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ABSTRACT

This paper presents novel techniques for detecting watermarks in
images in a known-cover attack framework using natural scene
models. Specifically, we consider a class of watermarking algo-
rithms, popularly known as spread spectrum-based techniques. We
attempt to classify images as either watermarked or distorted by
common signal processing operations like compression, additive
noise etc. The basic idea is that the statistical distortion introduced
by spread spectrum watermarking is very different from that intro-
duced by other common distortions. Our results are very promis-
ing and indicate that this statistical framework is effective in the
steganalysis of spread spectrum watermarks.

1. INTRODUCTION

The science of information hiding has received a lot of attention
from both industry and academia over the past decade. The pri-
mary motivation behind information hiding has been copyright
protection. Steganography hides secret messages in media in such
a way that the very presence of the message cannot be detected.
Digital watermarking systems have the additional requirement of
being robust to common signal processing operations, although the
presence of the watermark need not be hidden.

This problem of communicating secretly without anybody de-
tecting the presence of a message was formalized as thePrisoners’
Problem[1]. Two prisoners, Alice and Bob, are locked up in jail
and wish to communicate with each other to hatch a plan to escape.
All communication between them however passes through a war-
den, Willie. Willie will inspect all the messages that are exchanged
and passes on a message only if he is sure it does not contain a se-
cret message. The Prisoners’ problem is hence for Alice and Bob
to find some means of communicating secretly so they can coor-
dinate their escape plans. Steganalysis assists Willie in detecting
any secret messages automatically.

This paper presents statistical methods to detect the presence
of spread spectrum watermarks in images, in a known cover attack
framework, i.e., we assume that the reference image is available.
Common distortions like JPEG compression, Gaussian blurring or
additive white noise produce certain statistical distortions in an
image that are distinctly different from those produced by spread
spectrum watermarking. We propose a statistical framework using
natural scene models to distinguish between images distorted by
common operations like these and watermarked images, when the
reference image is known.

A general purpose tool for steganalysis using image quality
metrics was proposed in [2]. However, this general tool was de-
signed to work across a range of algorithms and the accuracy of

watermark detection is not very high. A technique to detect and
remove only binary spread spectrum watermarks was proposed
in [3]. Most steganalytic algorithms are tested using only cover
and stego-images. Since images distorted by operations like JPEG
compression are very commonly encountered in practice, we be-
lieve that using such images in testing is essential in making any
claims about the performance of an algorithm. The algorithm
presented in this paper attempts to distinguish between spread-
spectrum based watermarks and other distortions like compression
and blurring.

The noise that is added in watermarks based on spread spec-
trum ideas is additive and does not have a blur component. Also,
this noise scales linearly with the coefficients of the image in the
DCT or wavelet domain. This is in stark contrast to distortions
like compression that have a significant blur component. Nat-
ural scene statistical models can be used effectively to model the
image-dependent noise in watermarks. These statistical features
are used in a hypothesis testing framework in the development of
our classification algorithm.

2. NATURAL SCENE MODEL

In this section, we outline the statistical model for the wavelet co-
efficients of natural images that we use. These models are shown
to be effective in modeling the image dependent noise in spread
spectrum systems in this paper. The wavelet coefficients of an im-
age can be modeled as a realization of a doubly stochastic process
[4]. A related model which accounts for local dependencies was
proposed in [5]. The wavelet coefficients are assumed to be condi-
tionally independent zero-mean Gaussian random variables, given
their variances. Let~X = {Xi, i ∈ I } denote the random field
representing the wavelet coefficients of a particular sub-band of
natural images. Here,I denotes a set of spatial indices for the ran-
dom field. Then,~X is modeled using~X = ~Z ∗ ~U where∗ denotes
element-wise multiplication of the vectors.~Z = {Zi, i ∈ I } is
the spatially varying, highly correlated random field, representing
the local standard deviations and~U = {Ui, i ∈ I } is a zero-
mean, white Gaussian random field. EachUi can be modeled as a
normal random variable of unit variance without any loss of gen-
erality as the variance ofUi can be absorbed intoZi. It is assumed
that the random field~X is ergodic to make the coefficients ob-
tained from the reference image representative of the underlying
statistics. The Maximum Likelihood (ML) estimate ofZi, denoted
by Ẑi, is simply the standard deviation in a local neighborhood,
under the assumption that the correlation between the standard de-
viations of neighboring coefficients is very high [4]. In our exper-
iments, we use a square5× 5 window to computêZi.



3. SPREAD SPECTRUM MODEL

We use the wavelet domain watermarking algorithm proposed in
[6] in our experiments. The watermark~w = {w1, w2, . . . , wn} is
a realization of an iid Gaussian random vector~W . The image is
decomposed using anR-level wavelet transform to generateR +
1 resolutions. The watermark is added to all the coefficients at
all resolutions except the DC coefficients. The coefficients in all
these sub-bands are collected into a vector~x = {x1, x2, . . . , xn}.
The watermark~w is inserted into the coefficients~x to obtain the
watermarked coefficients~x′ using

x′i = xi (1 + σwwi) (1)

whereσw is the strength of the watermark. Although we choose
to analyze the algorithm presented in [6] due to its simplicity, the
same principles can be extended to other spread spectrum based
systems with minor modifications.

4. PROPOSED ALGORITHM

The key feature that we use is the fact that the noise that is added
in spread spectrum algorithms scales with the coefficients of the
image itself, which is evident from (1). The kind of noise that
results due to common distortions like compression is, however,
statistically different.

Let ~Yd = {Ydi , i ∈ I } denote a random field represent-
ing the coefficients of distorted images in one sub-band. Let~X =
{Xi, i ∈ I } denote the random field representing the correspond-
ing coefficients of the reference natural images. The model that we
use for common distortions can be expressed as

Ydi = GiXi + Ni, i ∈ I (2)

where~G = {Gi, i ∈ I } represents the signal attenuation and
is a random gain field.~N = {Ni, i ∈ I } represents a stationary,
white additive Gaussian noise field. Many distortion types that are
present in the real world can be described locally by the combi-
nation of these two factors in the wavelet domain [7].~G is the
blur factor that accounts for the loss of signal energy in sub-bands,
which is common in distortions like compression and Gaussian
blurring.

Denoting the random field representing the coefficients of the
watermarked image by~Yw, the watermarked image can be ex-
pressed as

Ywi = Xi + XiWi (3)

where ~W = {Wi, i ∈ I } is the random field representing
the watermark and the variance of eachWi is σ2

w. No assumptions
are made about the distribution ofWi. We however assume that
~W is zero-mean and white. Also,~W is independent of the random
field ~X. The proposed algorithm operates in three stages and we
outline these in the following sections.

4.1. Regression Analysis of Blurred Images

The key feature that is used in this stage of the algorithm is the
fact that the watermarking distortion is additive and does not have
a blur component. We use this to first distinguish between images
that are blurred (like compressed images) and ones that are not.
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Fig. 1. Prior distribution ofĜ for blurring(left) and watermark-
ing(right) distortions

Linear regression is used to estimateGi in (2) and the watermarked
image is treated as a special case of (2) in this stage [8].

Let ~Y = {Yi, i ∈ I } denote the random field represent-
ing the coefficients of the test image that is suspected to be water-
marked. We denote the least squares estimate ofGi by Ĝi and in
the case of the watermarked signal given by (3), we will have

Ĝi ' E(XiYi)

E(X2
i )

= 1 (4)

where (4) follows sinceX and W are assumed to be zero-
mean and independent and from the linearity of expectation. We
hence expect̂Gi to be 1 when the image is watermarked or if the
distortion is purely additive. However, in the case of a compressed
image, for example, the high frequencies in the image that the hu-
man visual system is less sensitive to are attenuated and we have
Ĝi < 1. This is also true of several other distortion types like
blurring etc.

We use this difference in the distribution ofGi to eliminate
“blurred” images in the first stage of our algorithm using a Bayes’
classifier. Prior models for the distribution ofGi were derived
using training data, for the cases when the distortion had a blur
component and when it was purely additive. The histogram ofĜi

in one sub-band, obtained from training data for the two cases is
shown in Fig. 1. The distribution clearly shows the properties that
we expect.

Since the values of̂Gi are computed in overlapping blocks, we
sub-sample the resulting values by a factor of 5. These can then
be assumed to be independent samples from either one of the prior
distributions. The blurring is more pronounced in the finer scale
sub-bands as these contain the high frequencies that are attenuated
in any low-pass filtering or compression operations. Independent
decisions as to which class the image belongs to was made in six
sub-bands at the finest scale and the majority value was chosen.

4.2. Hypothesis Testing using Natural Scene models

Once the blurred images have been identified, we are left with im-
ages contaminated with additive distortions, that are to be classi-
fied as watermarked or not. The key feature that we use here is the
fact that the noise that is added in the watermarked images scales
with the image coefficients.

The random field representing the reference image coefficients,
~X, can be modeled using

~X = ~Zx
~Ux (5)

where ~Zx and ~Ux are the random fields described in Section
2. Ẑxi is used to represent the estimated value ofZxi .
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Fig. 2. Histogram of the normalized difference coefficients (solid
line) and a discretized standard normal density (dashed line)
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Fig. 3. Plot of Ẑx vs. Ẑd and the least-squares optimal linear fit
for watermarked(left) and AWGN corrupted(right) images

Let ~D = {Di, i ∈ I } denote a random field representing the
difference between reference and test image coefficients. We have

Di = Yi −Xi, i ∈ I

When the test image is watermarked,Di is simply the watermark
added to the image and we haveDi = XiWi. SinceDi is derived
from the the reference image itself, the statistics ofDi exhibit sim-
ilar properties that are characteristic of natural images. We discov-
ered that~D can be modeled reasonably well by the same model
used for reference images and we have

~D = ~Zd
~Ud (6)

Ẑdi is used to denote the estimated value ofZdi . Fig. 2 shows
the histogram of the difference coefficients normalized by the cor-
respondingẐdi in one sub-band of a watermarked image. Also,
shown is the discretized standard normal density. The fit is rea-
sonably good and shows the effectiveness of (6) in modeling the
noise that is added in spread spectrum watermarks. Notice that
this also models the statistics of noisy images modeled using (2)
that are for example, corrupted by gaussian noise.~Zd in this case
will not be spatially varying, but almost a constant everywhere.~D
can be modeled using (6) for most commonly occurring additive
distortions.

When the image is watermarked andDi = XiWi, we expect

Ẑdi '
q

E(X2
i )E(W 2) = Ẑxiσw (7)

at each coefficienti. Hence, a linear relationship exists be-
tween the local standard deviations of the reference image coef-
ficients and the difference coefficients when the image is water-
marked. A plot ofẐx versusẐd is shown in Fig. 3, which clearly
illustrates this linear behavior. Also shown is the same plot for an
image contaminated by AWGN.̂Zx andẐd in this case are seen to
be uncorrelated.
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Fig. 4. Histogram ofẐd and the best fitting discretized exponential
density for watermarked(left) and AWGN(right) images

We fit a simple linear regression model betweenẐd and Ẑx

given by:

Z̃di = αẐxi + β, i ∈ I (8)

We then use an analysis of variance approach to test the sig-
nificance of regression. Specifically, we test the hypothesis that
α = 0. If the hypothesis is true, the two quantities are uncorre-
lated and we can conclude that no watermark is present. However,
if the hypothesis is rejected, a linear relationship does exist be-
tweenẐd andẐx and we can conclude that the noise added does
indeed scale with the image coefficients and the image is water-
marked. Note from (7) that the least squares estimate ofα that we
obtain by solving (8) is approximately equal to the strength of the
watermarkσw, when the image is indeed watermarked.

The test statistic is the ratio of the regression sum of squares
and the error sum of squares and follows theF -distribution with 1
degree of freedom in the numerator andn−1 degrees of freedom in
the denominator [8]. The test was carried out at a significance level
of 0.01. In our experiments, we sub-sample the values ofẐd and
Ẑx that we obtain by a factor of 5, since these values are redundant
as they are computed in overlapping blocks. Again, theF -test was
carried out in each sub-band independently and the majority value
was chosen.

4.3. Reducing False Positives

In our experiments, a good number of false positives were ob-
served at this stage, i.e., although watermarked images were iden-
tified correctly, the null hypothesis was rejected for noisy images
sometimes. This is because the number of samples that we use
in the hypothesis testing is quite large and even a small difference
between the empirical and hypothesized values leads to rejection
of the null hypothesis.

To reduce the number of false positives, in the third stage, we
use prior models to describe the distribution of the standard devi-
ation field ~Zd. It has been shown that the exponential density is a
reasonably good fit for the standard deviation field~Zd in the case
of images [4]. Again, since the difference coefficients are derived
from the image coefficients when the test image is watermarked,
we observed that the exponential prior is a reasonably good fit in
this case too. This however would not be true when the distortion
in the image is not a watermark.

Fitting was done by minimizing the Kullback-Leibler (KL) di-
vergence between the empirical histogram and a discretized ver-
sion of the exponential density. Examples of the best fitting dis-
cretized exponential for the samples of~Zd when the image is wa-
termarked and corrupted by AWGN is shown in Fig. 4.



(a) Original image (b) JPEG compressed image

(c) Watermarked image (d) AWGN corrupted image

Fig. 5. Original and distorted “Church and Capitol” images

A threshold was empirically obtained for the KL divergence
between the best-fitting exponential density and the empirical his-
togram in the case of watermarked and distorted images using
training data. Any image that rejected the null hypothesis in the
previous stage of the algorithm is tested again in this stage. If the
KL divergence of the fit is less than the obtained threshold, we
declare the image to be watermarked.

5. RESULTS AND CONCLUSION

We tested the proposed algorithm using the watermarking algo-
rithm proposed in [6]. The watermarked images in the test set
were generated using different watermarking strengths and differ-
ent wavelet bases. The distorted images included images that were
JPEG compressed, JPEG 2000 compressed, printed and scanned,
Gaussian blurred and AWGN and salt and pepper noise corrupted.
All distortions were adjusted in strength such that the images look
perceptually similar in quality. All reference images used in the
simulations are available from the database in [9]. Approximately
50% of the images were used in the training phase to obtain prior
distributions forĜi and to derive the threshold for the KL diver-
gence. The results of running our algorithm on the remaining 50%
of the images, comprising the test set, are described in Table 1.

In the implementation of our algorithm, we used a 3-level or-
thonormal wavelet decomposition using the Daubechies length-8
filters. The orthonormal representation was chosen because white
noise processes in the space domain remain white in the wavelet
coefficients, which is required in the statistical framework we have
described.

It is seen that the algorithm performs well across a range of
distortion types, although no assumptions are made about the na-
ture of distortion. It should be noted that malicious attacks are
not an issue in steganalytic techniques. Also, the proposed frame-
work is independent of the distribution of the watermark and is ap-
plicable to other algorithms based on spread spectrum ideas with
suitable modifications. No watermarked images are missed, al-

Watermark Type No. images Hits %

D-4, 4 levels,σw = 0.1 14 14 100
D-8, 4 levels,σw = 0.2 14 14 100
D-16, 5 levels,σw = 0.1 14 14 100

Distortion Type No. images True Neg. %

JPEG Compressed 14 14 100
JPEG 2000 compressed 14 14 100
Gaussian Blurred 14 14 100
AWGN corrupted 28 22 78.6
Salt and Pepper noise 14 11 78.6
Printed and Scanned 15 15 100

Table 1. Results: D-n refers to the Daubechies filter of lengthn

though there are some false alarms which is desirable as the cost
of a miss is usually much higher than that of a false alarm. The im-
ages used in the experiment were of very high quality perceptually
as is seen from example images from the test set shown in Fig. 5.
The classifier performed well despite the fact that the strength of
the distortion was very low.

In conclusion, a new framework for the steganalysis of spread
spectrum watermarks using natural scene statistics is proposed.
The results are promising and efforts to extend these concepts to
a stego-only framework are under-way. We also hope to analyze
images that have been watermarked and distorted in the future.
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