixel location j . darkI  is the “dark light” parameter 
chosen to be 7 td (1 cd/m2 assuming a 3 mm pupil), based 
on human photopic intensity discrimination data.  (We 
note that this parameter has little effect on the measured 
contrasts because the mean luminances of the images 
were generally much higher than 1 cd/m2.) 

To compute the contrast we use a circular patch of N 
pixels about each pixel j in the image. iI  is the intensity 
level at the thi  pixel of the patch and iw  is the windowing 
function. We chose a raised cosine weighting function: 
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where p  is the radius, ( , )i ix y  is the location of the thi  
pixel of the patch, and ( , )j jx y  is the location of the 
center pixel of patch. The same weighting function was 
used to compute the local mean luminance I . For our 
simulations the radius of the raised cosine window was 
taken to be 16 pixels (i.e., N = π x 16x16 pixels) for 
1024x1024 images. 

We studied the properties of the conditional contrast 
distributions for natural images ( )| ( )bP c c ε , where c  and 

( )bc ε  are, respectively, the local contrasts of the 
unblurred original image and the blurred image at 
eccentricity ε . (The eccentricity is the distance from 
fixation point expressed in degrees of visual angle.)  Note 
that these conditional distributions can be regarded as the 
posterior probability distributions of the unblurred 
contrast given the observed blurred contrast. 

The empirical measurements of the conditional 
contrast distributions were carried out on a database of 

 
Figure 1.  These are examples of the conditional probability 
distributions of local RMS contrast in unblurred images, given 
the local RMS contrast in the blurred versions of the images 
(columns), and given the retinal eccentricity (rows).  The smooth 
curves are the best fitting Skewed-Gaussian distribution. 
 
over 300 calibrated natural images found in [13]. We 
found that the contrast statistics are characterized by a 
simple set of formulas.  The conditional distributions of 
contrast given the blurred observed contrast are accurately 
fit by skewed-gaussian distributions,  
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where u  is the mode and 2 2( , )l hσ σ  are the variances of 
the two halves of the skewed-gaussian distribution with 
respect to the mode (see Figure 1). Furthermore, the 
parameters 2 2( , , )l hu σ σ  vary in a simple fashion with the 
blurred contrast bc : 

( , ) ( 1)b bu c k cε ε= +    (1) 
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and hence, 
2 2 2

0( , ) ( )b bc k cσ ε ε σ= +    (3) 
Where 0σ  is a very small unknown constant, and 

0.1082k =  is an empirically determined constant (see 
Figures 2 and 3). It is easily shown that the differential 
entropy of a skewed-gaussian distribution is given by: 
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Figure 2.  The modes and the average standard deviations of all 
the conditional probability densities are plotted as a function of 
blurred image contrast and retinal eccentricity. The curves are 
best fitting straight lines through the origin  
 

 
 
Figure 3. Slopes of linear functions in Figure 2.  A.  Slope of the 
contrast vs. mode plot as a function of retinal eccentricity.  B.  
Slope of the contrast vs. average standard deviation plot as a 
function of retinal eccentricity.  The curves show the predictions 
of the equations (1) and (2) in the text.  

 
3. FIXATION POINT SELECTION 

 
Having characterized the contrast statistics of natural 
images as parameterized by eccentricity (i.e., the level of 
blur), our second goal is to employ this in the design of 
optimal visual surveillance algorithms for foveated vision 
systems. 

Consider foveated images created by performing 
linear scale varying (LSV) filtering [14]: 
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With the proper choice for kernel shape ( )g i  and the 

scaling function ( )s i , this is fairly accurately model of 
the foveation in the HVS [11]. 

To determine the approximately optimal sequence of 
fixation points we employ a serial optimization (greedy) 
algorithm.  Specifically, our aim is to find the sequence of 
fixation points 0 1 3, , ,r r r "  (with ( , )j j jr x y= ) such that 

the ( )1 thT +  fixation maximally reduces the total contrast 
entropy: 

( ) ( )( )1 0 0arg max , , , , ,T T T
r

r H r r H r r r+ = −" "  

where 0( , , )TH r r"  is the total contrast entropy after the 
thT fixation, summed over all n pixel locations in the 

image: 
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(c.f., equations 3 and 4).  In these equations, ( )i Tε  
represents the smallest eccentricity obtained so far at pixel 
location i, 
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and ( )ic T  represents the contrast observed at that 
eccentricity.  To determine the best next fixation we need 
to estimate what the contrast entropy will be at every 
pixel, for every possible next fixation: 
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To evaluate this equation, we first use equation (1) to 
compute the MAP estimate of the unblurred image 
contrast at pixel location i, then we use equation (1) again 
to estimate the blurred contrast, ˆ ( 1)ic T + , after making a 
fixation to location r.  

There are three technical matters to mention.  First, 
the initial fixation point can be chosen arbitrarily or 
according to some a priori distribution. For our 
simulations, we chose the center pixel of the image as the 
initial fixation point.  Second, we convert the differential 
entropy to entropy by finely sampling the Gaussian 
distribution to obtain a discrete probability distribution.  
Third, the value of 0σ  is not important as long as it is very 
small, but greater than zero. 
 

4. SIMULATION RESULTS 
 
Figures 4A and 4C show the first 9 fixations (8 saccades) 
obtained for two natural images that were not a part of the 
image set used to compute the contrast statistics described 
in section 2. These are representative of the 16 natural 
images we have processed. In Figure 4A we see that there 
are few fixations near the sky region, because there is 
little contrast uncertainty in low contrast regions of 
natural scenes, and thus little significant information to be 
gained by fixating those regions. We observe in Figure 4B 
that the algorithm fixates around the salient objects 
embedded in the background; i.e. the flowers. Since the 
entire background region of the image has similar 
contrast, 



 
 
Figure 4: Fixation points selected by the principle of minimizing 
total contrast entropy (contrast uncertainty), using average local 
contrast statistics of natural images. 
 
the fixations tend to spread out over the image. Figures 
4B and 4D show quantitatively how well the algorithm 
performs in reducing total contrast uncertainty. The solid 
circles show the total contrast entropy predicted by the 
algorithm before the fixation was made, where the total 
contrast entropy has been normalized by its value after the 
first fixation in the center of the image. The open circles 
show the actual total contrast entropy observed after 
making the fixation selected by the algorithm. As can be 
seen, the predicted and observed entropy are very similar. 
The open triangles show the lowest possible total contrast 
entropy that could have been obtained on the fixation. It 
was determined by literally making every possible 
fixation and computing the observed entropy. The actual 
observed entropy obtained by the algorithm is almost 
indistinguishable from optimal. For the 16 test images the 
average ratio of optimal contrast entropy to the observed 
contrast entropy was 0.99.  This at once demonstrates the 
computational efficiency of the algorithm and the utility 
of our contrast statistics for selecting optimal fixation 
points. 

As a measure of how well the algorithm (which is 
based only upon contrast statistics) reduces the total 
uncertainty about the images, we computed the total mean 
squared error (MSE) between the original image and the 
image reconstructed from all the fixations up to and 
including the current fixation.  For the 16 test images, the 
average ratio of the minimum possible MSE to the 
obtained MSE was 0.9.  Thus, this simple algorithm also 

does a respectable job at minimizing total image 
uncertainty. 
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