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ABSTRACT
The need for efficient joint source-channel coding is growing as
new multimedia services are introduced in commercial wireless
communication systems. An important component of practical
joint source-channel coding schemes is a distortion model to mea-
sure the quality of compressed digital multimedia such as images
and videos. Unfortunately, models for estimating the distortion
due to quantization and channel bit errors in a combined fashion
do not appear to be available for practical image or video coding
standards. This paper presents a statistical model for estimating
the distortion introduced in progressive JPEG compressed images
due to both quantization and channel bit errors. Important com-
pression techniques such as Huffman coding, DPCM coding, and
run-length coding are included in the model. Examples show that
the distortion in terms of peak signal to noise ratio can be pre-
dicted within a 2 dB maximum error.

1. INTRODUCTION

With the introduction of high data rates in second and third gen-
eration wireless communication systems, real-time imaging and
multimedia data transmission are becoming relevant applications
in wireless cellular communication systems. Real-time imaging
and multimedia data communication is especially difficult in wire-
less systems, however, due to the scarcity of bandwidth available.
Techniques that reduce bandwidth consumption by making trade-
offs between distortion and compression rate, such as joint source-
channel coding (JSCC) and unequal error protection (UEP), are
consequently of great interest [1–3].

In JSCC, the goal is to minimize the distortion introduced in
the received data by optimizing the distribution of available bits
amongst source and channel coding. This can be done either on
a ‘per image’ basis using simulations, or for an ensemble of im-
ages by developing statistical distortion models. In [2], a distor-
tion model is formulated for the discrete wavelet transform (DWT)
compressed images. Bit sensitivities for different classes of bits
are derived, and this model is used for efficient joint allocation
of source and channel bits. In [4], the authors have first derived
an expression for the expected value of distortion for a general
class of images. This model is then applied to different classes
of source and channel coders. UEP is a pragmatic approach to
JSCC in which different levels of error protection are provided to
different parts of the data to minimize distortion at the receiver.
In [3], an optimization problem based on an ‘incremental award’
with each correctly decoded source packet is formulated. This
optimization is then carried out for different rate channel codes.
Different source packets are then unequally protected using these
channel codes.

Most of the JSCC and UEP schemes in literature are based on
the minimization of distortion on a ‘per image’ basis rather than
developing expressions for evaluating average distortion as a func-
tion of source and channel parameters for a large set of images.
The ‘per image’ based approach is not an ideal solution for real-
time image communication, as it increases the complexity of the
transmission system, in addition to introducing delay. Therefore,
it is essential to have distortion models that can predict the aver-
age distortion over a set of images as a function of source coding
rate and channel bit error probability. Efficient JSCC and UEP
schemes can be designed based on these models. Unfortunately,
the models employed in the existing JSCC and UEP techniques do
not account for practical compression techniques such as Huffman
coding, DPCM coding, and run-length coding that are present in
standard source coders.

In this paper, we develop a statistical distortion model for pro-
gressive JPEG compressed images that jointly estimates distortion
due to both quantization and channel errors. Our approach is to di-
vide the discrete cosine transform (DCT) coded JPEG images into
different layers based on different subbands. The expected value
of the mean squared error (MSE) is then found as a function of
source coding parameters and the channel bit error probability for
each layer. The total distortion is then the sum of these distortion
terms due to individual layers. In contrast with prior work, our
model takes Huffman coding, DPCM coding and run-length cod-
ing into account. We compute the parameters of our model from
a ‘training’ database of images. In our simulations, our model
performs within 2 dB of peak signal to noise ratio (PSNR) when
tested on a test database of images. While we derive the expres-
sions explicitly for the JPEG standard using Huffman coding, our
model can be extended to other coefficient-by-coefficient coding
schemes employing any kind of entropy coding.

2. SYSTEM MODEL

Source coding often makes the compressed bitstream highly sen-
sitive to channel errors due to the presence of entropy coding. A
single bit error has the potential to corrupt an entire image or video
sequence. Therefore, error-resilient features are required for con-
structing feasible multimedia communication systems. In this pa-
per, we use the JPEG standard with certain error-resilient features.
Specifically, we use RST (reset) markers in progressive DCT based
mode, and assume that the headers are not corrupted by any bit er-
ror. These features are important for constructing any practical
image communication system based on the JPEG algorithm.
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Fig. 1. JPEG Layers and Segments. The headers for each layer are
not shown for simplicity.

2.1. The Source Coding Model

In our JPEG encoding, we use the progressive DCT based mode
of operation with spectral-selection [5]. In the progressive DCT
mode, the data is arranged in different quality layers. In the
spectral-selection method, the DCT coefficients are divided into
subbands that are encoded in separate passes. After quantization,
the DC coefficients are DPCM coded in the first pass, whereas the
AC coefficients are run-length coded in subsequent passes. Both
the DC and the AC coefficients are then entropy coded. We use
Huffman coding for the model presented in this paper, however,
this model would also work for arithmetic coding.

In the model discussed in this paper, the 64 different subbands
of the DCT coefficients are organized in separate layers, thus giv-
ing a total of 64 layers, the first one being the DC layer followed by
63 AC layers. In this way the resolution and the quality of the de-
coded image is improved as more layers are decoded. RST (reset)
markers are inserted in each layer regularly. We call the portion of
each layer within two consecutive RST markers a ‘segment’. De-
coding is reinitialized whenever a RST marker is encountered [5],
and a bit error occurring in the bitstream only corrupts the image
until the next RST marker. In case bit errors occur, we assume that
the decoder detects the first bit error (due to loss in synchroniza-
tion of Huffman decoding) and decodes all the coefficients in the
rest of the segment as zero. The structure of the JPEG compressed
stream is shown in Fig. 1.

2.2. The Channel Model

We consider the channel to be a binary symmetric channel (BSC)
and derive our distortion model for a given bit error probability pe.
Both the AWGN and the Rayleigh fading channels can be repre-
sented as a BSC, given the bit error probabilities for these channels
and the fact that the probability of making an error from 0 to 1 is
the same as that of 1 to 0. Therefore, using this model we can find
the distortion curves for any channel that can be represented as a
BSC, if the source coding rate and the expression for bit error rate
(BER) are known. This makes our distortion model independent
of the modulation type and channel coding. Also, no packetiza-
tion is considered, and it is assumed that the encoded bitstream is
directly transmitted over the channel without any encapsulation or
overhead by streaming protocols.

3. DISTORTION MODEL

In this section we derive the expressions representing the distortion
in the JPEG image due to quantization and channel errors in a
combined fashion. We use MSE as our distortion metric.
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Fig. 2. Bit error in a segment. Different colors represent different
coefficients.

3.1. Assumptions and Notation

Our goal is to relate image distortion in terms of MSE to the source
coding rate and the bit error probability. This modelling is compli-
cated due to the presence of Huffman coding, DPCM coding and
run-length coding. A single bit error can cause the decoder to lose
synchronization and corrupt the entire segment. Furthermore, it is
not possible to precisely determine the coefficient position corre-
sponding to a particular bit in error due to the different lengths of
the entropy coded symbols. Due to these challenges such a mod-
elling has not been attempted in the past.

In this paper, we make certain simplifying assumptions that al-
low us to derive the average MSE due to quantization and channel
errors over a set of images. Specifically, we will model the DCT
coefficients as random processes that are wide sense stationary and
ergodic. Also, since by assumption, the first bit error in a segment
corrupts the entire segment from the bit in error to the next RST
marker, we only need to consider the position I of the first bit in
error. Thus multiple errors in the same codeword, as well as all
other errors in the same segment, can be ignored. We also assume
that the bit errors are random and independent of each other. In our
JPEG encoder implementation, a RST marker is inserted in every
layer after every M coefficients, which is constant for all layers.
The coefficient corresponding to the bit position I is denoted as k.
All coefficients from k to the end of the segment are assumed to
be decoded as zero, while all previous coefficients from the start of
the segment to the (k−1)st coefficient are assumed to be decoded
correctly.

If pe is the probability of bit error, then the distribution for I ,
pI(i), is given by

pI(i) = pe(1 − pe)
i−1. (1)

Hence an increase in the bit error rate will increase the probability
of first bit error occurring at an earlier location in the bitstream.
Consider a segment with M DCT coefficients indexed from 1 to
M , as shown in Fig. 2. We assume that the average length of a
coded coefficient is a random quantity denoted by L, whose dis-
tribution depends upon the source coding rate. Thus, on average
k ≈ dI/Le, where d·e is the ceiling function. Note that this re-
lation holds only on average, and the distortion model based on
it would only predict the average MSE over a set of images. The
number of coefficients in a segment corrupted by a bit error is de-
noted by m(L, I), or m for notational convenience. Thus M −m
coefficients are decoded correctly, while m coefficients are cor-
rupted and decoded as zero. This is depicted in Fig. 2.

We will first derive an expression for MSE conditioned on the
knowledge of L and I , and later average over L and I using their
respective distributions. Since in JPEG encoding, DC is DPCM
coded, while AC is coded directly, the models for MSE need to be
derived separately for DC and AC layers.



3.2. Distortion Model for the DC Layer

We can write the expected value of MSE between the original and
the erroneous coefficient at position k given L and I as

E
[
MSEk | L, I

]
=

1

N
E

[
(Xu

k(L,I) − X̂q

k(L,I))
2 | L, I

]
(2)

where Xu
k(L,I) is the unquantized DC coefficient, X̂q

k(L,I) is the
erroneously decoded quantized DC coefficient and N is the to-
tal number of pixels in the entire image. Note that Xu

k(L,I) and
X̂q

k(L,I) are also random variables. We will write k(L, I) as k to
keep the notation simple. The DC coefficients in JPEG are DPCM
coded, and only the DC ‘prediction’ is coded in the bitstream.
Thus, X̂q

k = Xq
k−1 + P̂ q

k , where Xq
k−1 is correctly decoded, while

P̂ q
k is the erroneous prediction value. By assumption, the decoder

decodes P̂ q
k as zero. Thus

X̂q
k = Xq

k−1. (3)

The quantized DC coefficient Xq
k can be expressed as the sum of

the unquantized coefficient Xk and a quantization error ξk

Xq
k = Xu

k + ξk. (4)

Let the variances of the unquantized DC coefficients, the quan-
tized DC coefficients and the quantization error be σ2

u, σ2
q and σ2

ξ

respectively. Now, expanding (2) and using (3) and (4), the ex-
pected value of MSE can be written as

E(MSEk|L, I)=
1

N
(σ2

u + σ2
q − 2E [Xu

k Xu
k−1 | L, I]

− 2E [Xu
k ξk−1 | L, I]) . (5)

We can fairly assume that the quantization error is uncorrelated
with the unquantized DC coefficients; i.e. E [Xu

k ξk−1 | L, I] = 0.
Hence the expected value of MSE becomes

E(MSEk|L, I) =
1

N
(σ2

u + σ2
q − 2r (1)); (6)

where r(1) is the autocorrelation function of the DC coefficients
at lag 1. Using a similar methodology, MSE at a distance of j − 1
coefficients from the kth coefficient can be written as

E(MSEk+j−1|L, I) =
1

N
(σ2

u + σ2
q − 2r(j)) (7)

Since a total of m coefficients are decoded erroneously, assuming
additivity, the total MSE (MSEm) due to these m coefficients is

E(MSEm|L, I) =
1

N

[
m · (σ2

u + σ2
q) − 2

m∑

j=1

r(j)

]
. (8)

Recall that M−m coefficients are decoded correctly, and we only
need to model quantization error for them. Adding this quantiza-
tion distortion, and averaging over I and L, we get

E(MSEM )=
1

N

∑

l

[
Ml∑

i=1

[(M − m)σ2
ξ + m · (σ2

u + σ2
q )

−2
m∑

j=1

ajσ2
u]pI(i)

]
pL(l). (9)

where we have used a first order auto-regressive model for the DC
coefficients (r(j) = ajσ2

u). The outer summation is taken over all
possible lengths l of the coded DC coefficients. We also need to
consider the event when no bit error occurs in the entire segment
and the distortion is solely due to quantization. The probability of

such an event given L is p(No error|L = l) = 1 −
Ml∑
i=1

pI(i). In-

cluding this in our expression for MSE and assuming the additivity
of MSE due to all the R + 1 segments in the DC layer, the total
expected MSE in the image due to the DC layer is:

E(MSEDC)=(R + 1)

[
∑

l

1

N
[1 −

Ml∑

i=1

pI(i)]Mσ2
ξpL(l)

+E(MSEM )

]
. (10)

3.3. Distortion Model for AC Layers

The 63 AC subbands in the JPEG compressed image constitute the
next 63 quality layers in our model. Following similar steps as for
the DC layer, the expected value of MSE due to the nth AC layer
can be shown to be by

E(MSEAC,n)=
1

N

∑

l

[
Ml∑

i=1

[(M − m)σ2
ξ,n + mσ2

u,n]pI(i)

+[1 −
Ml∑

i=1

pI(i)]Mσ2
ξ,n

]
pLn

(l) (11)

where σ2
u,n and σ2

ξ,n are the variances of the unquantized AC co-
efficients and the associated quantization error respectively for the
nth AC layer, and Ln models the average length of coded coeffi-
cients in the nth AC layer. Note that there is no correlation term
in the MSE expression for the AC layers. This is because the AC
layers are not DPCM coded. Since we use a different distribution
for Ln for each layer, the effect of run-length coding in AC coeffi-
cients is incorporated automatically in our derivation.

3.4. Total Distortion

Assuming additivity of distortion due to individual layers (recall
orthonormality of the DCT basis), the total expected value of the
MSE due to quantization and channel errors in all the layers can
be written as

E(MSE)=E[MSEDC ] +
63∑

n=1

E[MSEAC,i] (12)

where E(MSEAC,i) is the expected value of MSE for the ith AC
coefficient layer.

4. SIMULATIONS AND RESULTS

In this section we compare our model’s prediction of average MSE
against simulations. MSE is converted to PSNR using the simple
relation PSNR = 10 log10

2552

MSE
, since PSNR is commonly used

for image quality assessment.

4.1. Simulation Details

Two different databases of 200 512 × 512 natural grayscale im-
ages each are used in the simulations, one for training and the other
for testing. For each layer, the variances σ2

u, σ2
q , and σ2

ξ for DC,
and σ2

u,n, σ2
q,n, and σ2

ξ,n for AC coefficients, and the empirical
distributions for L and Ln are obtained from the training database.
During simulations the headers and markers are separated and it is
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(a) DC model
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(b) AC model (first AC layer)
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(c) Combined 64 layers model
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(d) DC test simulation
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(e) AC test simulation (first AC layer)
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(f) Combined 64 layers test simulation

Fig. 3. PSNR vs BER and bpp curves for the DC layer, the first AC layer and all 64 layers combined.

assumed that they are transmitted without errors. This is a valid
assumption since powerful channel codes can be used to transmit
the headers and markers, which constitute a very small portion of
the overall bitstream, without any bit errors. In our simulations
RST markers are introduced after every 64 coefficients (M = 64).
Random bit errors are introduced in the encoded bitstream without
any channel coding. No error concealment is used at the decoder.

4.2. Results and Discussion

The model presented in this paper is evaluated at different source
rates and channel bit error probabilities and plotted in Fig. 3 (top
row). Using simulations, the average PSNR for the testing set
of images using the system running under different source coding
rates and error probabilities is plotted as a function of the source
coding rate (in bits per pixels) and the bit error rate, as shown in
Fig. 3 (bottom row). The model is compared against simulations
for the DC layer, the first AC layer, and combined 64 layers.

As can be seen from Fig. 3, our models can accurately predict
the distortion introduced in images due to source coding and chan-
nel errors. For the DC layer, the difference in PSNR obtained using
the model and the simulations is within 2 dB at all the points. For
the first AC layer this difference is within 2.5 dB at all the points,
and for all the layers combined this difference is within 1.5 dB.

5. CONCLUSION

In this paper we presented a new model for estimating the distor-
tion introduced in an image as a result of quantization and random
bit errors when compressed by a JPEG encoder, and transmitted

over a noisy/fading channel. This model is unique since it also in-
corporates modelling of DPCM and entropy coding for estimating
distortion. To our knowledge such a model has not been presented
previously. Simulation results show that the distortion predicted by
the model estimates the true value obtained via simulations quite
closely. Our model can be used to devise efficient JSCC and UEP
schemes for transmission of JPEG compressed images over noisy
and fading channels. We plan to formulate similar distortion mod-
els for MPEG-4 and H.263 video coding standards. In addition,
we plan to devise joint source-channel coding and unequal error
protection schemes based on these models for JPEG, MPEG-4 and
H.263 standards.
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