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Abstract—Automatic segmentation and classification of M-

FISH chromosome images are jointly performed using a six-
feature, 25-class maximum-likelihood classifier. Preprocessing 
of the images including background correction and six-channel 
color compensation method are introduced. A feature 
transformation method, spherical coordinate transformation, 
is introduced. High correct classification results are obtained.  
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I.  INTRODUCTION 
 
 Mulitiplex in-situ hybridization (M-FISH) is a 
combinatorial labeling technique used for chromosome 
analysis. To be able to distinguish 24 human chromosomes 
– 22 somatic chromosomes, and X and Y sex chromosomes, 
5 fluorophores are used. An extra fluorophore, DAPI, is 
counter stained to all chromosomes. Thus six images of 
corresponding fluorophores are captured per metaphase 
spread. M-FISH has been utilized and proven to be useful 
for clinical cytogenetics and cancer research. However, 
currently available systems still exhibit misclassifications of 
multiple pixel regions due to number of factors including 
non-homogeneity of staining, variations of intensity levels 
within and between image sets, and emission spectra 
overlaps between fluorophores. Current methods of 
classifying chromosome pixels involve a manual or semi-
automatic image segmentation of the DAPI channel. A 
maximum-likelihood approach was previously studied 
without appropriate preprocessing of the images [5], and 
assumed perfect segmentation for excluding background 
pixels for classification using the information obtained from 
the ground truth. To be fully automatic, we suggest a 
Bayesian rule based statistical classification method that 
simultaneously performs the segmentation and classification 
of M-FISH images. We have constructed a six-feature, 25-
class maximum-likelihood classifier. The 25 classes are 24 
chromosomes plus the background, and the six features are 
the six color channel intensities. The classification can be 
done either parametrically or non-parametrically. Both have 
merits and demerits in terms of classification speed and 
image processing complexities associated with it. However, 
it is natural to approach the problem with a supervised 
parametric method when the characteristics of classes can be 
well studied.  
 The maximum-likelihood classifier requires training and 
testing of the classifier. Since pixel intensities of the images 

are used as features, noise and variations between sets of 
images affect the classification. Thus, the preprocessing of 
images was performed to reduce the noise and the variations. 
One of the variations comes from the uneven background 
surface. Background surface is brighter near the 
chromosomes due to the flair from the chromosomes and 
has different DC offsets for different channels. This problem 
should be corrected in cases where the absolute intensity is 
of importance. Spectral overlap between six color channels 
introduces another type of noise. Due to the spectral overlap, 
intensity residuals appear on the channels where 
chromosomes are not stained. This phenomenon is referred 
as color spread. The color spread for M-FISH images may 
eventually affect the classification result. Color spread can 
be corrected if the color spread matrix is found, which 
contains information about how much of a specific color 
spread to the other colors. In M-FISH case, the color spread 
matrix is a 6 × 6 matrix, and we have computed a color 
spread matrix automatically by means of optimization from 
the measured images. The random white noise can be 
reduced by median or lowpass filtering. The normalization 
to reduce the intensity variations between the same channel 
images of different spreads is one of the crucial parts for a 
parametric classifier. It is almost true that the distributions 
of images preserve a similar pattern of bimodal Gaussian 
with the variations of mean values of the Gaussians. The 
means of Gaussians between the same channel images were 
approximately aligned by linear histogram stretching to a 
fixed range.  Misclassifications usually occur at regions 
where chromosomes overlap, around chromosome 
perimeters where intensity is weaker, and pixels of 
centromeres and telomeres where the staining is weak. To 
compensate the uneven hybridization and to make a 
chromosome surface more homogeneous and at the same 
time to preserve the sharp edge of the chromosome, the 
effect of anisotropic filtering was studied. The intensity 
variability among images causes misclassification when it is 
not well adjusted. Thus instead of directly utilizing the pixel 
intensities as features, a feature transformation method, 
spherical coordinate transformation, was utilizes. This 
method utilizes the angle information of 6 dimensional 
sample values. Angles can be more robust to the intensity 
variations. Once the noise and image variations are reduced, 
images are ready to be trained and tested.  
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 In our work, 10 sets of images from a slide were divided 
into two groups, five of them for training and the rest for 
testing. Training and testing were performed with several 
different settings: 1. No pre-processing, 2. Background and 
color correction, median filtering, and normalization, 3. 
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 Background and color correction, median and anisotropic 
filtering, and normalization, and 4. Background and color 
correction, median filtering, normalization, and spherical 
coordinate transformation of the features. 

B. Color Compensation 
Chromosomes are stained with multiple combinations 

of fluorophores in M-FISH. Ideally if a chromosome was 
stained with only two fluorophores, for example, then those 
two corresponding channels should light up whereas the 
other channels display zeros. Due to the overlapping spectra 
of filters of the acquisition system and the overlapping of 
emission spectra of florescent dyes, color spreading between 
the spectral channels commonly occurs. The color spreading 
can be corrected by a linear transformation [2]. The color 
spread matrix, which describes quantitative ratios of the 
spectral overlaps between channels, has to be computed. 
The color spread matrix can be found with a unique solution 
when each object is stained with a unique fluorophore. 
However, when no single object is stained with a unique 
fluorophore, such as in M-FISH, the color spread matrix 
may not be a unique solution. Thus we have computed the 
optimal solution by minimizing the mean-square error. Let 
the measured signal, Y, be a vector of 6 × 1, which has the 
spectral overlaps and some background elevation due to 
auto-fluorescence and DC offset. Then Y C . C is the 6 
× 6 color spread matrix. b will be removed after the 
background correction. Thus the true pixel value can be 
estimated as

X b= +

1X C Y−=

1Y−

. The inverse color spread matrix C-1 
can be found by minimizing the differences between X 
values and the C  values. In our case, we have 24 objects 
with 6 fluorophores. There are 144 equations with 104 
unknowns after assigning zeros for Xs where chromosomes 
are not stained. However, this method is sensitive to the 
initial guess values. Instead when X values are pre-assigned 
with for example 0s and 255s for no fluorophores and 
fluorophores respectively, the number of unknowns 
becomes 36. X values per class were assigned in our method 
as  

 Overall the joint maximum-likelihood segmentation and 
classification method yields a high performance of correct 
classification and segmentation.  
 
 

II.  METHODOLOGY 
  
1. Pre-processing 
A. Background Correction 

The background intensity near chromosome cluster area 
is usually more elevated than that of areas far away from the 
chromosome cluster mainly because of the flair effects of 
the chromosomes. This undesired non-flat intensity 
distribution of background hinders further processing of the 
images, and eventually affects the classification. The 
background surface contains the auto-fluorescence, DC 
offset, flairs from the chromosomes, and other noise that 
contribute to the background intensity. The two dimensional 
cubic surface was estimated by pixels from the estimated 
background area [2]. The surface that has the minimum 
mean square error with the observed background pixel 
values was the estimated two-dimensional cubic surface. 
Then the cubic surface was subtracted from the image. Thus 
it removes the above mentioned noises. The background 
area was estimated by thresholding the DAPI channel. The 
thresholding was performed automatically using the iterative 
bimodal threshold method with a higher prior given to the 
lower intensity level so that the chromosomes are safely 
excluded (Fig. 1B). The iterative bimodal threshold method 
works similar to K-means clustering, where K = 2. It 
clusters pixels into two groups iteratively until the means for 
the two groups do not change, and the decision boundary 
between two classes is the threshold. The priors for the two 
clusters can be adjusted depending on the distributions of 
the clusters. Thus this thresholding method works well when 
the actual intensity distribution is bimodal. The intensity 
distribution of M-FISH chromosome images is bimodal with 
higher a priori probability for the background, and the 
distributions are consistent for all images. For the training, 
the true classification maps were used to estimate the 
background area. However, the map includes only the 
chromosomes and excludes high intensity noise contents 
such as cells. Thus an automatic thresholded image was 
included in the map by taking the binary OR operation 
between them. Note that the precise estimation of 
background area is not necessary to calculate the general 
structure of the background cubic surface. The iterative 
bimodal threshold method with a high prior to the 
background is sufficient to estimate the background area. 
For testing, the thresholded image was dilated by a 3 × 3 
structuring element. After background was corrected, the 
spectral overlap between color channels was corrected. 
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k i k

k

YX Y Y X
Y i= +∑ =

∑
     (1) 

where i is the index of no fluorophores and k is the index of 
fluorophores. This method converges to a solution and finds 
the color spread matrix C. 
 
C. Filtering and Normalization 
 The median filtering, which effectively removes the 
shot noise and reduces the additive Gaussian noise, was 
applied on the color compensated images. The anisotropic 
diffusion filter, which diffuses intensities more where the 
gradient is relatively small and diffuses less where the 
gradient is large, was followed to reduce the intensity 
variation inside the chromosome and to keep the edges sharp. 
Depending on the integration time of image acquisition and 
the intensity of fluorophores the chromosome brightness can 
be different among channels or spreads. This can lead to the 
misclassification of a whole chromosome to another 
chromosome. Thus the image intensity was normalized from 
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0 to 1 so that all the images display approximately the same 
intensity. 
 
2. Spherical Coordinate Transformation 
  

The intensity variation between spreads is one of the 
factors that leads to misclassifications. The normalization 
processes try to reduce the intensity variations, but may not 
be perfect. Instead of applying intensities as features directly, 
the angles of 6 feature vectors may be more robust to the 
intensity variation. Assuming that the samples are Gaussian 
distributed, samples of a class form a cluster on the 6-
dimensional space with a mean and a variance. This cluster 
also can be viewed as being distributed inside a cone 
starting from the origin toward to the cluster. If the variance 
perpendicular to the mean vector is small i.e. the angle of 
the cone is fairly narrow and the overlaps between the cones 
are small, then the angles of the samples will have more 
discrimination power between classes. Thus, the following 
spherical coordinate transformation was applied converting 
the 6-dimensional Cartesian coordinates ( ), , , , ,x y z ξ ψ ζ  to 

( ), , , , , Rα β χ δ ε  as  

 Once the class parameters were calculated from the 
training set, each new image set was introduced to the 
classifier after performing the same pre-processing as done 
in training. Each pixel on the 6 channel images is classified 
using Bayes rule, which is ( | ) ( )( | )

( )
i

i
p x PP x

p x
iω ωω = , where 

1
( ) ( | ) ( )

c

i i
i

p x p x Pω ω
=

=∑ , ( iP )ω  are the a priori probabilities, 

c is the number of classes. A sample x belongs to class i 
when ( | ) ( |i jP x P )x , 1...i j c j iω ω> = ≠ . Since ( )p x

( |i jP

 is 
just a normalizing factor to make a posteriori probability 
function sum to unity, the selection rule, ( | )P x )xω ω>

) ( | )i jp x

, 
can be simplified as p x( |ω ω> . The classifier 
defined by this decision rule is a maximum-likelihood 
classifier. For the simplicity, the a priori probabilities are 
assumed to be the same for all classes. These will be 
adjusted according to the ratios of class populations in the 
later studies. 
 
 

III.  RESULTS AND DISCUSSION 
1 2cos ( / ( ) )y x yα −= 2+       (3) 

 

1 2 2cos ( / ( ))z x y zβ −= + 2+       (4) 
1 2 2 2cos ( / ( ) )x y z 2χ ξ−= + + ξ+     (5) 
1 2 2 2 2cos ( / ( ))x y zδ ψ ξ ψ−= + + + 2+    (6) 
1 2 2 2 2 2cos ( / ( ))x y zε ζ ξ ψ ζ−= + + + + 2+   (7) 
2 2 2 2 2 2(R x y z )ξ ψ ζ= + + + + +     (8) 

(3)~(7) are the angles and (8) is the length of the vector. All 
new 6 features are used. The classification results are shown 
in Table 1. 
 
3. Maximum-likelihood Classification 
 

The M-FISH database available on ADIR’s website was 
used for this study [4]. The database contains 200 images 
with ground truth. 10 sets from the same slide were used for 
the study. 5 sets of images were used for training and 5 sets 
of images were used for the testing. Both training and 
testing image sets were preprocessed in the same manner. 
After preprocessing the images, class parameters of 25 mean 
vectors and 25 covariance matrixes were calculated from the 
samples of 6 features. The multivariate normal density in d 
dimensions is expressed as  

1
1/ 2/ 2

1 1( | ) exp ( ) (
2(2 )

t
i d

i

p x x x )i i iω µ
π

−= − − ΣΣ
µ − 

,   (2) 

Fig. 1 shows the results of background thresholding, 
color compensation, and classification results. The 
classification results are tabulated on Table 1. The correct 
classification rate for the background increases as more 
processes are added. In particular, case 4 yields almost 
perfect background classification. Case 1, 2, and 3 show 
relatively the same classification accuracy for the 
chromosomes, but the classified chromosomes are wider 
than the ground truth while the edges of chromosomes are 
misclassified as different chromosomes. In case 4, however, 
classified chromosomes are thinner than the ground truth 
and chromosome pixels around edge are classified as 
background, thus the classification rate is lower for the 
chromosomes. We cannot claim that the provided 
karyotyping maps are absolutely correct. In particular pixels 
around the chromosome perimeter are fuzzy, thus it is 
difficult to draw the clear cut of the boundary. For this 
reason, quantitative measures can mislead the interpretation 
of the results. Thus we have to analyze the results both 
quantitatively and qualitatively. For example, the classified 
chromosomes may look thinner than the provided map while 
inside of the chromosomes are correctly classified. This is 
the case where qualitative measure tells a low correct 
classification when the actual classification result is almost 
perfect quantitatively (see Fig. 1H). The background is 
effectively corrected (Fig. 1B), and the color spread is 
correctly compensated (Fig. 1C). The classification results 
with anisotropic filtering and spherical coordinate 
transformation (Fig. 1G and 1H) show more uniform 
classification inside chromosomes. Fig. 1G clearly shows 
that the anisotropic filtering helps reduce the intensity 
variations inside chromosomes. The difference between Fig. 

where x is a d × 1 sample vector, µ is the d × 1 mean vector, 
Σi is the d × d covariance matrix, and |Σi| and Σi

-1 are its 
determinant and inverse, respectively [3]. Each mean vector 
and covariance matrix characterize each class.  
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1F and 1H is that 1F uses the intensity as features and 1H 
uses the spherical coordinate transformed features as 
features. Fig. 1H suggests that the spherical coordinate 
transformed features are more robust to the intensity 
variation. The background is almost perfectly classified, 
thus segmented, in all cases.  

B

C D

E F

HG

A

 

Misclassified pixels may be reduced using a feedback 
loop from the classification result, and incorporating the 
banding pattern, contextual information, and other 
information. Adjusting a priori probability based on those 
extra information will lead to less classification error. 

 
 

TABLE 1. Correct Classification Rates. 
BG (Background). CHR (Chromosomes). Case 1: No preprocessing, Case 
2: Background correction, color compensation, normalization, Case 3: 
Background correction, color compensation, anisotropic filtering, 
normalization, and Case 4: Background correction, color compensation, 
normalization, spherical coordinate transformation. 

Correct Classification Rate 
Case 1 Case 2 Case 3 Case 4 Image 

Set 
BG CHR BG CHR BG CHR BG CHR 

1 87.62 84.53 90.58 79.40 92.63 78.45 95.70 75.95 
2 97.98 90.31 97.66 90.69 96.64 89.61 99.46 82.43 
3 98.43 86.33 98.28 82.64 97.87 82.03 99.59 77.35 
4 98.07 92.89 97.86 89.14 97.58 87.40 99.47 83.95 
5 97.70 93.09 97.40 93.73 96.83 93.33 99.40 85.52 

Ave. 95.96 89.43 96.36 87.12 96.31 86.16 98.72 81.04 

 
 

IV.  CONCLUSION 
  

In this paper we have introduced a novel classification 
method for M-FISH chromosome images. M-FISH images 
are jointly segmented and classified with a six-feature, 25-
class maximum-likelihood classifier. The preprocessing 
methods including the background correction and the six-
channel color compensation methods are demonstrated. The 
spherical coordinate transformation method was introduced 
as a feature transformation technique. The high correct 
classification results are obtained. The classification 
accuracy and robustness of the classification will improve as 
more information such as spatial and contextual data is 
utilized. 

 
Fig. 1. Preprocessing and classification of a male chromosome image 
stained with Vysis probe (4 in Table 1). A: Far red channel image before 
the pre-processing, B: Background correction of A, C: Color compensation 
of B, D: Karyotype of the chromosome image (a different color is assigned 
to each class), E: Classification result with no preprocessing, F: 
Classification result with background and color correction and 
normalization, G: Classification result with background and color 
correction, anisotropic filtering, and normalization, and H: Classification 
result with background and color correction, normalization, and spherical 
coordinate transformation. 
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