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ABSTRACT 

Mass detection algorithms generally consist of two stages. The aim of the first stage is to detect all potential masses. In 

the second stage, the aim is to reduce the false-positives by classifying the detected objects as masses or normal tissue. 

In this paper, we present a new evidence based, stage-one algorithm for the detection of spiculated masses and 

architectural distortions.  By evidence based, we mean that we use the statistics of the physical characteristics of these 

abnormalities to determine the parameters of the detection algorithm. Our stage-one algorithm consists of two steps, an 

enhancement step followed by a filtering step. In the first step, we propose a new technique for the enhancement of 

spiculations in which a linear filter is applied to the Radon transform of the image. In the second step, we filter the 

enhanced images with a new class of linear image filters called Radial Spiculation Filters. We have invented these 

filters specifically for detecting spiculated masses and architectural distortions that are marked by converging lines or 

spiculations. These filters are highly specific narrowband filters, which are designed to match the expected structures of 

these abnormalities and form a new class of wavelet-type filterbanks derived from optimal theories of filtering. A key 

aspect of this work is that each parameter of the filter has been incorporated to capture the variation in physical 

characteristics of spiculated masses and architectural distortions and that the parameters of the stage-one detection 

algorithm are determined by the physical measurements. 

Keywords: Radon Transform, Radial Spiculation Filters, breast cancer, mammography, computer-aided detection and 

diagnosis. 

1. INTRODUCTION

The American Cancer Society estimates that 215,990 women will be diagnosed with breast cancer in the U.S. 

in 2004 [1] and 40,110 women will die of the disease. In the US, breast cancer is the most common form of cancer 

among women and is the second leading cause of cancer deaths, after lung cancer [1]. Women in the U.S. have about a 

1 in 8 lifetime risk of developing invasive breast cancer [2, 3]. Early detection of breast cancer increases the treatment 

options for patients and also increases the survival rate. 

Screening mammography, x-ray imaging of the breast, is currently the most effective tool for early detection of 

breast cancer. Screening mammographic examinations are performed on asymptomatic woman to detect early, clinically 

unsuspected breast cancer. Two views of each breast are recorded; the craniocaudal (CC) view, which is a top to bottom 

view, and a mediolateral oblique (MLO) view, which is a side view taken at an angle.  

Radiologists visually search mammograms for specific abnormalities. Some of the important signs of breast 

cancer that radiologists look for are clusters of microcalcifications, masses, and architectural distortions. Calcifications 

are tiny deposits of calcium, which appear as small bright spots on the mammogram. They are characterized by their 

type and distribution properties. A mass is defined as a space-occupying lesion seen in at least two different projections 

[4]. Masses are described by their shape and margin characteristics. An architectural distortion is defined as follows:  
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“The normal architecture is distorted with no definite mass visible. This includes spiculations radiating from a point, 

and focal retraction or distortion of the edge of the parenchyma” [4]. 

Breast lesions are described and reported according to the Breast Imaging Reporting and Data System (BI-

RADS™) [4]. BI-RADS™ is a mammography lexicon developed by the American College of Radiology (ACR), for the 

description of mammographic lesions. The BI-RADS™ lexicon includes descriptors such as the margin of a mass and 

the distribution of calcifications and it defines final assessment categories to describe the radiologist’s level of suspicion 

about the mammographic abnormality. It has been demonstrated that the BI-RADS™ final assessment rating is an 

indicator of the likelihood of malignancy [5].  If a suspicious abnormality is detected, a diagnostic mammographic 

examination is carried out to decide the future course of action required. Based on the level of suspicion of the 

abnormality following the diagnostic examination, a recommendation is made for routine follow up, short-term follow 

up, or biopsy.  

Early detection via mammography increases breast cancer treatment options and the survival rate [6]. 

However, mammography is not perfect. Detection of suspicious abnormalities is a repetitive and fatiguing task. For 

every thousand cases analyzed by a radiologist, only 3 to 4 are cancerous and thus an abnormality may be overlooked. 

As a result, radiologists fail to detect 10-30% of cancers [7-9]. Approximately two-thirds of these false-negative results 

are due to missed lesions that are evident retrospectively [10]. Due to the considerable amount of overlap in the 

appearance of malignant and benign abnormalities, mammography has a positive predictive value (PPV) of less than 

35% [11], where the PPV is defined as the percentage of lesions subjected to biopsy that were found to be cancer. Thus, 

a high proportion of biopsies are performed on benign lesions. Avoiding benign biopsies would spare women anxiety, 

discomfort, and expense.   

Computer-Aided Detection (CAD) systems have been developed to aid radiologists in detecting 

mammographic lesions that may indicate the presence of breast cancer [12-16]. These systems act only as a second 

reader and the final decision is made by the radiologist. Recent studies have also shown that CAD systems, when used 

as an aid, have improved radiologists’ accuracy of detection of breast cancer. Computer-Aided Diagnosis (CADx) 

systems for aiding in the decision between follow-up and biopsy are still in development. It is important to realize that 

mammographic image analysis is an extremely challenging task for a number of reasons. First, since the efficacy of 

CAD/CADx systems can have very serious implications, there is a need for near perfection. Second, the large variability 

in the appearance of abnormalities makes this a very difficult image analysis task. Finally, abnormalities are often 

occluded or hidden in dense breast tissue, which makes detection difficult. 

Masses with spiculated margins carry a much higher risk of malignancy than calcifications or other types of 

masses. Spiculated masses (SM) account for about 14% of biopsied lesions, and about 81% of these are malignant [17]. 

However, current CAD systems are dramatically better at detecting microcalcifications than masses. The most widely 

used commercial CAD system is reported to have 98.5% sensitivity at 0.185 false positives per image (FPI) for 

microcalcification clusters but only 86% sensitivity at 0.24 FPI for SM [18, 19]. The sensitivity is considerably lower 

for SM that are rated as "subtle" by radiologists (sensitivity of 52%) [19]. Moreover, since current systems were devised 

with masses and calcifications in mind, they don’t perform as well on other, less prevalent but still clinically significant 

lesion types, particularly architectural distortions (AD). It is estimated that 12-45% of cancers missed in mammographic 

screening are AD [9, 20, 21]. AD are strongly suggestive of malignancy; approximately 48-60% of the AD that are 

biopsied are found to be cancer [5, 22], and about 80% of those cancers are invasive [22]. A recent study of AD 

reported that one commercial CAD system achieved a per-image sensitivity of 30 / 80 = 38% at 0.70 FPI and another 

achieved 17 / 80 = 21% sensitivity at 1.27 FPI. Thus there is a need for improvement in the detection accuracy of 

spiculated masses and architectural distortions. In this work we have tried to develop an evidence based framework for 

the detection of these abnormalities based on their physical characteristics. 

The organization of this paper is as follows. Section 2 describes the new stage-one algorithm, the data sets used 

and the physical measurements made. Section 3 discusses the measurement and detection results obtained. Finally, the 

concluding remarks and future work are presented in Section 4. 

2. METHODS

Many mass detection algorithms consist of two stages. In the first stage, potential masses are detected whereas 

in the second stage, the number of false-positives are reduced by classifying the detected objects as masses or normal 

tissue. In this paper, we present a new stage-one algorithm for the detection of spiculated masses and architectural 

distortions based on their physical characteristics. This is one of the key contributions of this work. We made  



preliminary measurements of a number of parameters such as the width and length of spicules, the number of spicules, 

lengths of the major and minor axes of the central mass region of spiculated masses. 

The stage-one algorithm we have developed consists of an enhancement step followed by a detection step. The 

first step uses a new technique for the enhancement of spiculations in which a linear filter is applied to the Radon 

transform of the image. The filter parameters were set based on measurements made on a set of spiculated masses and 

architectural distortions. In the second step, the enhanced images are filtered with a new class of linear image filters, 

which we call, Radial Spiculation Filters. These filters have been invented specifically for detecting spiculated masses 

and architectural distortions, which are marked by converging lines or spiculations. The details of the two steps are 

given in sections 2.1and 2.2 respectively. 

2.1. Enhancement of Spiculations 

The most prominent feature of spiculated masses and architectural distortions is the presence of spicules 

radiating in all directions. The goal of this stage is to enhance spicules which can be approximated as linear structures. 

We model spicules as lines of a certain width or thickness. The Radon domain is a convenient space to detect lines. To 

enhance spicules, we propose a novel algorithm in which we compute the Radon transform of the image and then 

perform filtering in the Radon domain to enhance linear structures.  The discrete Radon transform ,ĝ , of an N x N

image f(x, y) is given by: 
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Where (r) is the Kronecker impulse function, which is zero everywhere except when r = 0.  

Hence, the term ysinxcos  contributes summed values of f(x,y) only along the line 

ysinxcos  and thus the value of ,ĝ  for any ,  is the sum of values of f(x,y) along this line. 

Thus, a line in the image space f(x, y) produces or maps to a peak in the Radon domain. We also note that lines 

of different thickness would have different representations in the Radon domain. Figure 2 show two lines of different 

thickness and their corresponding Radon transforms. The two lines have the same length of 255 pixels and each pixel on 

the line has a uniform intensity of 1. In the Radon domain, the row values correspond to the different values of  and the 

column values represent the different  values. Thus, a single pixel thick line would be represented by a point in the 

Radon domain whereas a 4 pixel thick line would be represented by 4 points along a column in the Radon domain. 

Thus, by enhancing sharp changes or “local peaks” along the columns in the Radon domain, it is possible to detect the 

corresponding lines in the image. To do so, a number of peak detection algorithms can be used.  

After filtering the Radon domain with the filter described above, each column of the filtered Radon domain is 

then thresholded to retain the largest peaks. Finally, the inverse Radon transform is computed by using the filtered back-

projection algorithm [23], to obtain an image in which linear structures are enhanced. The inverse Radon transform can 

be computed using equations 2 and 3, where S ( ) is the one-dimensional Fourier transform of g ( ) [23]. 
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Thus, the output of the enhancement stage is an enhanced image and all subsequent processing will be performed on 

this image. The limitation of this algorithm is that it would enhance not only spiculations but all other linear structures 

in the image as well. A summary of the enhancement algorithm is shown in Figure 3.  

Figure 4 clearly demonstrates the advantages of filtering the Radon domain. 



2.2.  Detection Using Radial Spiculation Filters 

The goal of the enhancement stage described in section 2.1 is to enhance spiculations in mammograms. The 

aim of this stage is to detect the spatial locations where these spiculations converge. For this purpose, we have invented 

a new class of linear image filters that we term as Radial Spiculation filters (RSF), designed specifically for detecting 

spiculated masses and architectural distortions, which are characterized by converging spiculations. The basic idea is to 

design a “matched filter” for a spiculated mass or architectural distortion. That is, once the enhanced image is processed 

with these filters, a large output would be obtained when the filters are “tuned to” or “match” a spiculated mass or 

architectural distortion. We define two classes of RSF called, the Cosine Radial Spiculation Filters (CRSF) and Sine 

Radial Spiculation Filters (SRSF). These are defined as follows:  

CSRF: ,rg(x,y)fc cos0     Equation (4) 

SRSF:    ,rg(x,y)fs sin0     Equation (5) 
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0
 is the radius in pixels,  is the standard deviation in pixels and  is the 

frequency in cycles per circumference. 

A cosine and sine radial spiculation filter pair is shown in Figure 5. The goal of using these filters is to localize 

a SM or AD by detecting the spatial locations where the spicules converge. These filters are highly specific narrowband 

filters which have been designed to match stellate patterns of spiculations. This new class of wavelet-type filterbanks is 

derived from optimal theories of filtering and is designed to match the expected structures of spiculated lesions. There 

are large variations in the shape and size of SM’s and AD’s. To account for this variability, three parameters, ( r
0
, , )

have been used to define each filter. Each parameter has been incorporated in the filter to capture a particular physical 

characteristic of SM’s and AD’s and the motivation for including these is as follows:  

r
0
: It is known that spiculated masses have different sizes and their diameters can vary from 4 mm to 4 cm 

[24]. A filter can be “matched” to masses of different sizes by varying the parameter r
0
. This parameter controls the 

radius of the filter. 

: The number of spiculations on a spiculated mass and architectural distortion varies tremendously. To 

capture a SM/AD with few spiculations, a filter with a low frequency should be used as it would be a better match than 

a high frequency filter. Similarly, a high frequency filter should be used to capture a SM/AD with many spicules. The 

maximum value of  depends on the minimum value of r
0
. If the minimum value of r

0
is minr , then the maximum 

value of  is equal to minr .

A set of filters are shown in Figure 6. Since our goal is to design “matched filters”, we see that such a set 

matches a SM or AD much more than a single filter. This is because the spicules of SM or AD can be thought of as 

radiating “outwards” from a central point and thus such a set or bank of filters is better suited for the detection task. We 

define such a set of filters as a Radial Spiculation Filter Bank (RSFB). A Cosine Spiculation Filter Bank (CRSFB) as a 

set of CRSF’s with same values of and frequency  and with increasing values of r
0
. The value of r

0
is increased so 

that the filters of a bank intersect at half-peak. 

We now describe how a CRSFB and its corresponding SRSFB can be used for the detection of masses. Let 

sinOP and cosOP be the output obtained after filtering the enhanced image with a pair of the sine and cosine filters 

respectively. The sine and cosine filters form a pair of quadrature filters. The responses of the cosine and sine filters are 

identical except for a phase difference of /2. The advantage of having a pair of quadrature filters is that when their 

individual responses are squared and added together, we get a phase independent response. The magnitude response 

magOP  and the phase response phaseOP  are defined as: 
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Consider a filterbank which contains ‘M’ filters and let filter1OP , filter2OP ,…, filterMOP  be the magnitude 

response of the filter pairs of the filter bank, which are computed as shown in Equation 7. The overall output of the 

filter-bank is defined as the point-wise sum of the outputs of the individual filters of the filterbank. Let the overall 

output of the filter-bank be denoted by overallOP which is, given by the following equation: 

filterM1)-filter(Mfilter2filter1overall OPOPOPOPOP Equation (9)

To detect a SM or AD, the enhanced image would be filtered with a filter-bank and the overall output would be 

computed as described in Equation 9. If the filter-bank “matches” a SM or AD, a peak will be obtained at the spatial 

location corresponding to the center of the SM or AD. Thus, suspicious regions can be identified by detecting the local 

peaks in the overall output. Note that the larger the overall output at a particular spatial location, the higher the 

likelihood that the spatial location corresponds to the center of a SM or AD. We also note that we perform a point-wise 

addition and not a point-wise multiplication of the outputs of the individual filters. Point-wise multiplication is not used 

because even if one filter does not “match” a SM and has a low output then it would drastically affect the overall output 

of the filter-bank. Thus, by performing a point-wise addition, the output of a single filter will not drastically affect the 

overall output of the filter-bank. The procedure described above is repeated for all filter-banks and all the suspicious 

locations marked, across all filter-banks are collected and arranged in descending order according to the overall output 

values at those locations. From these, the first ‘N’ marks are selected as the possible locations of suspicious masses. To 

summarize, the aim in this detection step is to detect as many suspicious regions as possible and to achieve a high 

detection sensitivity. This may lead to a large number of FPI. This is acceptable as this is a stage one algorithm and the 

main focus is on the detection accuracy of the algorithm whereas the goal of stage two algorithms is to reduce the 

number of FPI. 

2.3. Data Description  

The images for this study were obtained from the Digital Database for Screening Mammography (DDSM) 

(http://marathon.csee.usf.edu/Mammography/Database.html) [25]. The DDSM is the largest publicly available data-set 

of digitized mammograms. To evaluate the performance of the algorithm, two sets of images were used for this study. 

One set contained 45 images with spiculated masses and the other set contained 45 images with architectural distortions. 

These images were scanned with a single digitizer and contained a single lesion and were randomly selected.  All of the 

images were MLO view images. For the preliminary physical measurements, we randomly selected 6 cases of SM and 6 

cases of AD from the DDSM. The selected cases had been digitized by a single scanner and represented a range of 

density ratings, subtlety ratings and pathology. Measurements were made separately from both the MLO and CC views. 

None of these cases were used in the evaluation of the detection algorithm and there was no overlap between the two 

groups of images.  

2.4. Physical parameter measurements  

We made measurements of several physical parameters of spiculated masses and architectural distortions. For 

this purpose, we have designed a simple prototype interface (Figure 7) and have conducted some preliminary 

measurements. Specifically, we use the ROI Manager plugin of NIH ImageJ (http://rsb.info.nih.gov/ij/) to enable a user, 

with minimal training, to place markers at specific locations, and compute the Euclidean (pixel) distance between the 

markers. This prototype allows for measurement of spicule width, at the base of the spicule (where it meets the mass, if 

any) as well as at other points along the spicule. The user can also measure the lesion dimensions of the central region 

along the principal axes. In addition, the operator can trace the spicule along its entire length in freeform, which delivers 

spicule length and enables the computation of such numerical measures as spicule tortuosity. Finally, the user can count 

the spicules associated with a lesion, and this measurement can be used to compute such essential statistics as angular 

density. Since the resolution of the images is known, the pixel measurements can be converted into physically 

meaningful quantities (e.g., mm).  

One of us (GJW) used NIH ImageJ to measure the length and the width at the base and the tip for six spicules 

randomly selected from each lesion. He also measured the length of the major and minor axes of the central region of 

each lesion. Finally, he counted the number of spicules that were visible for each lesion. In this study the measurements 

were made on a small set of images. In the future we will obtain measurements of the lesion parameters over a large 

number of cases, and this will provide the groundwork for our proposed evidence based paradigm for CAD/CADx.  



2.5. Algorithm details 

In this section, we describe how the physical measurements made are used to set the parameters of the 

detection algorithm. From our measurements of physical parameters of spiculated masses and architectural distortions, 

we observed that the average width of spicules is 17 pixels. For computational efficiency, we decimated the images by a 

factor of four and thus the average width of spicules is approximately 4 pixels. Thus, to detect peaks, each column of 

the Radon domain is convolved with the following filter: [ 1 1 1 1 1 1 1 1]
T
. Local peaks can be then be detected 

by thresholding the absolute value at each point in the filtered output. The threshold is defined as a percentage (p) of the 

maximum value in each column. We note that the coefficients at the center of the filter are positive and those at the 

periphery are negative and the sum of coefficients of the filter is zero. Thus, when this filter is over an area of constant 

or slowly varying gray levels, the output is zero or very small. We would like to emphasize that the choice of the filter 

used is based on the physical measurements observed. 

To account for the variability in the shape and structure of SM and AD, filter-banks with different parameters 

are used. The parameters of the filter-banks were obtained from the physical measurements in the following manner. 

The mean, mean minus one standard deviation, and mean plus one standard deviation of the number of spicules per 

image was used to set possible values for parameter ; the mean, mean minus one standard deviation, and mean plus 

one standard deviation of major and minor axis lengths (taken together) were used to set the possible values for 

parameter r
0
. Thus, a total of 9 filterbanks were constructed. The ratio of the outer radius to the inner radius of each 

filterbank, and so parameter , was determined from the minimum value of the ratio of the average spiculation length to 

the average axis length. 

In our preliminary studies, the algorithm marked the top ‘N’ strongest matches per image. A pixel was only 

marked as detected if it was more than a fixed distance from previously marked points; the distance was set by the 

maximum axes value measured in our preliminary study. By varying ‘N’, from 1 to 20, the tradeoffs in sensitivity and 

FPI can be visualized as an FROC curve. 

3. RESULTS

Table 1 shows the preliminary measurements made of several properties of SM and AD. The measurements 

made include the spicule length, spicule width at the base and tip of the spicule. The major and minor axes of the central 

mass regions and the number of spicules.  

Figure 8 shows the results of the intermediate steps of the detection algorithm. Figures 8 (a) and (b) show the 

original image and a boundary containing a spiculated mass. This was marked by a radiologist and was obtained from 

the DDSM database. Figure 8 (c) shows the enhanced image obtained after applying the enhancement algorithm. This 

image is then filtered with RSFBs and the location of a potential lesion is taken to be the pixel that showed maximum 

response across all 9 filterbanks. The top six lesion candidates have been overlaid on the original image in Figure 8 (d). 

A true positive detection is defined as the marked pixel being within the ground truth outlined by the radiologist. 

 The algorithm was tested on 45 cases of SM and 45 cases of AD and the detection results of the algorithm are 

shown in Figure 9. This figure shows the FROC curves for the detection of spiculated masses and architectural 

distortions. We achieved a sensitivity of 80% at 14 FPI for architectural distortions and 91% at 12 FPI for spiculated 

masses. These results are competitive with existing stage-one algorithms. 

 Spicule 

Length

Spicule

Width 

(base) 

Spicule

Width 

(tip) 

Major 

Axis

Minor 

Axis

Num. 

Spicule

SM 9.7 3.2 0.7 0.4 1.1 0.4 10.8 2.9 11.2 1.8 17 4

AD 17.3 9.7 1.1 0.7 1.1 0.7 17.6 6.8 15.5 5.0 20 6

Table 1. Average preliminary measurements (mm) made by the radiologist (GJW) (  standard 

deviation) across all spicules, all MLO images for SM and AD.



4. DISCUSSION and CONCLUSION 

  In this paper we present preliminary results in support of our development of an evidence based framework for 

the detection of SM and AD based on their physical characteristics. A new stage one method for the detection of 

spiculated masses and architectural distortions was presented. The two steps of the algorithm which included an 

enhancement step and a detection step were discussed in detail. The key idea in the enhancement step is the application 

of a filter in the Radon domain. For the detection step, a new class of linear image filters developed by us specifically 

for SMs and ADs called Radial Spiculation filters were introduced. These filters are highly specific narrowband filters 

and form a new class of wavelet-type filterbanks derived from optimal theories of filtering The unique and pioneering 

method of basing the filter parameters on actual measurements of physical characteristics of SMs and ADs enabled us to 

produce results that are competitive with existing stage-one methods. We would like to emphasize that we have 

presented a stage one algorithm only and the main focus was the detection of the maximum number of potential lesions. 

We acknowledge that currently, the number of FPI is high and we are actively developing a stage-two algorithm to 

reduce the number of FPI. We believe that the physical measurements would also help us develop new strategies and 

features for the task of false positive reduction.  

One limitation of our algorithm is that the enhancement step enhances all linear structures which would have a 

width similar to that of spicules. As the Radon transform is a “global transform” it can detect the presence or absence of 

lines but cannot determine the spatial locations of line segments. One way to overcome this would be too use some for 

of a local Radon transform. Another limitation of the current study is that the measurements were made on a small 

number of cases and thus we are planning to make many more measurements which will serve as a solid foundation for 

our evidence based approach to detection of abnormalities. A comprehensive set of statistics of the physical parameters 

of SM and AD could be used be used not only for improving detection algorithms but also for more localized tasks such 

as diagnosis and reduction of false positives. We strongly believe that the systematic study and quantification of the 

physical parameters of SM and AD would not only be useful for our developmental efforts but also for those of future 

researchers in computer-aided detection and diagnosis. 

Figure 1. Parameters of the Radon transform ( , ) (Left), An image with a single line (Center) and  the corresponding 

Radon Domain of the image (Right) 



Figure 2. (a) A single pixel thick line (Left) (b) A four pixel thick line (Right) and sections of their Radon 

transforms. A line in an image maps to a peak of a particular width in the Radon domain. 

Figure 3. A block diagram of the steps involved in the enhancement of spicules.  The key idea is that we 

can  enhance “local peaks” by filtering the columns in the Radon domain. In Figure 4 we demonstrate the 

benefits of filtering in the Radon domain. 



(a) Original Image (b) Enhanced Image (without 

Filtering in the Radon Domain) 

(c) Enhanced Image (with Filtering in 

the Radon Domain) 

Figure 4. Advantages of Filtering in the Radon Domain: Results obtained at the end of the enhancement algorithm. In 

figures (a) and (b) thresholding was carried out so that the same of coefficients were present after thresholding. 

Figure 5. Example of a Radial Spiculation Filter (RSF). (Left) Cosine part of the RSF; (Middle) Sine 

part of the RSF; (Right) Gaussian envelope of the RSF.

Figure 6. Three Radial Spiculation Filterbanks, each composed of five 

RSFs of progressively increasing radii but matching radial frequencies. 

Each of the above RSFBs has the same inner radius but different outer 

radius. These would correspond to lesions where the central mass is the 

same size but the spicule lengths differ. 



(a) Original image.    (b) Ground truth: original 

image with a boundary 

containing the spiculated 

lesion overlaid. 

(c) Enhanced Image. 

Output obtained from the 

enhancement step of the 

algorithm. 

(d) Detection results obtained 

(the 6 largest marks are 

overlaid on the original 

image). 

Figure 8. Steps of the detection algorithm. Figures (a) and (b) show the original image and the ground truth overlaid 

on it.  Figure (c) shows the enhanced image and finally Figure (d) shows the outputs of the detection algorithm with 

the 6 largest marks overlaid.(Image C_0015_1.RIGHT_CC from Volume: cancer_01,Case:C-0015-1 in DDSM). 

Figure 7. Prototype interface for obtaining measurements of key characteristics of 

spiculated lesions. Measurements were collected with the lights dimmed. 
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