
Supervised Parametric and Non-Parametric

Classification of Chromosome Images

M. P. Sampat a A. C. Bovik b J. K. Aggarwal b

K. R. Castleman c

aDept. Of Biomedical Engineering,The University of Texas at Austin,TX 78712
bDept. Of Electrical and Computer Engineering,The University of Texas at

Austin,TX 78712
cAdvanced Digital Imaging Research, LLC, League City,Texas 77573

Abstract

This paper describes a fully automatic chromosome classification algorithm for Mul-
tiplex Fluorescence In-Situ Hybridization(M-FISH) images using supervised para-
metric and non-parametric techniques. M-FISH is a recently developed chromosome
imaging method in which each chromosome is labelled with 5 fluors (dyes) and a
DNA stain. The classification problem is modelled as a 25-class 6-feature pixel-by-
pixel classification task. The 25 classes are the 24 types of human chromosomes and
the background, while the six features correspond to the brightness of the dyes at
each pixel. Maximum likelihood estimation, nearest neighbor and k-nearest neighbor
methods are implemented for the classification. The highest classification accuracy
is achieved with the k-nearest neighbor method and k = 7 is an optimal value for
this classification task.

Key words: M-FISH, Nearest Neighbor, k-Nearest Neighbor, Maximum
Likelihood Estimation, Karyotyping

1 Introduction

Cytogenetics is the study of the genetic makeup of cells. Chromosomes are
structures that contain the genetic information of cells. Images of chromosomes
taken during cell division contain valuable information about the well being of
an individual. Chromosome images are useful for diagnosing genetic disorders
and for studying cancer. Thus the analysis of chromosomes is an important
procedure in cytogenetic studies.
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There are 46 human chromosomes which consist of 22 pairs of similar, ho-
mologous chromosomes, and two sex-determinative chromosomes. Thus there
are 24 types, or classes, of chromosomes. The process of assigning the the
chromosomes to the different classes is known as Karyotyping [1].

Images of chromosomes are analyzed by cytogeneticists to obtain vital infor-
mation about the health of an individual. However, manual examination of
these images is a laborious and time-consuming process and requires skilled
lab technicians [2]. Many successful attempts have been made to automate
parts of the chromosome image analysis procedure. One of the first steps in
chromosome analysis is automated karyotyping.

Images of chromosomes may be obtained using a number of specimen prepara-
tion methods. One such method is Multiplex Fluorescence In-Situ Hybridiza-
tion (M-FISH) [3,4] which is a recently developed chromosome imaging tech-
nique. The goal of the research described in this paper is the automated clas-
sification of chromosome images that have been obtained by M-FISH.

The first paper on the M-FISH technique was published in 1996 by Speicher
et al. [3] and it revolutionized chromosome imaging. In this technique chromo-
somes are labelled with five fluors (dyes) and a fluorescent DNA stain called
DAPI (4’,6-Diamidino-2-phenylindole).

DAPI attaches to DNA and thus labels all chromosomes. The fluors attach
to specific sequences of DNA. With M-FISH a unique combination of fluors is
assigned to each chromosome type. That is, each class of chromosomes absorbs
a different combination of fluors[3]. Thus M-FISH is based on a combinatorial
labelling strategy. This strategy provides an easy way to label chromosomes in
a multiplex fashion, as each fluor is either present(1) or absent(0) [3,5]. Also,
at least five distinguishable fluors are needed for combinatorial labelling to
uniquely identify all 24 chromosome types as the number of useful combina-
tions of N fluors is 2N − 1 [3,5].

The central idea in M-FISH is that each chromosome is labelled by a unique
combination of the five fluors. Several such sets of fluors have been developed
for M-FISH imaging. One such set of five fluors and the corresponding fluor
labelling table is shown in Table 1 [6]. The fluor labelling table enumerates
the different combinations of the fluors used to label each chromosome type.

Though in theory the fluor absorption is described as binary, this is not the
case in practice for real M-FISH data-sets [7].

M-FISH images are captured with a fluorescent microscope. Multiple optical
filters are used to view each of the fluorescent fluors. Each of the fluors is
visible in one of the spectral channels. Thus a set of M-FISH images can be
viewed as a multi-spectral set. An M-FISH data set consists of six images

2



where each image is the response of the chromosome to a particular fluor. A
typical M-FISH data set is shown in Figure 1. Figures 1(a) to 1(e) are the
images of the responses of the five fluors which are Spectrum Aqua, Far Red,
Spectrum Green, Spectrum Red and Spectrum Gold, respectively [6]. Figure
1(f) shows the response of the DNA stain DAPI. DAPI attaches to DNA and
thus all chromosomes are seen in this image.

Semi-automated image analysis of M-FISH data was done by Speicher et al.
[5] in 1996. This basically consisted of segmentation, thresholding and classi-
fication stages. The DAPI channel was used to create a mask to segment the
chromosomes from the background. This mask and a threshold were applied
to each M-FISH image to detect the presence or absence of a fluor at each
pixel. Each pixel was then classified by comparing the combined response of
the fluors at that pixel to the combinations in a fluor labelling table.

The image analysis was fully automated by Elis et al.[8] in 1998. They mod-
elled the task as a 5-feature 24-class pattern recognition problem and per-
formed adaptive spectral analysis for classification. This consisted of spectral
calibration and adaptive region-oriented classification. During the calibration
step an optimal vector to represent each class was found by minimizing an
energy term. These vectors were called adaptive spectral feature vectors. In
the classification step the image was subdivided into various polygons us-
ing Voronoi tessellation. The closest adaptive spectral feature vector (spectral
class) for each region was computed. These were then classified using an itera-
tive region-growing algorithm. Regions with color vectors best approximating
the adaptive spectral feature vectors were used as the starting points for the
region-growing process. Two regions were merged if they belonged to the same
class and the merged region was assigned the class of the start region. They
claim that pixel-by-pixel classification would produce noisy results and thus
did not perform pixel-by-pixel classification[8].
Saracoglu et al. [9] modelled the problem similarly. Their algorithm consisted
of three steps, image tessellation, clustering and classification. The image was
tessellated into regions with similar properties with a region-growing algo-
rithm. Then an average color vector was computed for each region. For each
of the classes, one start vector was selected (from the set of color vectors) such
that it was the closest vector to the theoretically optimal color class vector.
These 24 start vectors were then used as starting points for a k-means cluster-
ing algorithm. Each cluster was then classified by comparing its centroid with
the theoretical color class vectors. However, none of these papers reported the
classification accuracies of their methods over various M-FISH image sets.
In this paper we propose new algorithms for pixel-by-pixel classification of
M-FISH images and show that this methodology gives good results. In these
algorithms we use all six images of the M-FISH data set and we include the
background as a new class. Thus we have modelled the problem as a 6-feature
25-class pattern recognition task. We report the classification accuracies of the
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method over various M-FISH data sets.
The rest of the paper is organized as follows. Section Two describes the dif-
ferent classification techniques. The methodology and the data sets used are
described in Section Three. The results are presented in Section Four. Finally,
Section Five presents the conclusion.

2 Classification Techniques

This section gives a brief review of the different supervised parametric and
non-parametric classification techniques that are used in this paper. The aim
of these techniques is to classify samples into one of N different classes based
on features that describe the sample. Let wi for i = 1, . . . , N denote the N
classes. If we measure d features for each sample then each sample is described
by a d-dimensional feature vector. Let x denote such a feature vector. A clas-
sifier is first trained on a given labelled set of training samples. A given test
sample is then assigned to a particular class by the classifier. The details of
the different classifiers are described below[10].

2.1 Supervised Parametric Method

The supervised parametric method used is maximum likelihood estimation.
Let P (wi) denote the a priori probability that a sample belongs to class wi

where i = 1, . . . , N .
Let p(x|wi) denote the class-conditional probability density function. It rep-
resents the probability distribution function for a feature vector x given that
x belongs to class wi. Let P (wi|x) be the aposteriori probability, which is
the probability that the sample belongs to class wi given the feature vector
x. Given P (wi) and p(x|wi), the a posteriori probability for a sample repre-
sented by the feature vector x is given by the Bayes formula [10].

P (wi|x) =
p(x|wi)P (wi)

p(x)
(1)

where p(x) =
∑N

i=1p(x|wi)P (wi). The formula is applicable for all probability
density functions; however, depending on the nature of the data, the normal
density function is often used to model the distribution of feature values of a
particular class. The general multivariate normal density function in d dimen-

4



sions is given by:

p(x) =
1

(2π)d/2 |∑|1/2
exp

[
−1

2
(x− µ)t

∑−1
(x− µ)

]
(2)

where x is a d component feature vector, µ is the d component mean vector,∑
is the d × d covariance matrix, and |∑| and

∑−1 are its determinant and
inverse, respectively. It is assumed that the density function for each class is a
6-dimensional Gaussian function. The parameters µ and

∑
of the probability

density function for each class are calculated from the training samples be-
longing to that class. Note that the maximum likelihood estimates for µ and∑

of each class are the mean vector and covariance matrix of the training
samples of that class. Any given test sample, described by the feature vector
x, can be classified by using the Bayes Decision Rule, which is:

decide wi if P (wi|x) > P (wj|x)∀ j 6= i (3)

2.2 Supervised Non-Parametric Methods

The supervised non-parametric methods selected for classification are the near-
est neighbor and the k-nearest neighbor methods. In these methods no assump-
tions are made about the probability density function for each class. These
methods are used because the assumption that the probability density func-
tion for each class is a 6-dimensional normal distribution may not necessarily
be true, and a classifier may perform better if these assumptions are not made.

2.2.1 Nearest Neighbor

Let T = {s1, s2, . . . , sn} denote the set of n-labelled training samples. Each
sample is a d -dimensional vector. Let si ∈ T be the training sample nearest
to a given test sample t in terms of some metric or distance function. The
nearest neighbor rule for classifying t is to assign it to the class to which si

belongs [10]. The metric we use is the Euclidean distance.

2.2.2 k-Nearest Neighbor

Let T = {s1, s2, . . . , sn} denote the set of n-labelled training samples. Given
a test sample t, let R = {r1, r2, . . . , rk} be a set of the k − nearest training
samples to t in terms of some metric. The k -nearest neighbor rule is to assign
the sample t to the class that occurs most frequently among the k -nearest
training samples. Again the metric used is the Euclidean distance. The values
of k used are 5,7 and 9 neighbors. If the ranges of the data in each dimension
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vary considerably, this may affect the performance of the nearest neighbor and
k -nearest neighbor drastically. Thus both the training and testing data must
be normalized. We used the following method for normalization of the data.

y = (x− µ)/(3 ∗ σ) (4)

where x is the d -dimensional original data sample, µ is the d -dimensional
mean vector of the given training samples, σ is the standard deviation of the
training samples, and y is the normalized data sample.

3 Methodology

The supervised parametric and non-parametric methods described in Section
2 were used for classification. For all of the methods, we used the same train-
ing and testing samples so that a fair comparison could be made between
them. To compare the performance of the two methods, the overall classifica-
tion accuracy and the chromosome classification accuracy were measured. The
chromosome classification accuracy is the accuracy of classifying only those
pixels belonging to chromosomes. Since a majority of the pixels are background
pixels, the overall pixel classification accuracy mainly reflects segmentation.
Thus, it is important to measure the chromosome classification accuracy to
get a good idea of the diagnostic performance of the classifier.
The images for training and testing were selected from a public database of
M-FISH images. This database is made available online by Advanced Digital
Imaging Research and can be accessed at:
http : //www.adires.com/05/Project/MFISH DB/MFISH DB.shtml.
For each set of M-FISH images the database also contains a labelled class-map
image in which each pixel is labelled according to the class to which it actu-
ally belongs. This image was used to determine the accuracy of the different
classification techniques.
For training, pixels belonging to each of the classes were chosen randomly ten
times, from one set of M-FISH images. Thus ten different training data sets
were created. Pixels from other sets of M-FISH images were chosen for testing.
Thus there was no overlap between the training and testing data. Each set of
testing data was then classified with respect to each of the training data sets.
The classification results (the overall accuracy and the chromosome accuracy)
obtained from the ten trials were then averaged to obtain the final classifi-
cation results for each test set. This was done for each classification method
and for every test set. Since 90% or more of the pixels of each M-FISH set
were background pixels, only a subset of pixels from each set were selected for
testing. The selection of pixels for testing is described in Section 3.1.
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3.1 Selection of Pixels for Classification

The goal was to create a binary image(mask) in which the pixels to be selected
for testing are labelled “1” whereas the pixels not to be selected are labelled
“0”. As mentioned before, the DAPI stain labels all of the chromosomes, and
thus the image of the DAPI channel was used for the selection of pixels. This
image is shown in Figure 2(a). First the edges of the chromosomes in the DAPI
image were detected using the Laplacian of Gaussian edge detector. Figure
2(b) shows the edges detected. A review of this method appears in [11,12].
The edge image was then dilated using a morphological operator, as shown in
Figure 2(c). This was done because perfect segmentation of the chromosomes
is difficult to achieve and it was seen that some faint pixels belonging to some
chromosomes fell outside the edges detected. Dilation ensured that these pixels
were also included in the classification stage. Finally all pixels lying inside the
edges of the chromosomes were set to 1, and those lying outside were set to
0 to create the mask shown in Figure 2(d). The boundaries of the objects in
Figure 2(d) were detected and overlaid on the original image in Figure 2(e).

3.2 Classification and Post-Processing

The pixels selected by the process described in Section 3.1 were classified by
maximum likelihood estimation(MLE), nearest neighbor(NN) and k-nearest
neighbor (k = 5, 7 and 9) classifiers. Before training, all pixels were first
normalized by the procedure described in Section 2.2.2. All of these classifiers
were then trained with the same set of training samples. A class-map for each
output was generated. In this image each pixel was labelled according to the
class it was classified to.
Isolated pixel classification errors were observed after the classification. To
remove these errors, a 5-by-5 majority filter was applied to the classification
output. In majority filtering, an n-by-n window is centered about each pixel
in a given image. The value that occurs the maximum number of times among
the values lying within the window is determined. This output is placed at
the location of the center pixel, that is, the pixel about which the window
was centered. This procedure is then repeated for every pixel in the image.
Majority filtering significantly improve the classification accuracy.

4 Results

Five M-FISH image sets, labelled A to E, were classified using the methods
described above. Each set has 333, 465 pixels. From each of these, a subset of
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pixels was selected for testing by applying the pixel selection algorithm de-
scribed in Section 3.1. For each set, the average overall classification accuracy
and the average chromosome classification accuracy were computed. A class-
map was generated for each classification output. A separate color was used to
represent each chromosome class in the image. The overall and chromosome
accuracies were computed by comparing this class-map to the class-map pro-
vided in the database.
Tables 2 and 3 show the chromosome classification accuracy and the overall
classification accuracy obtained for each M-FISH set without application of
the majority filter. Tables 4 and 5 show the chromosome classification accu-
racy and the overall classification accuracy obtained after application of the
majority filter to the classification result. Majority filtering improves classifi-
cation accuracy by reducing the number of isolated pixel classification errors.
It reduced the average chromosome misclassification rate by 2%.
Figure 3 shows the classification results for the M-FISH Image Set A. The
actual class-map is shown in Figure 3(a) and the computed class-maps before
and after majority filtering are shown in figures 3(b) and 3(c) respectively.
Similarly, the results for the other M-FISH image sets (B to E) are shown in
figures 4 to 7, respectively. These figures show the results obtained with the
k-nearest neighbor method (k=7). Figure 8 shows the different classification
results for M-FISH Image Set B, obtained with the MLE, NN and k-NN(k=7)
classifiers.
A 25 by 25 confusion matrix for one of the classified outputs is shown in Table
6. The rows and columns of this table correspond to the actual and predicted
classes. The first row and column correspond to the class numbers. In this
matrix, class 0 corresponds to the background and thus a maximum number
of pixels fall in the (0, 0) square. Note that most of the entries of this matrix
are zeros.
The non-parametric methods give higher classification accuracies than the
parametric method. The k-nearest neighbor method outperformed the maxi-
mum likelihood and nearest neighbor methods. As the value of k was increased,
the classification accuracy increased. However, we observe very little improve-
ment in accuracy as k was increased from 7 to 9 and beyond. Thus increasing
k beyond 7 is not beneficial.

5 Conclusion

In this paper we have developed new, fully automated algorithms for pixel-
by-pixel classification of M-FISH images and showed that high classification
accuracies can be achieved with this methodology. The overall classification
accuracy achieved is 98.3% and the overall chromosome classification accuracy
achieved is 90.52%.

8



The classification task is modelled as a 6-feature, 25-class classification prob-
lem. Supervised parametric and non-parametric techniques were implemented,
and it was found that the Non-Parametric methods performed better than the
parametric method. The highest classification accuracy was obtained by the
k-nearest neighbor method, and k=7 is an optimal value for this classifica-
tion task. We also showed that post-processing techniques such as majority
filtering can help improve the classification accuracy.
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ChromosomeSpectrum AquaSpectrum GreenSpectrum GoldSpectrum RedFar Red
1 0 0 1 0 0
2 0 0 0 1 0
3 1 0 0 0 0
4 0 1 0 1 1
5 0 0 1 0 1
6 0 1 0 0 0
7 0 0 0 0 1
8 0 0 0 1 1
9 0 0 1 1 0
10 1 0 1 0 0
11 1 0 0 1 0
12 0 1 1 0 0
13 1 1 0 0 0
14 0 1 1 1 0
15 1 0 1 1 0
16 0 1 0 0 1
17 0 1 0 1 0
18 0 0 1 1 1
19 0 1 1 0 1
20 1 0 0 1 1
21 1 1 1 0 0
22 1 1 0 1 0
X 1 0 0 0 1
Y 1 0 1 0 1

Table 1
M-FISH fluor labelling table: The first column represents the chromosome number.
Names of the five different fluors are shown in the first row. A 1 indicates that a
particular chromosome is labelled by the fluor and a 0 indicates that the chromo-
some is not labelled by the fluor. Thus each chromosome is labelled by a specific
combination of dyes.

Test Set MLE NN k-NN(k=5) k-NN(k=7) k-NN(k=9)

A 86.2870 87.6290 88.6620 88.7460 88.8040

B 88.3080 90.8400 92.2720 92.6190 92.8190

C 72.3810 85.9460 87.6780 88.0970 88.3080

D 68.0510 82.9520 85.3300 85.8610 86.1830

E 86.5690 84.5900 85.8430 85.9970 85.9990
Table 2
Overall chromosome classification accuracy for the different methods without ma-
jority filtering. All results in percentages.
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Test Set MLE NN k-NN(k=5) k-NN(k=7) k-NN(k=9)

A 97.3970 97.7030 97.7700 97.7610 97.7710

B 98.2480 98.5350 98.5630 98.5720 98.5790

C 97.1210 98.0890 98.1380 98.1500 98.1630

D 96.3540 97.6560 97.8240 97.8580 97.8860

E 97.8780 98.2680 98.3180 98.3220 98.3220
Table 3
Overall classification accuracy for the different methods without majority filtering.
All results in percentages.

Test Set MLE NN k-NN(k=5) k-NN(k=7) k-NN(k=9)

A 90.0180 90.9640 91.2200 91.1500 91.1270

B 90.9570 93.4560 94.2710 94.4070 94.4690

C 74.5680 89.8400 90.5340 90.7760 90.8470

D 70.7780 87.7670 88.8210 89.0610 89.1680

E 88.4740 86.4730 87.0830 87.2130 87.1190
Table 4
Overall chromosome classification accuracy for the different methods with majority
filtering. All results in percentages.

Test Set MLE NN k-NN(k=5) k-NN(k=7) k-NN(k=9)

A 97.7660 98.0410 98.0130 97.9880 97.9900

B 98.4090 98.6960 98.6770 98.6710 98.6700

C 97.3190 98.3910 98.3490 98.3470 98.3500

D 96.6040 98.0640 98.0940 98.1000 98.1100

E 98.0650 98.4360 98.4220 98.4220 98.4120
Table 5
Overall classification accuracy for the different methods with majority filtering. All
results in percentages.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0 312119 13 11 0 3 1 8 4 6 0 0 0 0 10 3 9 3 2 0 6 3 0 301 0 0
1 220 1373 0 0 8 2 0 0 8 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
2 118 0 1361 0 3 0 0 0 0 0 0 0 0 0 1 4 0 0 0 0 0 0 0 0 0
3 249 0 0 1058 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 92 0 16 0 1018 0 20 0 0 0 0 0 15 0 0 0 0 0 0 1 0 0 0 0 0
5 101 2 0 0 0 996 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 155 0 0 0 6 0 995 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 206 0 0 0 0 4 0 884 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 49 0 6 0 0 0 0 0 753 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0
9 221 0 9 0 0 0 0 0 0 730 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 192 0 0 0 1 0 0 0 0 0 810 0 0 0 0 0 15 1 0 0 0 0 0 0 0
11 357 0 0 2 0 0 0 0 0 0 0 775 0 0 0 10 0 0 0 0 0 0 2 0 0
12 162 3 0 0 0 0 0 0 0 0 0 0 728 0 11 0 0 0 0 0 0 0 0 0 0
13 85 10 1 0 1 0 0 0 1 0 0 0 0 705 0 2 1 0 0 0 0 0 0 0 0
14 85 1 24 0 17 0 0 0 0 0 4 0 35 0 451 1 0 0 0 0 0 0 0 0 0
15 115 4 0 0 0 0 0 0 0 0 0 0 0 11 0 494 0 0 0 0 0 4 0 0 0
16 201 1 0 0 36 11 61 7 2 0 1 0 0 0 0 0 417 4 0 35 0 0 0 0 0
17 111 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 512 0 1 0 0 0 0 0
18 226 0 2 0 0 21 0 0 62 0 0 0 0 0 0 0 0 0 496 0 4 0 0 0 0
19 115 3 0 0 5 4 2 0 1 0 6 0 20 0 0 0 12 13 0 277 0 0 0 0 0
20 112 0 0 0 0 0 0 0 2 0 0 4 0 0 0 0 0 0 17 0 348 0 0 0 0
21 194 0 0 0 3 0 0 0 0 0 5 0 2 31 12 5 3 0 0 0 0 328 14 0 0
22 148 0 9 0 38 0 0 0 0 0 0 0 7 9 44 2 0 1 0 0 0 0 224 0 0
23 125 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 401 0
24 67 0 0 0 0 0 0 0 0 0 1 0 0 0 0 10 18 0 0 0 0 0 0 0 253
Table 6
The 25-by-25 confusion matrix for M-FISH Image Set B. The columns correspond
to the actual classes and the rows correspond to the predicted classes. Class 0
corresponds to the background. Class 1 corresponds to chromosome 1, and so on.
The first row and columns represent the class numbers.
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(a) Fluor: Spectrum Aqua (b) Fluor: Far Red

(c) Fluor: Spectrum Green (d) Fluor: Spectrum Red

(e) Fluor: Spectrum Gold (f) DNA Stain: DAPI

Fig. 1. A set of M-FISH Images. Each image corresponds to the response of a
particular fluor. The DAPI stain labels all chromosomes.
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(a) Original DAPI image (b) Edges detected

(c) Edges after dilation (d) Edges filled

(e) Boundaries detected from Figure
2(d) overlaid on the original image

Fig. 2. Selection of testing pixels for classification
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(a) Original class-map

(b) Classified class-map before majority filtering (c) Classified class-map after majority filtering

Fig. 3. Classification results for M-FISH Image Set A
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(a) Original class-map

(b) Classified class-map before majority filtering (c) Classified class-map after majority filtering

Fig. 4. Classification results for M-FISH Image Set B
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(a) Original class-map

(b) Classified class-map before majority filtering (c) Classified class-map after majority filtering

Fig. 5. Classification results for M-FISH Image Set C
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(a) Original class-map

(b) Classified class-map before majority filtering (c) Classified class-map after majority filtering

Fig. 6. Classification results for M-FISH Image Set D
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(a) Original class-map

(b) Classified class-map before majority filtering (c) Classified class-map after majority filtering

Fig. 7. Classification results for M-FISH Image Set E
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(a) Original class-map (b) Output class-map obtained with MLE classi-
fier

(c) Output class-map obtained with NN classifier (d) Output class-map obtained with k-NN classi-
fier (k=7)

Fig. 8. The different classification results obtained with the MLE, NN and k-NN
(k-7) classifiers, for M-FISH Image Set B
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