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ABSTRACT 

Region of interest (ROI) image and video compression
techniques have been widely used in visual
communication applications in an effort to deliver good
quality images and videos at limited bandwidths. Most
image quality metrics have been developed for uniform
resolution images. These metrics are not appropriate for
the assessment of ROI coded images, where space-variant
resolution is necessary. The spatial resolution of the
human visual system (HVS) is highest around the point of
fixation and decreases rapidly with increasing eccentricity.
Since the ROIs are usually the regions “fixated” by human
eyes, the foveation property of the HVS supplies a natural
approach for guiding the design of ROI image quality
measurement algorithms. We have developed an objective
quality metric for ROI coded images in the wavelet
transform domain. This metric can serve to mediate the
compression and enhancement of ROI coded images and
videos. We show its effectiveness by applying it to an
embedded foveated image coding system.

1. INTRODUCTION

Region of interest (ROI) image coding allows the
assignment of more bits to the ROIs than other parts of the
image. It is a useful tool for visual communication
applications where the available bandwidth is limited.
While there has been a large amount of work in uniform
resolution image quality measurement, little has been
done in the assessment of ROI coded images. Quality
assessment method plays an important role in ROI image
coding, because image coding is essentially an
optimization procedure that maximizes the image quality
with a limited number of bits, where the quality metric
serves as a guide for bit assignment. The development of
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ROI image quality metrics is also very important for the
postprocessing or quality enhancement of ROI coded
images. However, uniform resolution image quality
measurement approaches such as peak signal-to-noise
ratio (PSNR) are still inappropriately used for the
evaluation of ROI image coding and postprocessing [1, 2].

The motivation of this work is that the human visual
system (HVS) is highly space-variant in sampling, coding,
processing and understanding. The spatial resolution of
the HVS is the highest around the point of fixation
(foveation point) and decreases rapidly with increasing
eccentricity. This feature delivers a natural way to define
an image quality measure for the case that the human eyes
are fixating at a given point in the image. For example, a
foveated PSNR (F-PSNR) metric was proposed in [3] for
foveated video compression. By thinking of the ROIs as
collections of pixels that are possibly “fixated” by human
eyes, a natural ROI image quality metric can be designed
that utilizes a foveation model of the HVS.

In this paper, we develop a foveation-based HVS
model in the discrete wavelet transform (DWT) domain
because wavelet analysis supplies a convenient way to
simultaneously examine localized spatial as well as
frequency information. A new image quality metric called
the foveated wavelet image quality index (FWQI) is then
defined for ROI coded images.

2. FOVEATED WAVELET IMAGE QUALITY
MEASUREMENT

The photoreceptors (cones and rods) and ganglion cells
are non-uniformly distributed in the retina in the human
eye [4]. The density and sensitivity of cone receptors and
ganglion cells play important roles in determining the
ability of our eyes to resolve what we see. The resolution
is the highest around the foveation point and decreases
dramatically with increasing eccentricity. Psychological
experiments had been conducted to measure the contrast
sensitivity as a function of retinal eccentricity [5-7]. In [5],
a model that fits the experimental data was given by
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where f is the spatial frequency (cycles/degree), e is the
retinal eccentricity (degrees), CT0 is a constant minimal
contrast threshold, α is the spatial frequency decay
constant, e2 is the half-resolution eccentricity, and CT(f, e)
is the visible contrast threshold as a function of f and e.
The best fitting parameter values given in [5] are α =
0.106, e2 = 2.3, and CT0 = 1/64. It was also reported in [5]
that the same values of α and e2 provide a good fit to the
data in [6] with CT0 = 1/75, and an adequate fit to the data
in [7] with CT0 = 1/76, respectively. We use the parameter
selections as in [5]. The contrast sensitivity is defined as:
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For a given e, equation (1) can be used to find its critical
frequency or so called cutoff frequency fc by setting CT to
1.0 (the maximum possible contrast) and solving for e
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Given a pixel x in an N pixels wide image, its distance
from the foveation point xf is

2
)( fxxx −=d (pixels)

and its eccentricity is given by ( )Nvdve /)(tan),( 1 xx −= ,

where v is the viewing distance in image width. In Fig. 1,
we show the normalized contrast sensitivity as a function
of pixel position for N = 512 and v = 1 and 6, respectively.
fc as a function of pixel position is also given. The CS is
normalized so that the highest value is 1.0 at 0
eccentricity. The maximum perceived resolution is also
limited by the display resolution 180/Nvr π≈
(pixels/degree). The Nyquist display frequency is given by

2/rfd = (cycles/degree). Combining this with (3), the

cutoff frequency for x is ))),((min()( dcm fdff xx = . We

define the foveation-based error sensitivity as:
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Now let us consider the wavelet transforms. In the 1-D
DWT, the input discrete signal s is convolved with
highpass and lowpass analysis filters and downsampled by
two, resulting in transformed signals sH and sL. The signal
sL can be further decomposed and the process may be
repeated multiple times. The number of repetitions defines
the wavelet decomposition level λ. For image processing,
the horizontal and vertical wavelet decompositions are
applied alternatively, yielding LL, HL, LH and HH
subbands. The LL subband may be further decomposed
and the process repeated multiple times. Let ),( θλ
represent the subband of level λ and orientation θ , where
θ is an index representing the LL, LH, HH or HL
subband. The wavelet coefficients at different subbands

supply information of variable perceptual importance. In
[8], psychovisual measurement results were given for the
visual sensitivity in wavelet decompositions. A model that
fits the experimental data is Ylog = alog + fk(log –

2
0 )log fgθ [8], where Y is the visually detectable noise

threshold and λ−= 2rf [8] is the spatial frequency. The

visual sensitivity in subband ),( θλ is given by:
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where θλ ,A is the basis function amplitude given in [8].

Let θλ ,B denote the set of wavelet coefficient positions

residing in subband ),( θλ . For each θλ ,B , we calculate

the corresponding foveation point f
θλ ,x in it. Given a

wavelet coefficient at θλ ,Bx ∈ , its equivalent distance

from the foveation point in the spatial domain is given by
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A foveation-based visual sensitivity model in the DWT
domain is obtained by combining (5) and (6):
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where β1 and β2 are parameters used to control the
magnitudes of wS and fS , respectively. We use β1 = 1

and β2 = 2.5. Fig. 2 shows ),( xvS for v = 1, 3, 6 and 10,

respectively. For the evaluation of image quality, instead
of using the traditional error summation methods, we
designed a new quality index [9] by modeling any signal
distortion as a combination of three factors: loss of
correlation, mean distortion and variance distortion. For
any 2-D signal, the measurement results are a 2-D quality
map as well as an overall quality index. Readers can refer
to [9] and http://anchovy.ece.utexas.edu/~zwang/research/
quality_index/demo.html for more details and
demonstrative images of the new quality index. In this
paper, we adapt the index into the DWT domain and
define a foveated wavelet image quality index (FWQI) as:
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where M is the number of the wavelet coefficients, )( nxc
is the wavelet coefficient of the original image at location

nx , and )( nxQ is the quality value at location nx in the

quality index map. Since ),( nxvS varies with v, FWQI of

an test image is a function of v, instead of a single value.
The above model is developed for the case of a single



foveation point. We consider the ROIs as the groups of
possibly fixated pixels. This corresponds to the case of
multiple foveation points. Our model can easily adapt to
this case. Suppose that there are P foveation points in the
image, with ),( xvSi for Pi ,,2,1 L= , then the overall

error sensitivity should be given by the maximum value of
them: )),((max),(

1
xx vSvS i

Pi L=
= .

3. IMAGE CODING USING THE FOVEATED
QUALITY METRIC

SPIHT [10] is a very efficient progressive wavelet image
coding algorithm. We designed a modified SPIHT
algorithm and tuned it using the above FWQI model to
optimize the foveated visual quality at any given bit rate.
We call the new coding algorithm the embedded wavelet
image coding (EFIC) algorithm [11]. The encoded
bitstream can be truncated at arbitrary places to create
reconstructed images with different quality and depth of
foveation. Fig. 3 gives the FWQI comparison of the EFIC
and SPIHT compressed 8bits/pixel (bpp) “Zelda” images
at 0.015265, 0.0625 and 0.25bpp, respectively. FWQI for
each image is given as a function of the viewing distance.
It can be observed that significant quality gain is achieved
throughout the whole range of the viewing distances. Fig.
4 shows the SPIHT and EFIC decoded images. Compared
with SPIHT, EFIC provides better foveated visual quality.
When sufficient bit rate is available, the EFIC coded
image approaches uniform resolution.

4. CONCLUSIONS

We propose a foveation-based sophisticated ROI image
quality metric in the wavelet transform domain. This
metric can serve as a very useful tool for foveated ROI
image coding and quality enhancement.
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Fig. 1 Normalized contrast sensitivity (Brightness indicates the strength of contrast sensitivity) for N = 512 and v
= 1 (Left) and v = 6 (Right) times of the image width, respectively. The white curves show the cutoff frequencies.



Fig. 4 “Zelda” image (512×512, 8bpp) compression result comparison at 0.015625 (CR=512:1), 0.0625 (CR=128:1)
and 0.25bpp (CR=32:1). Upper: SPIHT coded images; Bottom: EFIC coded images.

Fig. 2 Foveation-based error sensitivity mask in the
DWT domain. The top-left, top-right, bottom-left,
and bottom-right are for v = 1, 3, 6 and 10 times of
the image width, respectively. (Brightness
logarithmically enhanced for display purpose)
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Fig. 3 FWQI comparison of EFIC and SPIHT compressed
“Zelda” image (512×512, 8bpp) at 0.015625bpp,
0.0625bpp and 0.25bpp.


