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Abstract|We present raster image processing algorithms

for rehalftoning error di�used halftones and producing in-

terpolated error di�used halftones. Rehalftoning converts a

halftone created by one method into one created by another

method. In interpolated halftoning, interpolation increases

the image size before halftoning, e.g. for printing. Both re-

halftoning and interpolated halftoning introduce blur and

noise in the output image. To compensate for the blur, we

use modi�ed error di�usion, which has a variable gain pa-

rameter to control the sharpness. We derive optimal formu-

las for the sharpness control parameter to make the overall

frequency response at. The high-frequency noise is masked

by error di�usion. The proposed algorithms yield halftones

of high �delity at a low computational cost.

I. Introduction

Halftoning attempts to produce a binary (black-and-
white) image from a grayscale image so that the image
can be rendered on devices which cannot reproduce shades
of gray. Rehalftoning converts one type of halftone into
another. Interpolated halftoning resizes an image before
halftoning. In this paper, we develop and optimize new
algorithms for rehalftoning and interpolated halftoning for
error di�used halftones.

A conventional approach for rehalftoning is to apply in-
verse halftoning and then halftoning. Inverse halftoning
converts a halftone into a continuous tone image, e.g. by
converting a 1 bit/pixel halftone into an 8 bit/pixel gray-
scale image. Inverse halftoning methods produce high-
quality images by varying the tradeo� in resolution across
the image using non-linear or spatially adaptive �lters.
These methods are typically computationally intensive, al-
though fast implementations exist [1], [2], [3].

The proposed rehalftoning algorithm greatly reduces
computation over a conventional approach, and is well-
suited to raster image processing. We apply a simple lin-
ear �nite impulse response (FIR) �lter to the halftone to
create a blurred, noisy pseudo-grayscale image. We then
apply modi�ed error di�usion [4] to the grayscale image to
create the halftone. Modi�ed error di�usion incorporates
a parameter that determines the sharpness of the resulting
halftone. We derive formulas for computing the optimal
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sharpness parameter to give a at end-to-end system re-
sponse; noise in the inverse halftone is masked by the quan-
tization noise introduced by error di�usion halftoning. In
the derivation, we use a linear gain model for error di�u-
sion halftoning [5] and a polynomial approximation to the
complex digital frequency z = ej! . We assess the quality
of rehalftoned images by using a weighted signal-to-noise
ratio (WSNR) measure based on the human visual system.
The interpolated halftoning algorithm uses simpli�ed in-

terpolation to create high quality interpolated halftones.
Computation is reduced over more complicated interpola-
tion methods for the same visual quality. The linear gain
model and the digital frequency approximation are again
used to derive an optimum value for the sharpness param-
eter to atten the system response.

II. Background

In halftoning, the requirements of high visual quality
and low computational cost tend to conict, and many
halftoning methods have been proposed. Halftoning meth-
ods may be divided into ordered dithering and stochas-
tic. Ordered dithering by clustered dot screening is the
most commonly used method in mass-market printed me-
dia. Stochastic halftoning, such as error di�usion, generally
produces higher quality halftones than ordered dithering,
but at a higher computation cost. Both clustered dot and
error di�usion halftoning are used in printers and copiers.

A. Error Di�usion

Error di�usion is essentially a 2-D noise-shaped feedback
coder; i.e., the output is quantized to a lower resolution
and the quantization error is �ltered and added to the in-
put. Floyd-Steinberg error di�usion [6] o�ers extremely low
complexity (four-tap 2-D �lter with dyadic coe�cients).
Some print engines are unable to render Floyd-Steinberg
halftones accurately. For these devices, another halftoning
method such as clustered dot screening must be used.
Because error di�usion is a form of 2-D delta-sigma mod-

ulation [5], [7], it can be accurately modeled as a linear
shift-invariant system. Its transfer function depends on the
transfer function of the error �lter, H(z), and the e�ective
gain of the quantizer, Ks [5]. For Floyd-Steinberg error dif-
fusion, H(z) is a four-term polynomial in the z variables,
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and based on measurements, Ks � 2.

B. Interpolation

An image often needs to be resized for printing, so that
it appears at the correct size on the page. For instance, an
image which is sized correctly for a printer with a resolu-
tion of 300 dpi (dots per inch) will be half the size when
printed on a 600 dpi printer. In such instances, the image
must be resized by interpolation before halftoning. Several
interpolation methods are in common use, and are listed
here in order of computational complexity [8]:

� Nearest neighbor interpolation;
� Bilinear interpolation; and
� Higher order functions, e.g. cubic splines.

Interpolation assumes that the pixel values of a spatially
discretized image represent samples on an integer grid of a
continuous intensity function, I(x; y), that is de�ned over
the entire plane. To resize the image, a grid of output
points is constructed, and I(x; y) is interpolated at these
new points. The interpolation method de�nes how the in-
tensity at each pixel is constructed.

Bilinear interpolation assumes that the image intensity
I(x; y) in the original scene varies linearly in the x and
y directions over the rectilinear area whose corners are de-
�ned by four neighboring input pixels of the spatially quan-
tized image. The assumption that I(x; y) varies linearly
between pixels fails at sharp edges, and the interpolated
image therefore appears smoother than the original. How-
ever, bilinear interpolation is quite e�ective at suppressing
the high frequency aliases of the baseband spectrum that
appear in the passband after upsampling. These aliases
lead to blockiness in the interpolated image.

III. Rehalftoning

A generic approach for the high-quality reproduction of a
halftone on a particular device involves inverse halftoning
followed by halftoning using a method optimized for the
device in question. The combination of inverse halftoning
and halftoning is rehalftoning. Rehalftoning enables oper-
ations such as rotation, scaling, and contrast adjustment to
be performed on the intermediate grayscale image. In gen-
eral, these operations are not possible with halftones [9],
because they expand the wordlength or destroy halftone
quality. In this section, we develop rehalftoning algorithms
for error di�used halftones. Sometimes, an error di�used
halftone is all that is available, either because the original
image was stored in that form, or because it was scanned
from an image that was printed using error di�usion.

A. Algorithm

The ultimate goal of a rehalftoning method is a visually
pleasing halftone. Since halftoning inevitably discards im-
age information because of the reduction in wordlength to
one bit, it is overkill to use an inverse halftoning method
that attempts to obtain grayscale images of the highest
quality. The rehalftoning method described in this paper
uses a linear lowpass �lter to perform inverse halftoning by

means of wordlength expansion. The resulting grayscale
images are blurred and contain a good deal of quantiza-
tion noise. However, this noise tends to be masked by the
quantization noise introduced by the subsequent halftoning
step. Furthermore, when error di�usion is used to produce
the �nal halftone, the blurring of the inverse halftone can
be compensated for by employing a modi�ed halftoning
method that allows the sharpness of the halftone to be ad-
justed with a single multiplicative parameter. The result
is a halftone of high visual quality and equivalent sharp-
ness to the original, created at very low cost in complexity.
The complete rehalftoning system is shown in Fig. 1. The
leftmost dashed box of Fig. 1 shows the transfer function
of the halftoning method.
We use a linear �lter G(z), shown in the middle dashed

box of Fig. 1, to create the intermediate inverse halftone.
We design G(z) to optimize the trade-o� between reduc-
ing quantization noise and maximizing sharpness. Since
we do not need to produce high-quality inverse halftones
in this application, we can greatly reduce computational
complexity. We design a separable M �M �lter that

� is small, symmetric, FIR;
� has zeros at (fN ;�), (�; fN); and
� has 6 bits of output resolution

where (fx; fy) is the spatial frequency vector, and fN is
the Nyquist frequency in each direction. The �lter is small
and has integer coe�cients for computational e�ciency. It
is symmetric and FIR for zero phase [10]. The zeros at the
band edges suppress strong tones that are common in error
di�used halftones [11]. To measure the output resolution
R, we compute the �lter output for each of the possible 2M

binary outputs, count the number of distinct outputs N ,
and use R = log

2
(N).

We found empirically that a 6-bit wordlength was needed
to avoid pixel clumping in error di�usion halftones. This
agrees with Hunt's �ndings [12]. Error di�usion produces
an output equal to the input at pixels where the input is 0
or 1, because the feedback error from the quantizer is never
large enough to force the input to cross the quantization
threshold under those conditions. For any input image,
the output is pre-determined to be 0 when the input is
0, and 1 when the input is 1. An image quantized to a
short wordlength has a greater proportion of pixels with
values 0 or 1 than if a longer wordlength is used. Thus,
error di�usion has less freedom to disperse output pixels
for short wordlength inputs, which leads to pixel clumping
and the consequent visible artifacts.
To obtain halftones that are not blurred or sharpened

with respect to the original image, we require that the sys-
tem frequency response be as at as possible. We use a
modi�ed error di�usion method due to Eschbach and Knox
[4] that allows simple frequency response tailoring using a
single multiplicative parameter. As shown in the rightmost
dashed box of Fig. 1, the frequency response of the half-
toning system is modi�ed according to

1 + L(1�H(z)) (1)

where L is an adjustable scalar parameter. The halftone
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Fig. 1. Block diagram of the rehalftoning system, showing the e�ective signal transfer functions of each step. Ks and H(z) are the e�ective
signal gain of the quantizer and the z-transform of the error �lter, respectively, and may be di�erent for the two halftoning schemes. L
is the sharpness parameter that is adjusted for a at total system response.

is blurred if L < 0, and sharpened if L > 0. We can
therefore compensate for the blurring introduced by the
inverse halftoning step by an appropriate choice of L.
For tractability, we analyze the composite response of

the rehalftoning method by using the low frequency ap-
proximation to the complex digital frequency

z = ej! � 1 + j! �
!2

2
; (2)

which is obtained by using Euler's series formula ex =

1 + x + x2

2!
+ : : : . The expression in (2) is accurate to

approximately 10% (real part) and 20% (imaginary part)
at ! = 1 radian/sample. Since most of the energy in nat-
ural images falls in the lower spatial frequencies, and noise
power from halftoning swamps image noise at higher fre-
quencies, the use of (2) is justi�ed. We choose the free
parameter L in Fig. 1 to give the attest low-frequency re-
sponse for the entire system. When the Floyd-Steinberg
error �lter is used in both halftoning stages, we obtain (af-
ter considerable algebra)

L = 0:014 (x direction)
L = 0:361 (y direction) :

(3)

The optimum value of L is slightly di�erent for the x and
y directions because of the asymmetry in the halftoning
error �lter imposed by causality constraints. We take the
average of the two values (L = 0:188) as the optimal L.
Typically, di�erent halftoning schemes (with di�erent error
�lters) will be used for the two halftoning stages. The opti-
mum value of L must then be re-computed using the values
of Ks and H(z) for the two halftoning schemes. However,
the analysis is identical.

B. Results

Fig. 2(a) shows the original food image. Fig. 2(b) shows
the result of rehalftoning this image, i.e. halftoning with
Floyd-Steinberg error di�usion, inverse halftoning with a
linear lowpass �lter, and halftoning with modi�ed error
di�usion with the value of L chosen for at low-frequency
response. The resulting halftone, shown in Fig. 2(b), has a
very similar sharpness to the original image, and is of high

Max. ! WSNR (dB)
(cyc/deg) Rehalftone Halftone

20 11.0 11.3

40 21.7 22.5

60 28.2 29.7

80 32.0 33.9

TABLE I

WSNR measurements of rehalftone of Fig. 2(b), compared

to direct halftone, for four viewing distances. The

`Rehalftone' column is the WSNR of the rehalftone

relative to the blurred original. The `Halftone' column is

the WSNR of the direct halftone relative to the original.

quality. The system transfer function, shown in Fig. 2(c),
is largely at at low frequencies, as expected. Because a
compromise value for the sharpness parameter L has been
used, the midband response rises slightly in the x direction,
and falls slightly in the y direction.

We used a WSNR measure [13] to assess the subjective
quality of the rehalftones produced by this method. Before
applying WSNR, we remove the signal-dependent correla-
tion between the original image and the processed image
by modeling the process used to create the modi�ed im-
age. To assess the quality of rehalftones, we form a model
inverse halftone by �ltering the original image with the in-
verse halftoning �lter G(z). The di�erence between this
image and the rehalftone consists of noise with a very low
linear correlation to the original image. This uncorrelated
noise is then weighted according to a human visual system
(HVS) model, to give aWSNR �gure of merit for the image.
The perceptibility of the noise depends on the maximum
angular frequency ! subtended at the eye by the image,
which in turn depends on its size and resolution, and its
distance from the viewer. The response of the HVS falls to
zero at ! � 60 cycles/degree [14]. Table I indicates that
at normal viewing distances, the subjective di�erence be-
tween the original halftone and the rehalftone is small. We
obtained similar �gures for other images.



4

                        

0
0.2

0.4
0.6

0.8
1 0

0.2
0.4

0.6
0.8

1

0

0.2

0.4

0.6

0.8

1

1.2

Frequency  f
y
 / f

NFrequency  f
x
 / f

N

M
ag

ni
tu

de

(a) Original image. (b) Rehalftone. (c) System transfer function.

Fig. 2. Rehalftoning results using the system shown in Fig. 1. The images are 512 � 512 pixels in size. The sharpness parameter L of the
modi�ed error di�usion method is chosen to give the system the attest low-frequency response. The system frequency response rises
slightly in the x direction and falls slightly in the y direction, because of the asymmetry in the Floyd-Steinberg error �lter.

C. Computational requirements

The inverse halftoning portion of the rehalftoning algo-
rithm has a low complexity, since it consists solely of a
small, �xed FIR �lter. Only four rows of the image need
to be stored in memory. The computational requirement
of error di�usion is also small. Computation is further re-
duced by exploiting the fact that some operations are com-
mon to both parts of the algorithm, such as looping over
the image and writing results to the output. Per pixel, the
rehalftoning algorithm requires

� 34 increments (++)
� 12{28 integer additions
� 4 integer multiplications
� 2 bit shifts

The number of additions varies according to the input, and
is equal to 20 on average for a mid-gray image. For an im-
age of size 512� 512 pixels, the entire rehalftoning process
requires approximately 16 million operations. The C im-
plementation takes less than 0.4 seconds to execute on a
167 MHz Sun Ultra-2 workstation for a 512�512 halftone.
For c columns, this implementation requires 4(c+3) bytes
of storage, i.e. 2060 bytes for a 512� 512 image. Because
all operations are local and use integer arithmetic, the al-
gorithm is ideal for implementation in embedded software.

IV. Interpolated halftoning

The choice of interpolation method depends on the re-
quired quality of the resulting image, and the computation
power available. If an image is intended for printing, it may
not be necessary to perform a computationally expensive
interpolation, since improvements in the resulting image
will probably be masked by the halftoning process. A sim-
ple interpolation method may blur images, but modi�ed
error di�usion can then be used to re-sharpen them. This
allows high quality, interpolated halftones to be produced
at low computational cost. We focus on bilinear interpola-
tion because of its simplicity and good results.
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Fig. 3. Frequency responses of linear interpolation functions, for
upsampling ratios of 2, 3, and 4. The passband edges and their
associated gains are shown as dashed lines.

A. Algorithm

The frequency response of the one-dimensional linear in-
terpolator with upsampling ratio M is given by

HLI(e
j!) =

�
1� e�jM!

1� ej!

�2

: (4)

Fig. 3 plots (4) forM = f2; 3; 4g. The normalized response
at the passband edge is 0.5 (�6 dB) forM = 2, and 4=�2 �
0:405 (�7:8 dB) in the limit asM becomes large. When the
bilinear interpolator is applied separably in two dimensions,
the gain at the passband edge is �12 dB for M = 2, and
�15:7 dB in the limit as M becomes large. This causes
blurring in the interpolated image.
We consider an interpolated halftoning system of the

form in Fig. 1 and substitute the interpolation function
for G(z). We assume that M = 2, i.e. image size is dou-
bled. The analysis is analogous for other scaling factors.
We use the low frequency approximation of (2) to analyze
the compound system. A value for the sharpness parame-
ter L is chosen that attens the response of the system at
low frequencies, leading to accurate halftones.
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(a) Halftoned, �ltered image. (b) Bilinear interpolation. (c) System transfer function.

Fig. 4. Interpolated halftoning results on the food image. The original image (512�512 pixels, Fig. 2(a)) is halfband �ltered and subsampled
by 2 in each direction, bilinearly interpolated, and halftoned using modi�ed error di�usion. The sharpness parameter L is chosen to
atten the low-frequency response of the system. An asymmetry in the x and y directions similar to that of Fig. 2(c) can be seen.

B. Results

We created an image of size 256� 256 pixels by �ltering
and subsampling a 512� 512 original. The smaller image
was then scaled up by a factor of two and interpolated to
obtain a 512 � 512 approximation to the original image.
Since spectral energy above fN=2 in the original image is
lost in the 256�256 image, and cannot be recovered by any
interpolation scheme, the interpolated image looks blurred
with respect to the original. We create a halfband �ltered
version of the original image for comparison.
Fig. 4(a) shows the halftone created from the halfband

�ltered image, and Fig. 4(b) shows the corresponding in-
terpolated halftone. They appear subjectively similar, as
expected. Fig. 4(c) shows that the system transfer function
is indeed at at low frequencies. Computational cost is low
because of the simple interpolation method used.

C. Computational requirements

The computational e�ciency of interpolated halftoning
stems from the use of a simple interpolation method. Bilin-
ear interpolation requires 7 additions and 6 multiplications
per output pixel, which reduces to an average of 1.67 addi-
tions and 1 bit shift per output pixel for interpolation by
two. For this factor, the algorithm requires

� 2 increments (++)
� 9.67 integer additions
� 4 integer multiplications
� 3 bit shifts

per output pixel, and two image rows of storage. This algo-
rithm is suited for implementation in embedded software.

V. Conclusions

Rehalftoning is necessary when scanning, processing,
and reprinting documents, and interpolated halftoning is
crucial for resizing images for printing and copying. We
develop and optimize new, fast algorithms for rehalfton-
ing and interpolated halftoning for error di�used halftones.
The algorithms use local memory and integer arithmetic,
and are therefore well-suited to the embedded hardware

and software of printers and copiers. For both algorithms,
we derive optimum values for the sharpness parameter
in modi�ed error di�usion to atten the system trans-
fer function. The interpolated halftoning method obtains
high quality reproduction with only bilinear interpola-
tion. A C implementation of the algorithms presented here
is available at http://www.ece.utexas.edu/~bevans/

projects/inverseHalftoning.html.
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