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ABSTRACT

Image quality assessment plays an important role in various image
processing applications. A great deal of effort has been made in re-
cent years to develop objective image quality metrics that correlate
with perceived quality measurement. Unfortunately, only limited
success has been achieved. In this paper, we provide some insights
on why image quality assessment is so difficult by pointing out the
weaknesses of the error sensitivity based framework, which has
been used by most image quality assessment approaches in the lit-
erature.

Furthermore, we propose a new philosophy in designing im-
age quality metrics: The main function of the human eyes is to
extract structural information from the viewing field, and the hu-
man visual system is highly adapted for this purpose. Therefore, a
measurement of structural distortion should be a good approxima-
tion of perceived image distortion. Based on the new philosophy,
we implemented a simple but effective image quality indexing al-
gorithm, which is very promising as shown by our current results.

1. INTRODUCTION

Image quality measurement is crucial for most image processing
applications. Generally speaking, an image quality metric has
three kinds of applications:

First, it can be used to monitor image quality for quality con-
trol systems. For example, an image and video acquisition system
can use the quality metric to monitor and automatically adjust it-
self to obtain the best quality image and video data. A network
video server can use it to examine the quality of the digital video
transmitted on the network and control video streaming.

Second, it can be employed to benchmark image processing
systems and algorithms. Suppose we need to select one from mul-
tiple image processing systems for a specific task, then a quality
metric can help us evaluate which of them provides the best quality
images.

Third, it can be embedded into an image processing system to
optimize the algorithms and the parameter settings. For instance,
in a visual communication system, a quality metric can help opti-
mal design of the prefiltering and bit assignment algorithms at the
encoder and the postprocessing algorithms at the decoder.

The best way to assess the quality of an image is perhaps to
look at it because human eyes are the ultimate receivers in most
image processing environments. The subjective quality measure-
ment Mean Opinion Score (MOS) has been used for many years.
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However, the MOS method is too inconvenient, slow and expen-
sive for practical usage. The goal of objective image and video
quality assessment research is to supply quality metrics that can
predict perceived image and video quality automatically. Peak
Signal-to-Nose Ratio (PSNR) and Mean Squared Error (MSE) are
the most widely used objective image quality/distortion metrics,
but they are widely criticized as well, for not correlating well with
perceived quality measurement. In the past three to four decades,
a great deal of effort has been made to develop new objective im-
age and video quality measurement approaches which incorporate
perceptual quality measures by considering human visual system
(HVS) characteristics [1, 2, 3, 4, 5, 6, 7, 8, 9].

Surprisingly, only limited success has been achieved. It has
been reported that none of the complicated objective image qual-
ity metrics in the literature has shown any clear advantage over
simple mathematical measures such as PSNR under strict testing
conditions and different image distortion environments [2, 9, 10].
For example, in a recent test conducted by the Video Quality Ex-
perts Group (VQEG) in validating objective video quality assess-
ment methods, there are eight to nine proponent models whose
performance is statistically indistinguishable [2]. Unfortunately,
this group of models includes PSNR.

It is worth noting that most proposed objective image quality
measurement approaches share a common error sensitivity based
philosophy, which is motivated from psychological vision science
research, where evidences show that human visual error sensitivi-
ties and masking effects vary in different spatial and temporal fre-
quency and directional channels. In this paper, we try to point out
the drawbacks of this framework. In addition, we propose a new
philosophy for designing image quality metrics, which models im-
age degradations as structural distortion instead of errors.

2. ERROR SENSITIVITY BASED IMAGE
QUALITY MEASUREMENT

2.1. Framework of Error Sensitivity Based Methods

A typical error sensitivity based approach can be summarized as
Figure 1. Although variances exist and the detailed implementa-
tions are different for different image quality assessment models,
the underlying principles are the same. First, the original and test
image signals are subject to preprocessing procedures, possibly in-
cluding alignment, luminance transformation, and color transfor-
mation, etc. The output is preprocessed original and test signals. A
channel decomposition method is then applied to the preprocessed
signals, resulting in two sets of transformed signals for different
channels. There are many choices for channel decomposition, such
as identity transform (as the simplest special case), wavelet trans-
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Fig. 1. Error sensitivity based image quality measurement.

forms, discrete cosine transform (DCT), and Gabor decomposi-
tions. The decomposed signal is treated differently in different
channels according to human visual sensitivities measured in the
specific channel. The errors between the two signals in each chan-
nel are calculated and weighted, usually by a Contrast Sensitivity
Function (CSF). The weighted error signals are adjusted by a vi-
sual masking effect model, which reflects the reduced visibility of
errors presented on the background signal. Finally, an error pool-
ing method is employed to supply a single quality value of the
whole image being tested. The summation usually takes the form:��� �������
	��  ��� 	 � ������� ���

(1)

where

 ��� 	
is the weighted and masked error of the k-th coefficient

in the l-th channel, and � is a constant typically with a value be-
tween 1 and 4. This formula is commonly called Minkowski error
pooling.

2.2. Weaknesses of Error Sensitivity Based Methods

The above error sensitivity based framework can be viewed as a
simplified representation of the HVS. Such simplification implies
the following assumptions:

1. The reference signal is of perfect quality.
2. There exist visual channels in the HVS and the channel

responses can be simulated by an appropriate set of channel trans-
formations.

3. CSF variance and intra-channel masking effects are the
dominant factors that affect the HVS’s perception on each trans-
formed coefficient in each channel.

4. For a single coefficient in each channel, after CSF weight-
ing and masking, the relationship between the magnitude of the
error,

�  ��� 	 �
, and the distortion perceived by the HVS, � ��� 	 , can be

modelled as a non-linear function: � ��� 	 � �  ��� 	 � �
.

5. In each channel, after CSF weighting and masking, the in-
teraction between different coefficients is small enough to be ig-
nored.

6. The interaction between channels is small enough to be
ignored.

7. The overall perceived distortion is monotonically increasing
with the summation of the perceived errors of all coefficients in all
channels.

8. The perceived image quality is determined in the early vi-
sion system. Higher level processes, such as feature extraction,
pattern matching and cognitive understanding happening in the hu-
man brain, are less effective.

9. Active visual processes, such as the change of fixation
points and the adaptive adjustment of spatial resolution because
of attention, are less effective.

The first assumption is reasonable for image/video coding and
communication applications. The second and third assumptions
are also practically reasonable, provided the channel decomposi-
tion methods are designed carefully to fit the psychovisual experi-
mental data. However, all the other assumptions are questionable.
We give some examples below.

Notice that most subjective measurement of visual error sen-
sitivity is conducted near the visibility threshold, typically using a
2 Alternative Forced Choice (2AFC) method. These measurement
results are not necessarily good for measuring distortions much
larger than just visible, which is the case for most image process-
ing applications. Therefore, Assumption 4 is weak, unless more
convincing evidence can be provided.

It has been shown that many models work appropriately for
simple patterns, such as pure sine waves. However, their perfor-
mance degrades significantly for natural images, where a large
number of simple patterns coincide at the same image locations.
This implies that the inter-channel interaction is strong, which is a
contradiction of Assumption 6.

Also, we find that Minkowski error pooling (1) is not a good
choice for image quality measurement. An example is given in
Figure 2, where two test signals, test signals 1 (up-left) and 2
(up-right), are generated from the original signal (up-center). Test
signal 1 is obtained by adding a constant number to each sample
point, while the signs of the constant number added to test signal
2 are randomly chosen to be 1 or ��� . The structural information
of the original signal is completely destroyed in test signal 2, but
preserved pretty well in test signal 1. In order to calculate the
Minkowski error metric, we first subtract the original signal from
the test signals, leading to the error signals 1 and 2, which have
very different structures. However, applying the absolute opera-
tor on the error signals results in exactly the same absolute error
signals. The final Minkowski error measures of the two test sig-
nals are equal, no matter how the � value in (1) is selected. This
example not only demonstrates that structure-preservation ability
is an important factor in image quality assessment, but also shows
that Minkowski error pooling (1) is very inefficient in capturing
the structures of errors. By the observation that the frequency dis-
tributions of the test signals 1 and 2 are very different, one might
argue that the problem can be solved by transforming the error
signals into different frequency channels and measure the errors
differently in different channels. This argument is seemingly rea-
sonable, but if the above example signals are extracted from cer-
tain frequency bands instead of the spatial domain, then repeated



Fig. 2. Minkowski error pooling.

channel transformation is needed to further decompose the trans-
formed signal (possibly iterative transformations will be involved),
and finally the multiple time-transformed error signal will still be
measured by the Minkowski error summation. In this sense, the
weaknesses of Minkowski error pooling still cannot be avoided.

There are some other weaknesses of the framework. For ex-
ample, channel decompositions usually lead to very high compu-
tational complexity, especially for well-designed visual channel
transformations such as the Gabor tranforms.

3. STRUCTURAL DISTORTION BASED IMAGE
QUALITY MEASUREMENT

3.1. New Philosophy

We believe that one of the most important reasons that the error
sensitivity based methods cannot work effectively is that they treat
any kind of image degradation as certain type of errors. Our new
philosophy in designing image quality metrics is:

The main function of the human eyes is to extract
structural information from the viewing field, and
the human visual system is highly adapted for this
purpose. Therefore, a measurement of structural dis-
tortion should be a good approximation of perceived
image distortion.

As exemplified by Figure 2, large errors do not always result
in large structural distortions. The key point of the new philoso-
phy is the switch from error measurement to structural distortion
measurement.

3.2. A New Image Quality Index

Given the new philosophy above, the next problem is how to de-
fine and quantify structural distortions. This is a challenging but
interesting research topic that needs thorough investigations.

As a first attempt, we developed a simple but effective quality
indexing algorithm [11]. Let x

��� �"! �$# � � �&%'�)(*()()�,+.- and
y
����/0! �$# � � �1%2�*()(3()�4+.- be the original and the test image

signals, respectively. The proposed quality index is defined as5 � 6�7"8*9;:� :/< 7�=8?> 7�=9A@CB < :� @ = > < :/ @ =&D
�

(2)
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The dynamic range of

5
is B ��� � � D . The best value 1 is achieved

if and only if
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for all

# � � �&%2�)()(*(3�4+ . This quality index
models any distortion as a combination of three different factors:
loss of correlation, mean distortion, and variance distortion. In
order to understand this, we rewrite the definition of

5
as a product

of three components:5 � 7 8*97 8 7 9
( % :� :/< :� @ = > < :/ @ =
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The first component is the linear correlation coefficient between x
and y, whose dynamic range is B ��� � � D . The second component,
with a value range of B O � � D , measures how close the mean values
are between x and y. It equals 1 if and only if :�P� :/ . The third
component measures how similar the variances of the signals are.
Its range of values is also B O � � D , where the best value 1 is achieved
if and only if 7 8 � 7 9 .

The quality index is applied to natural images using a sliding
window approach, with a window size of Q�RSQ . The quality indices
are calculated within the sliding window, leading to a quality map
of the image. The overall quality index value is the average of the
quality map. Some test images are shown in Figure 3, where the
original “Lena” image is distorted by a wide variety of corruptions:
contrast stretching, additive Gaussian noise, impulsive salt-pepper
noise, blurring, and JPEG compression. The MSE and the new
quality index values are also given. In this experiment, the per-
formance of MSE is extremely poor in the sense that images with
nearly identical MSE are drastically different in perceived quality.
By contrast, the new quality index exhibits very consistent corre-
lation with subjective measures. More demonstrative images and
an efficient MATLAB implementation of the proposed algorithm
are available online at: http://anchovy.ece.utexas.edu/˜zwang/rese
arch/quality index/demo.html.

4. CONCLUSIONS AND DISCUSSIONS

In this paper, we provide some insights on why image quality as-
sessment is so difficult by showing the weaknesses of the tradi-
tional error sensitivity based image quality measurement approa-
ches. A new philosophy is proposed, which models image degra-
dation as structural distortions instead of errors. A simple imple-
mentation of the new philosophy exhibits very promising results.

As pointed out by Watson in [12]: “Much of the theoretical
and experimental work in spatial vision in the last thirty years has
focussed upon spatial channels; on their existence and on their de-
tailed shape and number.” We believe that the issues raised in this
paper are more critical for the future development of successful
image quality assessment methods.
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Fig. 3. Evaluation of “Lena” images distorted by different means. (a) Original “Lena” image, 512 R 512, 8bits/pixel; (b) Contrast stretched
image, MSE = 225, Q = 0.9372; (c) Gaussian noise contaminated image, MSE = 225, Q = 0.3891; (d) Impulsive noise contaminated image,
MSE = 225, Q = 0.6494; (e) Blurred image, MSE = 225, Q = 0.3461; (f) JPEG compressed image, MSE = 215, Q = 0.2876.
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